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Abstract. This document shows the results of our 
Speaker Verification System under two scenarios: the 
Face and Speaker Verification Evaluation organized by 
MOBIO (MObile BIOmetric consortium) and the results 
for the Speaker Recognition Evaluation 2010 organized 
by NIST. The core of our system is based on a Gaussian 
Mixture Model (GMM) and maximum likelihood (ML) 
framework. First, it extracts the important speech 
features by computing the Mel Frequency Cepstral 
Coefficients (MFCC). Then, the MFCCs train gender-
dependent GMMs that are later adapted to obtain 
target models. To obtain reliable performance statistics 
those target-models evaluate a set of trials and final 
scores are calculated. Finally, those scores are tagged as 
target or impostor. We tried several system 
configurations and found that each database requires a 
specific tuning to improve the performance. For the 
MOBIO database we obtained an average equal error 
rate (EER) of 16.43 %. For the NIST 2010 database we 
accomplished an average EER of 16.61%. NIST2010 
database considers various conditions. From those 
conditions, the interview training and testing 
conditions showed the best EER of 10.94 %, followed 
by the phone call training phone call testing conditions 
of 13.35%.  
Keywords. Speaker verification and authentication. 
 
Resumen. Este documento muestra los resultados de 
nuestro sistema de verificación de hablante bajo dos 
escenarios: la Evaluación Face and Speaker Verification 
Evaluation organizada por MOBIO (MObile BIOmetric 
consortium) y  la Evaluación de Reconociemiento de 
personas 2010 organizada por NIST. La parte central de 
nuestro esquema se basa en un modelado de Mezclas 
de Gaussianas (GMM) y máxima verosimilitud. Primero, 
se extraen los parámetros importantes de la voz 
calculando los coeficientes ceptrales en escala mel, Mel 
Frequency Cepstral Coefficients (MFCC). Después, 
dichos MFFCs entrenan las mezclas de Gaussianas 
dependientes del género que posteriormente serán 

adaptadas y se obtendrán los modelos de los usuarios 
objetivo. Para obtener estadísticas confiables esos 
modelos objetivo son evaluados por un conjunto de 
señales no conocidas y se obtienen puntuaciones 
finales. Por último, esas puntuaciones son etiquetadas 
como usuario objetivo o impostor. Hemos analizado 
diferentes configuraciones y encontramos que cada 
base de datos requiere una sintonización adecuada 
para mejorar su desempeño. Para la base de datos 
MOBIO, obtuvimos un porcentaje de error promedio de 
16.43 %.  Para la base de datos NIST2010, logramos un 
promedio de error de 16.61%. La base de datos 
NIST2010 considera varias condiciones. De esas 
condiciones, la condición de entrevista para 
entrenamiento y prueba mostró el mejor error con 
10.94 %, seguida por la condición de llamada telefónica 
en entrenamiento y llamada telefónica en prueba con 
13.35%.  
Palabras clave. Verificación de hablante y autenticación.  
 
 

1  Introduction 
 
During the past three decades we have 
experienced a rapid evolution of technology. An 
example of this evolution is in the way in which 
transactions are performed. Internet, mobile 
devices and telephone are nowadays the most 
common means for these transactions. The 
spreading of the technology has transformed the 
security issue into a necessity. 

Speech has shown to be a promising option to 
provide security by implementing authentication 
systems. The most important reasons to employ 
the voice signature are: a) speech is the most 
common way of human communication, b) to 
speak to a device is also considered a non-
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invasive technology (the interaction with the user 
just needs an utterance).  

The secure authentication of users has 
become an important security issue that can be 
solved through speaker recognition. This field is 
divided into two main tasks: speaker verification 
and speaker identification. Speaker verification 
(SV) verifies if the speaker utterance belongs to a 
target speaker or not. Speaker identification (SI) 
verifies the identity of a speaker among a set of 
prospect users. 

In this research we focus on SV systems. The 
speech signal inputs the system, which produces 
an acceptance or rejection result. In the ideal 
case, if the speech belongs to the target model, 
the result is tagged as accepted. If the speech 
belongs to an impostor, the result is tagged as 
rejected. The system presented here shows the 
evolution of our SV system, named TECHila2. It is 
based on the Gaussian Mixture Model (GMM) and 
the Maximum likelihood (ML) framework. 

Section 2 describes the architecture of the SV 
System. Section 3 presents the characteristics of 
the databases used to accomplish the 
experiments. Section 4 compares the results 
obtained in NIST Evaluation [SRE, 2010] and 
MOBIO Competition [Marcel et. al. 2010 ]. 
Section 5 opens the discussion and suggests 
special trends for future research. 

 
2  SV Architecture 

  
 Speaker Verification is to correctly accept or 

reject the identity of a user given a speech 
segment and a target speaker model. To verify 
can be considered a classification problem based 
on hypothesis testing. We want to verify if the 
speech signal  belongs to a target user . Two 
errors can be easily considered: 
 Type I: known as false rejection, meaning that 

signal  is incorrectly rejected being a target 
speaker. 

 Type II: known as false acceptance, meaning 
that the signal  is incorrectly accepted being 
an impostor. 

To analyze this errors we first need to review 
hypothesis testing [Wald ,1947; Duda and Hart, 
1973]. In the case of SV, the score obtained for 
every trial follows a hypothesis test framework, 

where the null hypothesis  accepts the 

speaker as legitimate and the alternative 

hypothesis  rejects him/her. Under this 

framework, the score is given as the likelihood 
ratio of two models: target-model and anti-model. 
The decision between the two hypotheses is 
defined as follows: 

  

 x  
p x S 
p x S 

   accept S

   accept S





 

 (1) 

 

where  and   are the probability 

density functions of  and  respectively (also 
known as likelihoods).We accept the hypothesis 

 if , the score, is greater than . We reject 

(tag as impostor ) the hypothesis  if the 

score,  is less than . For the purpose of this 
research we employ a gender-dependent set of 
impostors, usually named UBM (universal 
background model or anti-model), for all  target 
users. 

If Equation 1 is transformed into the log 
domain: 

 

 
(2) 

 

where and  are the 

log-likelihoods corresponding to the target model

 and the anti model  . 
Finally, we just need to correctly estimate the 

log-likelihoods by a modeling approach. To 
achieve this objective the SV process 
encompasses three main stages: Feature 
extraction, Speaker modeling and Evaluation. In 
the feature extraction, the system computes 
relevant information vectors from each user. In 
the speaker modeling, the speaker data is used to 
build a model. Finally in the evaluation, the 
models are tested using several trials and a 
reliable statistic of the system performance is 
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obtained. In the next sections we will describe in 
detail the different parts of the system. 

  
2.1 Feature Extraction 

  
The feature extraction includes the following 
stages: MFCCs computation, feature 
normalisations and frame removal. 
 

 

2.1.1 MFCCs Computation 
 

The computation of the MFCCs is composed of 
several stages [Davis and Mermelstein, 1980; 
ETSI 2000]. The first stage is the pre-emphasis 
followed by the short-time Fourier analysis on an 
overlapping hamming window. We can extract 
either the power or the magnitude of the Fourier 
coefficients. Afterwards, a filterbank transforms 
this signal into a smooth spectrum representation 
(close to the envelope of the speech signal). The 
filterbank output is then transformed to the log-
domain. Finally, we apply the DCT to decorrelate 
and produce the cepstral coefficients [Bogert et. 
al. 1963]. The filterbank can be linearly spaced, 
and the resulting coefficients are named Linear 
Frequency Cepstral Coefficients. However, the 
most common computed are the MFCCs. They 
follow the mel scale that resembles the way a 
person hears. To emphasize the dynamic 
features of the speech in time, the time derivative 
(Δ) and the time-acceleration (Δଶ) are usually 
computed. It is common to compute 12 MFCC, 
one Energy coefficient and its corresponding (Δ 
)and (Δଶ). However, recent studies have shown 
that using more than 12 MFCCs can give better 
results [Martin and Greenberg, 2009; Burget et. 
al. 2009]. 
 

  

2.1.2 Feature Normalizations 
  

Normalizations at this stage are implemented to 
reduce the effects of the noise and the channel 
distortion. For instance, the cepstral mean 
subtraction (CMS) [Furui, 1979] is a blind 
deconvolution that comprises the subtraction of 
the utterance mean of the cepstral coefficients 
from each feature. In the same way, the variance 
normalization (CVN) [Viikki and Laurila, 1978] is 
also applied. Hence, the new features will fit a 

zero mean and variance one distribution. Another 
well-known feature normalization is RASTA 
(Relative Spectra) [Hermansky et. al. 1992]. While 
CMS focus on the stationary convolution of the 
noise due to the channel, RASTA reduces the 
effect of the varying channel; it removes low and 
high modulation frequencies. The three of them 
are commonly used in the SV architecture. 
 

  

2.1.3 Feature Warping 
 

Another important normalization at the feature 
stage is the feature warping. It belongs to the 
Gaussianisation methods [Pelecanos and 
Sridharan, 2001; Chen and Gopinath 2001]. The 
underlying concept in this normalization scheme 
is that every spectral attribute (cepstral coefficient 
in our case) is normally distributed across time, 
but the transmission channel distorts such 
distribution. The task of feature warping is to undo 
the distortion caused by the channel by warping 
each attribute’s scale so that the resulting 
attribute set has a normal distribution. Feature 
warping is accomplished by first assembling an 
empirical CDF (cumulative distribution function) 
from the ranked features within 1.5 seconds after 
and before the current frame (3 seconds total), 
and then perform the CDF-inverse at the current 
frame. 
 
 

2.1.4 Feature Frame Removal 
 

Frame removal is based on the idea that low 
energy frames do not provide information about 
the identity of a person. The frames’ log-energy of 
each utterance are modeled by a three-
component GMM. ߱ଵ corresponds to the highest 
weight of the rightmost Gaussian, ߱ଶ to the 
middle Gaussian, and ߱ଷ   to the leftmost 
Gaussian. According to this model every frame 
log-energy is labeled as high if it belongs to the 
rightmost Gaussian; medium if it belongs to the 
middle Gaussian; and low if it belongs to the 
leftmost Gaussian [Petrovska-Delacrétaz et. al., 
2007]. The following equation is used to 
determine which frames can be extracted. 

  
ܰ ൌ ߱ଵ ൅ ሺ݃ כ ߙ כ ߱ଶሻ, (3) 
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where ݃ is a value between 0 and 1, and ߙ is an 
heuristic weighting parameter. ܰ is the 
percentage (between 0 and 100) of the frames 
with highest energy that will be extracted. If an 
accurate voice activity detector (VAD) or the 
speech transcriptions to perform speech 
recognition are not available the frame removal is 
a suitable solution. 

  
2.2 Speaker Modeling 

  
Most of the current modeling strategies to 
compute the target model and the anti-model 
[Reynolds, 1992; Reynolds et. al. 2000; Reynolds 
1995] are based on GMM (Gaussian Mixture 
Model) approach. For a ݀-dimensional feature 

vector, the multivariate Gaussian Mixture 

p.d.f. is defined as: 
 

 (4) 

  
where ܯ are the number of components of the 
model, ߱௜are the weights of each component 
∑ ߱௜ ൌ 1ெ

௜ୀଵ , and  is the probability 

density function with ߤ௜ mean, and  diagonal 

covariance matrix. 
The Expectation maximization (EM) algorithm 

[Dempster et. al. 1977], the acoustic modeling 
under maximum likelihood criterion, is the leading 
algorithm for training the GMM. It is used to 
iteratively calculate the maximum likelihood 
estimates of the GMM parameters. By using the 
EM algorithm, the following model ߣ is computed 
such that: 

 
To reach convergence in a shorter time, some 

systems employ a clustering algorithm as a 
previous step before the EM algorithm. For 
instance, a good solution is to first apply k-means 
algorithm to the data and identify possible clusters 
and centroids (mean vectors of a Gaussian 

distribution), instead of initialising the algorithm 
with random vectors. 

By applying the EM algorithm to a target-
independent set of data a GMM model is 
computed. This model is also known as anti-
model or Universal Background Model (UBM). It 
embraces the characteristics of all the data 
vectors of the users not belonging to the target 
set. In most cases it is gender-dependent. 

Due to the small amount of data available to 
produce target speaker models, the anti-model is 
adapted by using the maximum a posteriori 
(MAP) algorithm [Gauvain and Lee, 1994]. It 
follows the decision rule, 

 

  argmax
,

p x ;  p ; 
 
 (6) 

 
where ߞ ൌ ሺߣ,  is the hyper-parameter of ߴ ሻ andߴ
the distribution of ߣ. Equation 6 is also solved 
under the ML criterion using the EM algorithm. 

Note that for MAP, three issues should be 
considered, 
 the definition of the prior densities that are the 

basis of the target models, 
 the estimation of the prior densities, 
 solution of the MAP by EM algorithm. 

For the purpose of SV the prior densities are 
based on the GMM UBM model. Then, the UBM 
distributions are adapted and transformed into the 
target probability distributions. The new 
parameters are estimated by using the EM 
algorithm. 

 
2.3 Evaluation 
 
As shown, the score obtained for each trial 
follows a hypothesis test framework. The score 
evaluates the log-likelihood ratio of two models: 
target-model and anti-model (see Equation 2). 

After calculating a final score, an accept/reject 
decision is obtained. The task of giving a decision 
is still a challenge. It can be computed in two 
ways: gender dependent and gender independent 
(both of them use a development database to 
tune the desired threshold). The gender 
dependent approach employs a priori information 
of each target to set a target-dependent 
threshold. In the gender independent approach 

p x  

p x    i

i1

M

 N x,i ,i 

N x,i,i 
i

  (5) 
p x  n1    p x n 
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the scores are first normalized and a single 
threshold is calculated. If the system only had a 
single target (costumer), it would be simple to 
determine the acceptance/rejection based on the 
score. However, most systems have multiple 
targets, therefore it is convenient to scale (or 
normalize) the scores so that they are 
comparable across multiple targets. ZNORM 
[Mariéthoz and Bengio, 2005], TNORM [Navratil 
and Ramaswamy, 2003], and ZTNORM, among 
others, are used for this purpose [Petrovska-
Delacrétaz et. al., 2007]. 

Note that the threshold is a trade off (see 
Figure 1). Let’s suppose that the scores of the 
target speakers follow a Gaussian distribution. 
The same is valid for the impostor speakers. The 
full picture points out two overlapping Gaussian 
distributions (the right one represents the target 
speakers and the left one the impostors). One 
approach is to set the threshold as high as 
possible, but that will produce few false 
acceptances and many false rejections (very 
secure). On the other had, if the threshold has a 
low value, there will be many false acceptances 
and few false rejection. Neither of them is 
desirable. A good tradeoff that can minimize the 
threshold loss is appropriate. According to the last 
necessities, this threshold should also adapt to 
the different channels. 
  

 
                             Fig. 1. Threshold 
 

3  Databases 
  

Two databases are discussed: MOBIO [Marcel 
et.al., 2010] and NIST2010 [SRE, 2010]. 
 
3.1 MOBIO 
 
MOBIO [McCool and Marcel, 2010] is a large 
cellphone bi-modal (audio/visual) database. It 
includes both the speech and face data divided in 
six sessions. From this database, we extracted 
just the speech signal from the mp4.  

The database was recorded as follows: 
A) Set responses: the users were asked questions 

such as: What is your name? (around 7 
seconds) 

B)   Read Speech from a paper: the users read 3 
fixed sentences (maximum 30 seconds) 

C)  Free speech: the users provide five to ten 
second answers to random questions. 

All this recordings were performed in several 
sessions. The evaluation is divided in three 
phases: development, enrollment and testing. The 
development includes the generation of a UBM 
and is composed of set of responses (A). The 
enrollment uses the data in the set (B) of 
response questions. The testing is composed by 
the free speech answers, set (C). 

  
3.2 NIST2010 

  
We focused on the core-core evaluation by NIST 
2010 [SRE, 2010], which is a defined task.  

The UBM was generated using NIST2004 
database. The train and the test are composed of 
either one two-channel telephone conversation of 
approximately five minutes total duration, with the 
(target or proposed trial) channel designated 
previously or a microphone conversation segment 
of three to fifteen minutes involving both the 
interviewee (target speaker) and an interviewer. 
There were over 570,000 trials (female and male). 

The data included various levels of vocal effort 
(low, normal and high vocal effort) from speakers 
of previous evaluations. The data also presented 
various types of microphones (seven) and both 
conversational and interview sessions. The 
studied common conditions are described in 
Table 1. 
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The experiments were conducted using cross-
conditions of the above elements. The 
competition requirements allowed a cost of false 
rejection of 1 and the target probability of 0.001. 
The cost function caused the minimum cost 
operating point to be between 0.01% and 0.1% 
false alarm percentage. 

 
Table 1. Table presenting the common conditions 

 
Train condition Test condition Channel

Interview  interview  same 
microphone 

Interview interview  different 
microphone 

Interview  normal vocal 
effort phone call  

telephone 

Interview  normal vocal 
effort phone call  

microphone 

normal vocal 
effort phone call  

normal vocal 
effort phone call  

different 
telephone 

normal vocal 
effort phone call  

high vocal effort 
phone call 

different 
telephone 

normal vocal 
effort phone call  

high vocal effort 
phone call  

microphone 

normal vocal 
effort phone call  

low vocal effort 
phone call  

different 
telephone 

normal vocal 
effort phone call  

low vocal effort 
phone call  

microphone 

  
4  Experiments and Results 

  
4.1 MOBIO and NIST 2010 Common 
Processing 

  
At the beginning of our study, our system was 
entirely built to follow NIST2008 competition 
requirements. From this basic scheme more 
complex variants will be constructed or tuned 
depending on the application. The basic 
architecture employed in terms of signal 
processing is described in the following 
paragraphs. 

The speech signal is treated as an 8 kHz 
signal. Subsequently, a 25 ms analysis 
overlapping Hamming window, 10 ms frame rate, 
and pre-emphasis coefficient of 0.97 was applied. 
Afterwards, the features are extracted (as 
explained in Section 2.1) followed by a GMM 
training approach. The experiments were 

performed independently for each gender. A 
gender-dependent and target-independent 512-
mixture GMM anti-model [Lee, 1997] was trained 
from a pool of the corresponding development 
database. The EM (expectation maximization) 
algorithm was used to obtain the maximum 
likelihood estimates of the GMM parameters. 
TECHila2s’s implementation of the EM algorithm 
for GMM uses the MPI (Message Passing 
Interface) environment to take full advantage of 
parallel computing infrastructure. 

The GMM is first initialized using the K-means 
algorithm to obtain a set of 512 centroids. By 
using the k-means algorithm, the convergence of 
the EM is known to be faster. However, it is 
always important to check that the local bounds 
are not very restrictive, so that EM can make a 
satisfactory estimation. The EM is then repeated 
after the model had converged (about 3-5 
iterations). Target-dependent models were then 
obtained with a traditional MAP (maximum a 
posteriori) speaker adaptation [Gauvain and Lee, 
1994]. The score obtained for every trial follows 
the hypothesis test framework. The score is given 
by the log-likelihood ratio of two models: target-
model and antimodel. 

TECHila2 was, then, modified to fulfill MOBIO 
competition and NIST evaluation requirements. 
The next sections show how these changes were 
addressed. 

  
4.2 MOBIO 

  
For MOBIO, the signal was down sampled from 
48kHz to 8kHz (with this adjustment it can be 
treated as telephone speech signal). Two 
approaches were followed: 
 System 1: Feature vector of 33 attributes: 16 

static Cepstral, 1log Energy, and 16 delta 
Cepstral coefficients, A single file from each 
target user (the average time of these 
utterances is 7 seconds) was used for training 
phase. 

 System 2:  Feature vector of 49 attributes: 16 
static Cepstral, 1log Energy, 16 delta Ceptral 
coefficients, and 16 double delta Ceptral 
coefficients. The complete set of target files 
were used to compute the models. 
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A gender-dependent and target-independent 
512-mixture GMM anti-model [Lee, 1997] was 
trained employing a pool of the MOBIO speech 
database (4893 audio files for male, 1764 for 
female). Target-dependent models were then 
obtained employing MAP. 

The results obtained using our approaches on 
MOBIO database are summarized in 

 
Table 2. Table presenting the final results (EER) on the 

Test set for the MOBIO database 
 

 Male Female Average
System 1 20.55% 25.23% 22:89% 
System 2 15.45% 17.41% 16:43% 
  
The main purpose of system 1 is to test 

MOBIO database in the worst scenario (baseline). 
The first constraint is to reduce the relevant 
speaker information by down sampling the signal 
to suit a common telephone processing. The 
second one is to compute just the first delta 
coefficients to have a rapid training. The third one 
is to use just one file to test our MAP 
implementation. Sometimes the speakers are not 
cooperative and we should address an adaptation 
with the minimum data. For system 2, we 
considered the down sampling, but included the 
double delta coefficients and the complete pool of 
available training files. As shown, the system 
performance clearly depends on the amount of 
data used in the adaptation. Moreover, there is a 
significant improvement when the double deltas 
are appended to the feature vector. 

Considering that the best results obtained 
were for system 2.We used this scheme to 
improve our architecture for NIST2010 evaluation. 

  
4.3 NIST2010 

  
For the case of NIST2010 database, the 
experiments were conducted using 49 attributes: 
16 static Cepstral, 1log Energy, 16 delta Ceptral 
coefficients, and 16 double delta Ceptral 
coefficients. A gender-dependent and target-
independent 512-mixture GMM anti-model model 
was trained from the core-core of NIST-SRE 2004 
database. 

For every iteration of the EM algorithm, 
TECHila2 randomly polls 25% of the training 

tokens (belonging to the core-core NIST2004 
database), corresponding approximately to 3 
hours of speech. The results obtained for 
NIST2010 are summarized in Table 3. 
 

Table 3 . Table presenting the final results (EER) on 
the Test set for NIST 2010 

 
 Female Male Average 
1 Interview interview 
same mic 

 13.5% 8.39% 10.94% 

2 Interview interview 
different mic 

23.47% 17.29% 20.38% 

3 Interview 
nvephonecall tel 

18.42% 16.24% 17.54% 

4 Interview 
nvephonecall mic 

17.27% 13.07% 15.17% 

5 nvephonecall 
nvephonecall different 
tel 

17.18% 15.86% 16.52% 

6 nvephonecall 
hvephonecall different 
tel 

22.95% 20.22% 21.58% 

7 nvephonecall 
hvephonecall mic 

23.43% 19.49% 21.24% 

8 nvephonecall 
lvephonecall different 
tel 

13.40% 13.30% 13.35% 

9 nvephonecall 
lvephonecall mic 

12.71% 12.65% 12.78% 

Average 18.03% 15.16% 16.61% 

  
The results in Table 3 are consistent with the 

ones computed in MOBIO competition. We 
observe that the EERs are better for male than for 
female for all conditions. Note that the interview 
training and testing condition showed the best 
result of 10.94%, as well as the phone call 
training phone call testing condition of 13.35%. 
However, when there is a mismatch between 
conditions, the EER increases. Another 
interesting observation is for instance, row 1 and 
2 where the EER is doubled just by changing the 
microphone. This occurs due two facts: the anti-
model is trained just with a mixture of telephone 
data and the lack of an algorithm such as joint 
factor analysis to model the channel variability. 

  
4.4 Infrastructure 

  
All experiments were conducted under an 
autonomous Beowulf cluster with 20 CPUs i686 
3GHz, 1Gbps LAN, 7TB storage. And we used 
the following software: SGE, Matlab, Python, Perl, 
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GNU-Linux. Our iterative algorithms, such as EM, 
MAP, k-means, emulate MPI environment to take 
full advantage of parallel computing infrastructure. 

  
5  Discussion and Conclusions 

  
The results for both databases follow the same 
trend. We can observe that increasing the number 
of MFCCs and including the delta and double 
delta improve the results. Moreover, most of the 
best results were obtained when there is no 
mismatch between conditions. We will consider 
further normalisation techniques (such as Znorm) 
to obtain better results as part of our future work. 
In addition, we should include an algorithm such 
as joint factor analysis that can handle the 
mismatch between training and testing channel 
conditions. 

Each of the databases has problems to solve. 
On the one hand, we have found that the main 
issue of MOBIO database is how to treat the few 
number of pure speech frames that can be 
extracted from the phrases. This issue caused 
problems for the feature warping and frame 
removal algorithms, because they needed at least 
3 second speech utterances. We should address 
this problem by reducing the number of GMM 
components. On the other hand, the main 
challenge of NIST2010 database was the number 
of trials to test the target models, causing an 
increase in the computing time. 

Due to computation requirements the 
configuration of our cluster was a challenge too. 
Although the implementation was carefully done 
to avoid waste of computation (easily done in 
Matlab), we realized that our system needs a 
faster implementation and a comparable result. 
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