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Abstract. Frequent connected subgraph (FCS) mining is 
an interesting problem with wide applications in real 
life. Most of the FCS mining algorithms have been 
focused on detecting duplicate candidates using 
canonical form tests. Canonical form tests have high 
computational complexity, and therefore, they affect 
the efficiency of graph miners. In this paper, we 
introduce novel properties to reduce the number of 
canonical form tests in FCS mining. Based on these 
properties, a new algorithm for FCS mining called gRed 
is presented. The experimentation on real world 
datasets shows the impact of the proposed properties 
on the efficiency of gRed reducing the number of 
canonical form tests regarding gSpan. Besides, the 
performance of our algorithm is compared against 
gSpan and other state-of-the-art algorithms. 

Keywords. Data mining, frequent patterns, graph 
mining, frequent subgraph. 

Reduciendo el número de pruebas 
de forma canónica para la minería 

de subgrafos frecuentes 

Resumen. La minería de subgrafos conexos frecuentes 
es un problema interesante con amplias aplicaciones en 
la vida práctica. La mayor parte de los algoritmos para 
este tipo de minería detectan los candidatos duplicados 
utilizando pruebas de forma canónica. Este tipo de 
pruebas tienen una alta complejidad computacional, lo 
cual afecta el desempeño de los algoritmos de minería 
de grafos. En este artículo se proponen nuevas 
propiedades para reducir el número de pruebas de 
forma canónica en este tipo de minería. Basado en 
estas propiedades, se propone un nuevo algoritmo 
llamado gRed. Los resultados experimentales en 
colecciones de datos reales muestran el impacto de las 
nuevas propiedades en la eficiencia de gRed, 
reduciendo el número de pruebas de forma canónicas 

con respecto a gSpan. Además, el desempeño de gRed 
es comparado respecto gSpan y otros algoritmos 
reportados en el estado del arte. 

Palabras clave. Minería de datos, patrones frecuentes, 
minería de grafos, subgrafos frecuentes. 

1 Introduction 

Graph mining is becoming increasingly important 
since advances in collecting and storing data 
have produced an explosive growth in the amount 
of available structured data. This situation has 
boosted the necessity of new tools to transform 
this big amount of complex data into useful 
information or knowledge for decision makers. 
The development of such tools requires 
techniques that usually need long time and have 
high memory requirements. Frequent connected 
subgraph (FCS) mining is an example of these 
techniques. 

FCS mining is the process of finding 
connected subgraphs that frequently occur in a 
collection of graphs. Recently, this topic has been 
an interesting theme in data mining with wide 
applications, including mining substructures from 
chemical compound databases [3], XML 
documents [9], biological networks [14], and so 
forth [7]. Labeled graphs can be used to model 
relations among data in the aforementioned 
applications because labels can represent 
attributes of entities and relations among 
themselves [10]. As a consequence, several 
algorithms have been proposed for FCS mining in 
collections of labeled graphs. 
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The first algorithm for finding all frequent 
subgraphs (connected or unconnected) in a 
collection of labeled graphs was AGM [12]. This 
algorithm was followed by FSG [15] and AcGM 
[12] algorithms, for mining all frequent connected 
subgraphs (FCSs). These algorithms are similar 
to the original Apriori algorithm [1] for mining 
frequent itemsets. 

To avoid overheads of the earlier algorithms, 
new pattern growth based algorithms such as 
gSpan [24, 25], MoFa [3], FFSM [11], and Gaston 
[17] were developed. These algorithms were 
compared in a common framework [22]. In this 
experimentation, the four algorithms were 
competitive among themselves, although Gaston 
and MoFa were the fastest and slowest 
algorithms respectively, in almost all tests. On the 
other hand, gSpan was the best algorithm 
regarding its memory requirements since the 
embedding structures, used by MoFa, FFSM, and 
Gaston for frequency calculation and candidate 
enumeration, could be a problem if not enough 
memory is available or if the memory throughput 
is not high enough. 

The emergence of duplicate candidates during 
the enumeration process is one of the major 
problems in all recent approaches. Duplicate 
candidates are treated by representing the 
subgraphs with a unique code called canonical 
form. The DFS code (Depth First Search code) is 
an example of promising kind of canonical form 
for FCS mining [17]. Candidate enumeration 
strategies are commonly defined by means of 
these codes, trying to avoid non-canonical forms 
by performing canonical form tests which has very 
high computational complexity [2]. 

In this paper, we introduce non-minimality 
conditions, a reuse condition, and a cut property 
for DFS codes, which are useful for reducing the 
number of canonical form tests in FCS mining. 
The non-minimality conditions allow knowing the 
results of some canonical form tests in constant 
time. These conditions do not remove all the 
duplicate candidates; therefore, canonical form 
tests are required for non-filtered candidates. 
However, the reuse condition helps to reduce the 
number of such expensive tests by reusing 
previous test results for predicting new results 
without performing a test. The cut property 
provides an efficient way for taking advantage of 

the reuse condition by defining boundaries 
between canonical and non-canonical forms in 
the candidate space. Additionally, this paper 
introduces a new algorithm called gRed (graph 
Candidate Reduction Miner) based on these 
properties. Our algorithm uses the non-minimality 
conditions to reduce the number of candidate 
graphs and applies the cut property for finding the 
boundaries between useful and duplicate 
candidates, in an efficient way. 

Preliminary results of this research were 
introduced in a previous conference paper [6]. In 
this conference paper, a version of gRed, which is 
referenced in our research as gRed-v1, is 
presented. The version gRed-v1 does not exploit 
the reuse conditions for locating the above 
mentioned boundaries. 

The basic outline of this paper is as follows. 
Section 2 provides some basic concepts. Section 
3 contains the related work. The novel DFS code 
properties are introduced, discussed, and proved 
in Section 4, including the details of the gRed 
algorithm. In Section 5, the experimental results 
are presented. Finally, conclusions of the 
research and some ideas about future directions 
are exposed in Section 6. 

2 Basic Concepts 

In this section, the background and notation used 
in the next sections are provided. This work is 
focused on simple undirected labeled graphs. 
Henceforth, when we refer to graphs we assume 
this kind of graph. The formal definition of this 
type of graph is as follows. 

A simple undirected labeled graph is a  -tuple, 

    ⌌       ⌍, where   is a set whose elements 

are called vertices,     {*   +|     } is a set 

whose elements are called edges,   is the set of 
labels and         is a labeling function for 
assigning labels to vertices and edges. 

Let    ⌌         ⌍ and    ⌌         ⌍ be 

two graphs having the same set of labels   and 
the same function  . We say that    is a subgraph 

of    if        and      . In this case, we use 

the notation       . 
In graph mining over collections of labeled 

graphs, the frequency of the candidates is 
calculated using subgraph isomorphism tests. We 
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say that   is an isomorphism between    
⌌           ⌍ and     ⌌           ⌍ if           
is a bijective function such that   preserves vertex 

labels (that is         ( )    ( ( ))),   
preserves edges and edges labels (that is 
 *   +     * ( )  ( )+     and   (*   +)  
  (* ( )  ( )+). 

A subgraph isomorphism from    to    is an 

isomorphism from    to a subgraph of   . In this 

case we will say that    holds   . 
We say that   (          ) is a path in a 

graph     ⌌       ⌍, if      for all  ,       

and for each pair of consecutive vertices    and 

    , *       +   . In this case we say that    and 
   are connected by  . If       and      , we 

say that   is a cycle. A graph   is connected if 

each pair of vertices in   is connected by a path. 
Trees are a special kind of graph. A tree is a 

connected graph without cycles. A tree is called a 
rooted tree if one vertex has been selected as 
root; in this case, the edges have a natural 
orientation starting from the root. In graph theory, 
a tree is a graph in which any two vertices are 
connected by exactly one path [5]. 

Let     ⌌           ⌍ be a rooted tree with 

root    and let        be two vertices in  . We 
say that   is the parent of   if the unique path 

from    to   passes through   and *   +    ; in 

this case, we also say that   is a child of  . 

Let   *         | |+ be a collection of 

labeled graphs and let   be a predefined support 
threshold. The support of a graph   in   is 

defined as the number of graphs      such that 

   holds  . We use the notation  (   ) to refer to 
the support of   in the collection  . A graph   

occurs frequently in the collection   if  (   )   . 
Frequent connected subgraph (FCS) mining is the 
process of finding connected subgraphs that 
occur frequently in a collection of graphs. 

3 Related Work 

Algorithms for FCS mining have been classified, 
according to the candidate enumeration strategy, 
in two classes: the Apriori based algorithms and 
the pattern growth based algorithms [7]. Previous 
comparative studies have shown that the second 

class of algorithms has better performance than 
the first ones [17, 22]. 

One of the major problems in all pattern 
growth based algorithms is the emergence of 
duplicate candidates during the enumeration 
process. A duplicate candidate is one that has 
already been considered in a previous step and 
appears again during the search. In pattern 
growth based algorithms, duplicate candidates 
are treated using unique sequential graph 
representations called canonical forms or unique 
codes. The candidate enumeration strategies are 
always defined by means of these codes trying to 
avoid non-canonical forms. A non-canonical form 
represents a duplicate candidate since its 
corresponding canonical form should be already 
considered in a previous step. 

None of the existing candidate enumeration 
strategies remove all non-canonical forms. 
Therefore, a canonical form test in each 
candidate is required. Unfortunately, a canonical 
form test is equivalent to the isomorphism 
problem (that is a NP-Complete problem); 
therefore, its computational complexity is very 
high [2]. 

3.1 Brief of Pattern Growth Based 
Algorithms 

The most commonly cited pattern growth based 
algorithms for FCS mining are gSpan [24],[25], 
MoFa [3], FFSM [11], and Gaston [16]. In 
addition, there are other works on this paradigm 
but all of them are based on at least one of the 
aforementioned four algorithms. 

The gSpan algorithm was the first pattern 
growth based algorithm for FCS mining [24]. It 
introduced a promising canonical form for labeled 
graph representation called DFS code. A DFS 
code is built during a depth first search traversal 
of a graph. 

The gSpan scheme has been used as a 
starting point for designing more efficient and 
better adapted algorithms. For example, a data 
structure called ADI was used for processing big 
collections of graphs [20]. An algorithm called 
Edgar improved the gSpan implementation 
introducing code optimization techniques and a 
data structure for storing the candidate 
embeddings [21]. In the FSP algorithm, novel 
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properties of the search space are used to 
improve the graph and subgraph isomorphism 
tests [8]. 

MoFa uses canonical forms based on breadth 
first search graph traversals [2, 3]. This algorithm 
provides several functionalities for applications in 
molecular data collections; nonetheless, it has 
shown a poor behavior in previous comparative 
studies [22]. 

FFSM is a hybrid algorithm combining ideas of 
Apriori and pattern growth based algorithms [11]. 
A special kind of canonical forms based on 
adjacency matrices is used for representing graph 
candidates. Recently, a new algorithm based on 
FFSM, called FSMA, was presented [23]. FSMA 
uses incidence matrices instead adjacency 
matrices; thus, it reaches some improvements in 
the canonical form tests. 

Gaston is one of the most efficient algorithms 
for FCS mining [16]. Several previous results, 
obtained for sequence and tree mining, were 
exploited to improve the search of paths and trees 
in Gaston. Next, frequent paths and trees are 
used to generate graphs with cycles. 
Nevertheless, generating graph with cycles does 
not reach the efficiency of generating paths and 
trees. 

In conclusion, pattern growth based algorithms 
have shown great advances in the last years. 
However, almost all algorithms require exhaustive 
canonical form tests to detect duplicates in each 
candidate; only Gaston improves duplicate 
detection for path and tree mining. Therefore, 
duplicate detection is still a challenging problem. 
In this paper, we propose novel properties of the 
DFS code to reduce the number of canonical form 
tests in FCS mining. 

3.2 DFS Codes 

A labeled graph can be represented by a unique 
sequence of edges called minimum DFS code. 
This kind of canonical representation is based on 
DFS graph traversals and it was introduced in 
gSpan [24]. This section includes some concepts 
about DFS codes that are required for 
understanding our work. 

Let     ⌌       ⌍ be a connected graph and 
suppose that a DFS traversal in   is performed. A 

DFS tree     ⌌           ⌍ of   is the rooted 

tree built as follow: the starting vertex in the 
traversal is the root of  ,   is a spanning tree of   

(    ) and   contains the edges of   that were 
used for the DFS traversal (    ). 

A connected graph     ⌌       ⌍ can have 
many different DFS trees because there is more 
than one DFS traversal. Each DFS tree   defines 
a unique order among all the vertices in  . 
Therefore, each vertex could be numbered 
according to this DFS order. 

Assuming   | |, the root of   is numbered 
with index   and the last vertex in the DFS 

traversal is numbered with index    . The last 

vertex is also called rightmost vertex of  . The 
rightmost path of   is defined as the straight path 
from the root to the rightmost vertex. 

Each edge   *   +    is coded as a tuple 

according to the DFS tree  . Suppose that the 
vertices   and   have indices   and  , 
respectively, according to the DFS order. Let 

    ( ),     ( ) and  (   )   (   )   ( ) be the 

labels of  ,   and  , respectively. Without loss of 

generality, assume that      . The tuple of e 
regarding   is calculated as in (1). 

 (   )  {
(        (   )   )      

(        (   )   )      
 (1) 

Thus, each edge     can be coded as a 

tuple,  (   )    
    , where    *        

 + and   is the set of labels of  .A linear order    
among the tuples of the set   

     could be 
defined as follows. If    (              ) and 
   (              ),        if and only if one of 
the following statements is true: 

-             (      (           )), 
-              (      (           )), 
-                  ,  
-                  , 

-                    . 

The lexicographic order    is used to compare 

the tuples    and    regarding the last three 
components in each tuple. This order is 
determined comparing the third component as 
first priority, next the fourth component, and finally 
the fifth one. 
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The DFS code of the graph     ⌌       ⌍ 
regarding the DFS tree   is a tuple sequence 
constructed using   . All the tuples obtained from 

the edges in   are sorted using    to build this 

sequence. Thus, a graph   can be coded as a 

sequence of tuples, denoted as     (    ), using 
one of its DFS trees. 

A new order    among tuple sequences can 

be built using   . Let    (          ) and 
    (          ) be two DFS codes (or two 

tuple sequences), where         
     for 

      and      ;        if one of the 
following conditions, (2) or (3), is true. 

               and         (2) 

    and     ,      . (3) 

The order    is called DFS lexicographic order 
and it is used to define a unique DFS code for 
representing each graph. The minimum DFS code 
of a graph   is defined as the minimum tuple 

sequence according to    among all DFS codes 

of  . 

3.3 Summary of gSpan 

Let   (          ) be a minimum DFS code 

and let    (            ) be a DFS code, 

where      
     for       and     

    . 
The code    is a child of   if the tuple   connects 

the rightmost vertex of   with another vertex in the 

rightmost path of   (backward extension), or it 
introduces a new vertex connected from a vertex 
of the rightmost path of   (forward extension). In 

this case,   is called the parent of    and the tuple 

  is called a rightmost path extension of s and it is 
denoted as       . 

The search space in gSpan is then defined as 
a rooted tree consisting of nodes representing 
DFS codes and the relation between parent and 
child node complies with the aforementioned 
parent/child relationship. The root of the search 
space is the degenerated DFS code having zero 
tuples. The DFS traversal over the search space 
follows the DFS lexicographic order among all 
DFS codes. 

In general, gSpan works as follows. First, all 
frequent and minimum DFS codes with only one 

edge are identified. Next, the search space is 
traversed in a depth first search order, and for 
each frequent and minimum DFS code found 
during the traversal, all its occurrences in the 
graph collection are located for computing the 
support of its candidate extensions. Whenever an 
extension turns out to be non-frequent or non-
minimum, it does not need to be considered for 
further extension, therefore it can be pruned. 

In gSpan, the duplicate candidates are the 
non-minimum DFS codes. A canonical form test, 
for a DFS code  , verifies if   is the minimum DFS 
code of the corresponding graph. Instead of 
calculating the minimum DFS code of   from all 
the possible DFS codes, picking up the smallest 
one and comparing it against  , gSpan follows a 
heuristic search designed using the DFS 
lexicographic order. Whenever a prefix of a DFS 
code is generated and it is less than  , then   is 
non-minimum and the test concludes. 

Some canonical form tests are avoided in 
gSpan using a pre-pruning stage: each backward 
extension with destination vertex   , of a minimum 

DFS code  , should be no smaller than any 

forward edge from    in   [25]. This pruning is 

performed during the candidate enumeration 
(before the duplicate detection process). 

In order to compute the support for each 
candidate code, gSpan stores a TID list. A TID list 
(Transaction ID list) contains the identifier of each 
graph in the collection holding the corresponding 
subgraph. TID lists are created during the 
enumeration process and they are used for 
determining all possible children of  , through 
subgraph isomorphism tests that allow to find all 
the embeddings. The length of each TID list is the 
support of its corresponding candidate. 

4 Frequent Connected Subgraph 
Mining 

In this section, we introduce some novel 
properties of the DFS code, which are useful for 
reducing the number of duplicate candidates as 
well as the number of canonical form tests in FCS 
mining. This paper shows the results of a first 
work that proposes reusing previous test results 
for improving duplicate candidate detection. 
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Moreover, we define boundaries between useful 
and duplicate candidates, which can be efficiently 
detected using the cut property. Finally, a new 
FCS mining algorithm called gRed is proposed 
showing the usefulness of these properties. 

4.1 Novel Properties of DFS Codes 

Suppose that   (          ) is a minimum 
DFS code representing a labeled graph    
 ⌌       ⌍, where | |    and | |   . Let   ( ) 
be the set of tuples representing the rightmost 
path extensions of   that emerge when gSpan 
traverses a graph collection  . This set can be 
partitioned into several subsets 

  ( )    ( )        ( )   

  ( )        ( ), 
 

where   ( ) contains the backward rightmost path 

extensions of   with destination at vertex    (the 

vertex with index  ), and   ( ) is the forward 
extension set from vertex   . For each vertex    in 

the rightmost path,      , the tuple    
represents the forward edge from    to its 
consecutive vertex in the rightmost path. The 
notation     is a tuple representing the reverse 

edge of the tuple  ; that is, if   (         ) then 

    (         ) for each     
    . 

For example, Fig. 1 (A) shows the DFS tree of the 
code 

   (         )(         )(         ) 

(         )(         )(         ) 

(         ); 

 

the rightmost path of   is (        ). The fourth 
component of each tuple (that is the edge label) is 
s t t  “−” f r in i ating an un  fin    r i  nti al 
labels. In Fig. 1 (B), the backward extension sets 

  ( )  *(         )+, 

  ( )  *(         )+, 
 

are shown; and in Fig. 1 (C), the forward 
extension sets 

  ( )  *(         )+, 
  ( )  *(         ) (         )+, 
  ( )  *(         ) (         )+, 

 

are shown. 

 

  

(A) (B) 

 

(C) 

Fig. 1 Example of a DFS tree (A), its partitions of the 

backward extensions (B) and forward extensions (C) 

The following two theorems are called non-
minimality conditions for the children of  . These 
theorems allow knowing the result of some 
canonical form tests without performing the 
exhaustive procedure. 

Theorem 1. Let s be a minimum DFS code, let    
be a vertex in the rightmost path of   and suppose 

that      . If     ( ) and      , then 

       is a non-minimum DFS code. 

Proof. Let   be an integer number such that 

     . The tuples    and   start from    and they 

represent forward edges in   . Therefore, we can 

perform a DFS traversal visiting first   and then    
or vice versa. If   is visited immediately before   , 
the resulting DFS code has the following format 
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   (                   ),  

where    is    with another subindices for each 

   . The codes    and    have the same prefix 

          and we are considering that       
  ; therefore,        by the condition (2) of the 
DFS lexicographic order. Therefore, we conclude 
that    is a non-minimum DFS code. 
A similar result for backward extensions is 
showed in the following theorem. 

Theorem 2. Let   be a minimum DFS code, let    
be a vertex in the rightmost path of  . If     ( ) 
and        , then        is a non-minimum 
DFS code. 

Proof. As in the proof of Theorem 1, let   be the 

integer number such that      . We can perform 
a DFS traversal visiting first     and then    or 

vice versa. If     is visited immediately before   , 
the resulting DFS code has the following format 

   (           
          ),  

The codes    and    have the same prefix 
          and we assume that           ; 
therefore,       . Thus, we conclude that    is a 
non-minimum DFS code.  

The statement of Theorem 2 is quite similar to 
the pre-pruning stage of gSpan (see Section 3.3). 
However, it is important to notice that Theorem 2 
only proposes to compare   regarding    unlike 

gSpan where each backward extension   should 

be compared against any forward edge from   . 
Let   ̅̅ ̅̅ ( ) be the set obtained from   ( ) by 

removing the extensions whose generated DFS 
codes, according to Theorems 1 and 2, are non-

minimum. In   ̅̅ ̅̅ ( ) could exist other extensions 
whose generated DFS codes are non-minimum. 
The following theorem provides a method to 
reuse previous calculations for predicting the 
results of other canonical form tests; therefore, it 
is called reuse condition. 

Theorem 3. Let   be a minimum DFS code, let    
be a vertex in the rightmost path of   and let   be 

one of the sets   ( ) or   ( ). If      ; then, the 
following statements are true 

1. if     is a minimum DFS code and     , 

then     is a minimum DFS code; 
2. if     is a non-minimum DFS code and 

    , then     is a non-minimum DFS code. 

Proof. Let us prove each case separately. 

In the first statement, we have that     is a 
minimum DFS code and     . Suppose that     
is a non-minimum DFS code, then there is at least 
one code    (            ) such that       
 . Using the definition of the DFS lexicographic 
order   , there is an integer  ,      , such 

that       for all    , and       . As it can 

be noticed,       because   is a minimum 
DFS code. Thus, by the condition (2),      . 

Since   and   start from the same vertex, we 

can replace the edge representing   in    by the 
edge  . Assume    is the code obtained when 

replacing   by   in   ; this is a valid code for the 

graph coded by     and we have          . 
Using the condition (3),           . Then, 
    is a non-minimal child of  , representing a 
contradiction. Therefore, the initial assumption 
(    is a non-minimum DFS code) must be false. 
Thus, we conclude the proof of the first statement. 

In the second statement, we have that     is 

a non-minimum DFS code and     . Then, there 

is at least one code    (            ) such 
that        . Let   be the integer such that 

     ,       for all    , and       . 
Thus, by the condition (2), we have       (it 

does not contradict the fact that   is a minimum 
DFS code since    and   represent different 

graphs). Since   and   start from the same vertex, 

we can replace the edge representing   in    by 
the edge  . The resulting code (assume it is   ) is 

a valid DFS code for the graph coded by     and 

we have               . Therefore,     is a 
non-minimum DFS code.  

The tuples in the set   ̅̅ ̅̅ ( ) can be sorted 

according to   ; thus, the subsets in the 
aforementioned partition can be placed in 
ascending order as 

 ̅ ( )   ̅   ( )  ̅ ( )    ̅   ( ),  

where each  ̅ ( ) (or  ̅ ( )) is obtained from 
  ( )(or   ( )) by removing the extensions whose 
generated DFS codes, according to Theorems 1 
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and 2, are non-minimum. The tuples inside  ̅ ( ) 
(or  ̅ ( )) are sorted in ascending order using the 
order in labels   . Henceforth, this arrangement in 

  ̅̅ ̅̅ ( ) is assumed. 
Based on Theorem 3, the boundaries between 

the extensions producing minimum and non-
minimum DFS codes can be located. The 
following result called cut property shows such 
allocation. 

Theorem 4. Let   be a minimum DFS code, let    
be a vertex in the rightmost path of   and let   be 

one of the sets   ( ) or   ( ). Suppose that   is 

sorted in ascending order according to   . If there 

are extensions in   that produce non-minimum 
DFS codes then they are at the beginning of  . 
Besides, if there are extensions that produce 
minimum DFS codes they are at the end of  . 

Proof. If all extensions in   produce non-
minimum DFS codes or all of them produce 
minimum DFS codes then the corollary is true. 
Therefore, suppose that there are both kinds of 
extensions in  . Let  ̂,  ̌    be two extensions 
such that  ̂ produces a non-minimum code and  ̌ 
produces a minimum code. It is easy to see that 
 ̂    ̌, because in the opposite case    ̌ should 
be a non-minimum code (see Theorem 3), 
contradicting the hypothesis. Therefore, we obtain 
that any extension in   producing a non-minimum 
code is before any other one producing a 
minimum code.  

The cut property states that each set   ( ) can 
be partitioned into two disjoint subsets,   ( )  

 ̂ ( )   ̌ ( ), where the extensions in  ̂ ( ) 
produce non-minimum codes, the extensions in 

 ̌ ( ) produce minimum codes and the tuples in 

 ̂ ( ) are before of the ones in  ̌ ( ) regarding   . 
In a similar way, each set   ( ) can be partitioned 

as   ( )   ̂ ( )   ̌ ( ). 

Thus, the set   ( )    ̅̅ ̅̅ ( ) of all extensions 
producing minimum codes is represented by 
means of the second subsets of these 
partitions (4). 

  ( )   ̌ ( )     ̌   ( )   

 ̌ ( )     ̌   ( ). 
(4) 

These proposed properties are important for 
FCS mining when candidates are represented by 

DFS codes since the extensions producing non-
minimum codes are eliminated because they 
represent duplicate candidates. The following 

sections show how these results could be used in 
FCS mining. 

4.2 The gRed Algorithm 

The properties introduced in Section 4.1 can be 
used to improve the mining process of gSpan and 
all algorithms based on it. In this section, a new 
algorithm called gRed based on these properties 
is introduced. The pattern growth strategy of 
gRed is shown in Algorithm 1 and it is explained 
in this section. 

Procedure gRed-Growth( ,  ,  ,  ) 

Input:   - a minimum DFS code 

(representing a frequent subgraph), 

  - collection of graphs,   - 

support threshold. 

Output:   - mining results 

1     * +; 
2   ̅̅ ̅( )   The set of tuples e such 

that the extension     takes 

place in   and   is not filtered 
by non-minimality conditions 

(pre-filtering); 

3 Remove from   ̅̅ ̅( ) the infrequent 
extensions; 

4   ( )   The set of all extensions 

producing minimum codes which is 

calculated directly from   ̅̅ ̅( ) 
using the cut property and 

binary searches (post-

filtering); 

5 foreach extension     ( ) do 

6 gRed-Growth(   ,  ,  ,  ); 
7 end 

Algorithm 1. Pseudo-code of the gRed pattern growth 

approach 

Let   be a minimum DFS code representing a 

FCS in a graph collection  . Suppose that 
|  ( )|   , then obtaining the set of all 
extensions producing minimum DFS codes, 
  ( ), through the procedure proposed by the 
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gSpan scheme would require   exhaustive 
canonical form tests, since each candidate must 
be checked. Henceforward, it will be shown that 
the number of such tests could be reduced. 

Taking into account that the non-minimality 
conditions can be checked in constant time, they 
could be executed inside the pattern growth 
process. Thus, the candidates that need to be 
tested are obtained directly from the extension set 

  ̅̅ ̅̅ ( ). This process is called pre-filtering (see 
line 2 of Algorithm 1). It is important to remember 

that |  ̅̅ ̅̅ ( )|   ̅   . 

The cut property is used to obtain   ( ) 

directly from   ̅̅ ̅̅ ( ) having a procedure more 
efficient than the one used in the gSpan scheme. 
This procedure called post-filtering (see line 4 of 
Algorithm 1) will be described as follow. 

Suppose that | ̅ ( )|    , , | ̅   ( )|      , 

| ̅ ( )|    , , | ̅   ( )|      , then 

∑     ∑      ̅ , (5) 

where ∑   sums over the vertices in the rightmost 
path of s. 

The gSpan scheme sorts the extensions in 
  ( ) according to   . This sorting is maintained 
during the pattern growth process in line 2 of 
Algorithm 1. This fact is not exploited in the 
gSpan scheme. Theorem 5 shows a novel 
approach to reduce the number of canonical form 
tests (see the proof of this theorem). 

Theorem 5. Let   be a minimum DFS code, let    
be a vertex in the rightmost path of   and let   be 

one of the sets  ̅ ( ) or  ̅ ( ) and suppose that 
| |   . Then, the number of exhaustive 

canonical form tests required to separate   into 

 ̂   ̌ (notations clarified in Section 4.1) is at most 
    (| |)   . 

Proof. If | |   , only one test is required and the 
theorem is true. 

Let  ( ) be the number of tests required for 

separating a set   with   elements (| |   ). 

Let   be the median of   regarding the order 
   and let    *   |     + and    *  
 |     + be two sets containing the other 

elements in  . A canonical form test is performed 

for    . 
First case: Suppose that     is a minimum 

DFS code. Then, the first statement of Theorem 3 

ensures that the DFS codes obtained from the 
extensions of   . 

Second case: Suppose that     is a non-
minimum DFS code. Then, the second statement 
of Theorem 3 guarantees that the DFS codes 
obtained from the extensions of    are also non-
minimum codes. 

In both cases, more tests to separate the 
remaining sets    or    respectively are required. 
The cardinality of each remaining sets is always 
less or equal than ⌊   ⌋. 

In brief, a problem with size   is reduced to the 
same problem but with size less or equal than 
⌊   ⌋. It is important to notice that for this 
reduction only one test is performed. Therefore, 
the inequality  ( )   (⌊   ⌋)    is true and 
 ( )   . This recurrent inequality can be easily 
solved using the known algorithm analysis tools 
[4]. Thus, the proof is concluded.  

Let   be the number of exhaustive canonical 

form tests to obtain   ( ) from   ̅̅ ̅̅ ( ). Using 
Theorem 5, we conclude that 

  ∑ (    (  )   )  ∑ (    (  )   )  , (6) 

where ∑   sums over the vertices in the rightmost 

path of  . Let   be the number of vertices in the 

rightmost path of  . Since     ( ) is a convex 
function [18] in the interval ,    ), the inequality 
(6) is transformed in 

        (
∑     ∑    

  
)    , (7) 

The argument of     ( ) in (7) can be simplified 
using (5); Finally, we obtain 

        (
 ̅

  
)    , (8) 

The theoretical result showed in (8) states an 
upper bound of the number of canonical form 
tests required to obtain useful extensions of  . 
This bound depends on two parameters the 

number of extensions  ̅ (this number depends on 
the graph collection features such as density of 
edges, number of labels, etc.) and the length of 
the rightmost path of  . As it can be noticed, the 

parameter  ̅ is affected by a     ( ) function; 
therefore, the proposed strategy reduces the 
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dependence of the graph collection features 
regarding the gSpan scheme. 

The procedure gRed-Growth of Algorithm 1 
recursively generates all candidate codes 
(graphs) starting from a DFS code   representing 
a FCS. The pre-filtering and post-filtering 
processes are used to reduce the number of 
canonical form tests. In the proof of Theorem 5, 
we can appreciate the process for performing a 

binary search. For each partition subset  ̅ ( ) (or 

 ̅ ( )) of   ̅̅ ̅̅ ( ), a binary search is performed for 
filtering duplicate candidates (post-filtering). The 
post-filtering stage is the main difference of gRed 
and the previously published version gRed-v1 [6], 
since gRed-v1 does not use binary search for 
removing duplicates. 

 

Procedure gRed( ,  ,  ) 

Input:   - collection of graphs,   - 
support threshold. 

Output:   - mining results 

1 Remove infrequent vertices and 

edges from  ; 
2    the set of all frequent 

vertices in  ; 
3     the set of all frequent edges 

in   (DFS codes with only one 

edge); 

4 foreach DFS code      do 
5 Initialize the TID list s.L by 

the graphs which contains the 

edge of s; 

6 gRed-Growth( ,  ,  ,  ); 
7      ; 
8 if | |    then break; 
9 End 

Algorithm 2. Pseudo-code of gRed 

Completing the description of gRed, the 
procedure gRed-Growth is invoked from the main 
procedure (see Algorithm 2). This main procedure 
starts by removing all infrequent vertices and 
edges. Next, the procedure gRed-Growth is 
invoked for each frequent edge (DFS code with 
size  ) for traversing the search space in a depth-
first way. After a frequent edge has been 
processed, the edge is dropped from the graphs 

in the collection  ; thus, it will not be used as 
possible extension in the next iterations. 

It is important to highlight that the pre-filtering 
and post-filtering processes introduced by gRed 
over the gSpan scheme can be also introduced in 
any other algorithm or implementation for FCS 
mining using DFS codes. 

5 Experimental Results 

In order to evaluate the usefulness of the 
proposed properties to reduce the number of 
canonical form tests, we compared gRed against 
gSpan and the already published version of gRed 
called gRed-v1 [6]. The algorithms considered as 
improvements of the gSpan scheme (for example 
ADI [20], Edgar [21], and FSP [8]) are not 
included in the comparison, because they use 
DFS codes; therefore, the pre-filtering and post-
filtering processes introduced in gRed could be 
also adapted in such algorithms to reduce the 
number of canonical form tests. The usefulness of 
the novel properties introduced in this paper could 
be illustrated without including these algorithms in 
the comparison. 

Additionally, we include a comparison of gRed 
against gSpan, MoFa, FFSM, and Gaston 
regarding their runtimes and memory 
requirements. These algorithms are the most 
commonly referenced and the most successful in 
previous comparative studies [16,22]. They were 
implemented in the common Java framework 
which is distributed under GNU license [22]. The 
implementation of gRed was developed in this 
framework. 

All the experiments were done using an Intel 
Core 2 Duo PC at 2.2 GHz with 2 GB of RAM. 
The SUN Java Virtual Machine (JVM) 1.5.0 was 
used to run the algorithms. 

5.1 Collections of Graphs 

The biochemical data collections, specifically the 
molecular datasets, constitute one of the main 
application fields for graph mining. Therefore, this 
kind of collections has been commonly us d to 
evaluate the performance of FCS mining 
algorithms. 
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The PTE collection is the smallest dataset 
(according with the number of graphs) considered 
in this work; it contains only     graphs 
representing molecules used in the predictive 
toxicological evaluation challenge [19]. In spite of 
its small size, PTE has a big amount of FCSs; for 
example, it has         FCSs using    of the 
collection size as support threshold. 

In this work, we use two medium size 
collections CAN2DA99 
(http://dtp.nci.nih.gov/docs/cancer/cancer 
_data.html) and HIV 
(http://dtp.nci.nih.gov/docs/aids/ aids_data.html). 
CAN2DA99 contains the graph representation of 
       molecules discovered in carcinogenic 

tumors and HIV includes the description of        
molecular structures of the human 
immunodeficiency virus. NCI 
(http://cactus.nci.nih.gov/ncidb2/download. html) 
is the biggest dataset (        graphs) used in 
our experiments. This dataset contains molecules 
from several sources. 

5.2 Experiments 

In our experiments we used low support 
thresholds to evaluate the performance of the 
algorithms, because these thresholds are very 
important in data mining applications [7]. 
Moreover, there are some applications like 
classification and clustering where frequent 
complex graph structures are important, and 
these complex structures can only be found with 
low support thresholds [10]. Additionally, high 
thresholds are commonly fulfilled by connected 
subgraphs with small size regarding the number 
of vertices, edges, or cycles. Moreover, almost all 
recent algorithms achieve good execution times 
for high support thresholds; and the differences 
among algorithm performances are more 
distinguishable for low support thresholds. 

The experiments in this paper are conceived 
for evaluating the usefulness of the pre-filtering 
and post-filtering stages. However, the usefulness 
of non-minimality was presented in the previously 
published version of gRed-v1 [6]. In this sense, 
the number of duplicates in all cases was 
significantly reduced by the pre-filtering stage; for 
example, in PTE using    of the collection size 

as support threshold, this stage reduced almost 
    of the duplicates regarding gSpan. 

 

 

Fig. 2 The number of canonical form tests 

performed by gRed and gSpan in datasets PTE, 
CAN2DA99, HIV, and NCI varying the support 
threshold  

The first experiment of this paper is conceived 
for evaluating the usefulness the cut property in 
the post-filtering stage of gRed. The algorithms 
gSpan, gRed-v1, and gRed use DFS codes to 
represent graph candidates during the mining 
process, unlike MoFa, FFSM and Gaston which  
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use different approaches. Therefore, in this 
experiment, the algorithms gRed, gSpan, and 
gRed-v1 were compared regarding the number of 
exhaustive canonical form tests (see Fig. 2). As it 
can be seen, the number of such expensive tests 
was reduced by gRed in all cases. 

Additionally, we included a performance 
comparison involving gRed, gRed-v1, gSpan, 
MoFa, FFSM and Gaston. This comparison 
includes the evaluation of runtimes. The runtime 
for the algorithms was recorded varying the 
support threshold in the four datasets (see Fig. 3). 
In these experiments, Gaston was unable to 
complete the execution for some low supports 
threshold in CAN2DA99, HIV, and NCI due to 
memory requirements. For the same reason, 
FFSM and MoFa were unable to process NCI for 
the evaluated support thresholds. Moreover, the 
runtime of MoFa was truncated in several times 
for highlighting the scores of the others 
algorithms. 

As we can see, gRed beats gSpan and gRed-
v1 in all tests. It is known that much of runtime of 
gSpan and gRed-v1 is spent by subgraph 
isomorphism tests during the candidate 
enumeration process [6]. Since gRed also uses 
this kind of tests, they had similar behavior. 
However, gRed showed better performance in 
PTE, since the number of canonical form tests 
was reduced considerably, through the use of the 
properties introduced in Section 4.1 (see Fig. 2). 

Gaston was unable to complete the execution 
for low support thresholds (less than    in 

CAN2DA99, less than    in HIV, and less than 

   in NCI) due to its high memory requirements. 
However, in the smallest collection (PTE), the 
best runtimes were achieved by Gaston. The 
worst runtimes were achieved by FFSM and 
MoFa while the best runtimes on the large 
collections were obtained by gRed and gSpan for 
the evaluated support thresholds. 

6 Conclusions 

In this paper, two non-minimality conditions, a 
reuse condition and a cut property of DFS codes, 
which are useful for graph mining, were 
introduced. The non-minimality conditions allow 
the reduction of the number of candidates. The 

 
 

Fig. 3. Runtime with datasets PTE, CAN2DA99, HIV, and 
NCI varying the support threshold 
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reuse condition enables to reduce the number of 
canonical form tests by reusing previous test 
results. Besides, the reuse condition allows 
defining boundaries between canonical and non-
canonical forms in the candidate space by means 
of the cut property. 

Additionally, a new algorithm (gRed) for FCS 
mining using the proposed properties was 
introduced. Theoretical analysis and experimental 
results show the good performance of our 
proposal. 

We compared gRed against gSpan and other 
commonly referenced algorithms. The 
experimentation showed that our proposal 
overcomes gSpan in all tests reducing 
significantly the number of canonical form tests. 
Moreover, gRed achieved better runtimes than 
the other tested algorithms when graph 
collections were large. The usefulness of the 
novel DFS code properties for graph mining was 
corroborated, showing that these properties allow 
reducing the number of duplicate candidates, as 
well as the number of canonical form tests. 

It is important to highlight that this paper 
shows the results of a first work that proposes 
reuse conditions to improve duplicate candidate 
detection in graph mining. 

In this research, we have shown that DFS 
codes have not been sufficiently studied and new 
properties can be found to improve the mining 
process. Our proposal showed that the time spent 
in duplicate candidate detection can be reduced 
during the mining process. 

As future work, we are going to develop hybrid 
approaches combining gRed with fast evaluation 
strategies for reducing the cost of isomorphism 
tests during the mining process in order to reach 
better runtimes. 
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