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Abstract. A technique to design a dynamic continuous 
controller to regulate a class of full-actuated mechanical 
systems with dry friction is proposed. It is shown that 
the control eliminates the steady-state error and is 
robust with respect to parameter uncertainties. A 
simple method to find the parameters of the controller 
is also proposed. Moreover, an application of this result 
to control a 2-DOF underactuated mechanical system 
with dry friction in the non-actuated joint is described. 
Here, the control objective is to regulate the non-
actuated variable while the position and speed of the 
actuated joint remain bounded. Performance issues of 
the developed synthesis are illustrated with numerical 
and experimental results. 

Keywords. Stability, friction, mechanical systems, 
underactuated systems. 

Control de sistemas mecánicos 
con fricción seca 

Resumen. Se propone una estrategia de diseño de un 
controlador dinámico continuo para regular una clase 
de sistemas mecánicos totalmente actuados con 
fricción seca. Se demuestra que el control elimina el 
error en estado estacionario y que es robusto frente a 
cierto tipo de incertidumbres en los parámetros del 
sistema. Se propone también un método sencillo para 
calcular los parámetros del controlador. Además, se 
describe la aplicación de este resultado al control de 
sistemas subactuados de 2 grados de libertad, con 
fricción seca en la articulación no actuada. En este caso, 
el objetivo de control es regular la variable no actuada, 
manteniendo limitadas las amplitudes de la posición y 
de la velocidad de la articulación actuada. El 
desempeño del controlador propuesto se ilustra con 
resultados numéricos y experimentales. 

Palabras clave. Estabilidad, fricción, sistemas mecánicos, 
sistemas subactuados. 

1 Introduction 

Dry friction is defined as a force that resists 
relative motion between contacting surfaces of 
different bodies. The bodies “stick” when the 
relative velocity between the contacting surfaces 
is zero. If the bodies slide over each other with a 
non-zero velocity, we speak of a “slip”. A model of 
dry friction must contain a description of both 
phases. Different models have been proposed to 
describe dry friction; usually they differ only in the 
way the stick phase is modeled [10]. 

A realistic approach to control mechanical 
systems should be able to deal with the effects of 
dry friction [2, 20]. Dry friction can be described 
by either differential inclusions or by ordinary 
differential equations with discontinuous right-
hand side [8, 25]. 

Systems with discontinuous elements exhibit a 
wide variety of complex phenomena which must 
be considered in the control design process [7, 
12, 17]. For instance, these complex dynamical 
behaviors can generally result in vibration and 
instability that are highly undesirable in many 
cases [11]. Notwithstanding the impressive 
development of nonsmooth and set-valued 
analysis, these systems have not been closely 
studied either computationally or analytically [24]. 

For full-actuated mechanical systems, an 
effective approach to counteract the friction 
phenomenon has been the use of first-order 
sliding mode controllers. Discontinuous friction is 
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regarded as a bounded disturbance of 
unpredictable sign and therefore counteracted by 
choosing adequate control amplitude. These 
algorithms often require a high control effort to 
compensate this physical phenomenon and 
produce control signals that commute at 
theoretically infinite frequency, so it is not 
practical in many real situations [5]. Some 
techniques have been proposed to eliminate or 
attenuate this effect (e.g., sliding mode algorithms 
of higher order). However, the anti-chattering 
procedures, which aim at obtaining continuous 
control, do not necessarily guarantee accuracy in 
the presence of discontinuous friction [3, 4, 21]. 

The classical approach to control 
underactuated mechanical systems has 
commonly neglected the friction effect. Thus, in 
recent years several works have addressed the 
problem of friction in this class of systems. For 
example, linear damping (viscous friction) in the 
joints is considered in [1, 9, 26, 27]. When dry 
friction is present only in the controlled joint, the 
problem of compensation can be solved in some 
cases [15, 20, 22, 23]. 

However, the problem of controlling 
underactuated mechanical systems with dry 
friction in the non-actuated joint seems to be still 
open (see, e.g., [6, 13, 14, 20]). For instance, in 
[16, 17, 18] stick-slip oscillations and sticking 
phenomena of a class of underactuated 
mechanical systems are analyzed. 

In this paper, we propose a dynamic 
continuous controller to regulate a class of full-
actuated mechanical systems with dry friction. 

The proposed controller makes use of the 
result presented in [13] concerning some stability 
conditions of mechanical systems with 
discontinuous friction, but it is robust with respect 
to more uncertainties and it operates in such a 
way that the objective of control is reached faster. 
Moreover, we propose a simpler method to find 
the parameters of the controller than the method 
presented in [13]. In addition, using this result, we 
propose a discontinuous controller for a class of 
2-DOF underactuated mechanical systems with 
dry friction in the non-actuated joint. We illustrate 
this result with numerical examples of full-
actuated systems and with an application to an 
experimental underactuated system. 

2 Problem Statement  

Consider a -DOF mechanical system 
represented by 

 

 
(1) 

Hereinafter,  and 
 are the generalized 

position vector and the velocity vector,  
is a smooth vector function,  is a control 
input vector, and sgn  is the sign vector 
function, defined by 

 

(2) 

with  

 (3) 

where  and  is the matrix 

   (4) 

with the well-known friction model (see, e.g., [4, 
19]) defined by 

 (5) 

where  and  are the Coulomb friction level 
and the level of friction divided by a constant such 
that , and  is the Stribeck 
velocity. 

The control objective is to steer to zero both 
 and  by means of a continuous control 

vector . 
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Note that (1) has  discontinuity surfaces  
characterized by  . Here, the 
meaning of such differential equation is viewed in 
the Filippov sense [8]. 

Let us consider a control law  with a 
dynamics given by 

 (6) 

Note that  must be a continuous vector, but 
not necessarily . The system (1) (6) is then a 
system with the state . The next 
lemma will be a key result for what follows. 

Lemma 1. For a given , define 
,  as 

the restriction of  for , . 
Suppose that  implies that , 

 for any . Therefore, if (1) (6) 
exhibits the sliding mode in the intersection 

 , then the 
system will leave this intersection in a finite time. 

Proof. When the system (1) is in the sliding 
mode regime in the intersection 

 , it is described 
by 

 (7) 

Under this condition, at least  is a constant 
different from zero, hence  while in 
the sliding mode. From (5), ; therefore, 
there exists a finite time in which the system 
leaves the sliding regime, that is, 

 (8) 

where  is the initial time. 
Now define , , and 

, then the 
system (1) (6) is described, for , 

, by 

 (9) 

, , and  is the matrix 

   (10) 

with 

 (11) 

Since the control objective is to steer to zero 
both  and  by means of a continuous 
control , then the control aim is to regulate at 
zero the state  of the system (9) with a hybrid 
“control” . This will be described in the next 
section. 

3 Control Strategy  

In this section, we present a control strategy that 
allows one to achieve the control objective. 

Suppose that, for the system (9), there exists a 
control law 

 (12) 

such that  satisfies Lemma 1, where 
 is a continuous vector function such 

that (9) with (12) can be transformed to 

 (13) 

where , ,  are real-coefficient diagonal 
constant matrices, being  a positive diagonal 
matrix, 
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 (14) 

with 

 (15) 

 (16) 

with 

 (17) 

and ,  are arbitrary real 
constants. 

The next lemma shows that when the system 
is in the sliding mode with  then it remains 
there indefinitely, implying that  is an 
invariant set of the system (13). 

Lemma 2. Suppose that the system (1) (12) 
exhibits the sliding mode in the intersection of the 
surfaces ,  and that . Then 
the system will not leave this intersection. 

Proof. The system (1) (12) in the sliding mode, 
in the intersection of the surfaces ,  
with  is given by 

 (18) 

where  is the initial time and  is a finite 
constant vector. Since  for , we have 
that 

 (19) 

for all time. 

Therefore, if it is possible to find a function  
such that the system (9) with (12) can be 
transformed to (13) and , ,  forcing the 
state of (13) converge to zero, then the control 
objective will be attained. 

Since  for , , and it is 
possible to decouple this system into  1-DOF 
systems, the conditions for  , , 

 to accomplish the objective 
 were presented in [13] and can 

be applied to this problem. This is summarized as 
follows. 

Consider the matrices  and  given by 

 (20) 

where the entries of  are given by 

 (21) 

 (22) 

 
(23) 

Then the next theorem, shown in [13], can be 
applied. 

Theorem 3. Suppose that matrix  is positive 
definite for all , matrix  is also 
positive definite and satisfies 

 (24) 

for  Then  is a globally, 
asymptotically stable equilibrium point of the 
system (13). 

In the next section, an application of this result 
to two systems is described. 
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4 Control Synthesis 

In order to find the values of  , , 
 easily, we propose  and 

 given by 

 (25) 

where 

 (26) 

 (27) 

 (28) 

Therefore, Theorem 1 is satisfied if 

 (29) 

 (30) 

 (31) 

 (32) 

where 

 (33) 

concluding that  is a globally, asymptotically 
stable equilibrium point of system (13). 

Note that in order to find the parameters  
, , , it is not required to know 

,  exactly. 

In what follows, we describe the controller 
design procedure using two examples to regulate 
the position of a mechanical system. The first 
example is a pendulum with dry friction; the 
second example is an experimental torsional 
system with dry friction. 

Example 1. A Pendulum 

Let us consider the system shown in Figure 1, 
described by 

 (34) 

where  is the angular position,  the 
angular velocity,  the mass,  is the distance,  
is given by (4), and .  

The objective is to design a continuous control 
law  so that the position  converges to a given 
constant value .  

For this system we have 
 and 

 (see Eq. (1)), where , 
. If 

 (35) 

where  is the initial time and  is given by (16), 
then we arrive at the desired form (13). 

Finally, if we find the constants , , 
which satisfy Theorem 3, then the control 
objective will be attained. 

Figure 2 shows numerical results, where we 
have set , , , , , 

. We propose ,  and, from 
(29), (30), (31), (32), and (33), , , 

, with ,  and . 

Example 2. An Experimental Torsional System 

Let us consider the experimental system 
configuration model 205 of Educational Control 
Products (ECP) shown in Figure 3, described by 
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 (36) 

where  are the angular positions,  the 
angular velocities,  the inertial, for ;  is 
given by (4), ,  and  are viscous friction 
coefficients, and . 

This system consists of two plates, without 
anchoring, coupled by a torsional spring. Control 
input is at plate 1, and dry friction in joint 2 is 
introduced through a DC motor attached to 
plate 2. 

The objective is to design a control law  so 
that the angle  converges to a given constant 
value , with  and  bounded. 

If we define , where  is a 
desired constant position, , , 

 (37) 

and 

 (38) 

then the unactuated joint is described by the 
equations 

 (39) 

which have the form of the system (1), so 
Theorem 3 can be applied to design an ideal 
expression for the virtual control , equation (37), 
which we denote by . This is given by 

 (40) 

with  and . Here, 
. Note that if the state  

is bounded then  will also be bounded and, 
from (37) and (40), the position and speed of the 
actuated joint remain bounded. 

Now the control  can be designed using the 
classic technique of sliding modes. This is 
convenient because if we use  as a 

m

gl

q

u 1

 

Fig. 1. A pendulum 

  
 

Fig. 3. Torsional system 
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Fig. 2. Position and control of the pendulum 
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sliding surface then a sliding mode control 
designed for  makes the control  converge to 

 in finite time. Once , Theorem 3 
ensures the convergence of  to zero. 

So let us propose a control law  be given by 

 (41) 

then the actuated joint of system (36) takes the 
form 

 (42) 

and let the sliding surface be defined by 

 (43) 

rendering the sliding mode controller given by 
(41) with 

 (44) 

with . 

Finally, if we find the constants , , 
which satisfy Theorem 3, then the control 
objective will be attained. 

Figure 4 shows the experimental results. 
According to the manual and the identification of 
system parameters, the inertia are 0.0193 
Nms /rad and 0.0187 Nms /rad, the 
coefficient of elasticity of the spring is 3.2178 
Nm/rad, and the coefficients of viscous friction are 

0.1373 Nms/rad and 0.3 Nms/rad. Note 
that . We propose  rad/s , 

 rad/s, , , and from (29), 
(30), (31), (32), and (33) , , 

 
Fig. 4. Position and control of the torsional system 

 

 

Fig. 5. Interface of the system 
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 rad,  rad/s,  rad, 
 rad/s, and  rad. 

Figure 5 shows the user interface of the 
torsional system using Matlab Simulink. 

5 Conclusions 

In this paper, we have proposed a continuous 
controller for a class of full-actuated mechanical 
systems with dry friction. The proposed controller 
makes use of the result presented in [13], but it is 
robust with respect to uncertainties in the 
parameter values of the system and it operates in 
the way that the objective of control is reached 
faster, since the system leaves the obstruction 
faster. Moreover, we have proposed a simpler 
method to find the parameters of the controller 
than the method presented in [13].  

In addition, using this result, we have shown 
its application to control of an underactuated 
mechanical system with dry friction in the non-
actuated joint. In this case, the control objective is 
to regulate the non-actuated joint while the 
position and speed of the actuated joint remain 
bounded. Since the term in the non-actuated joint 
containing dry friction must be compensated by a 
continuous action, a discontinuous control is 
designed using the classic technique of sliding 
modes. The proposed controller guarantees the 
convergence of the position error of the non-
actuated joint to zero. We illustrated these results 
with an application to control an experimental 
torsional system. 
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