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Abstract. Light Transport Constancy (LTC) asserts that 
the reflectance ratio obtained from two different 
illumination variations remains constant for any given 
view of the observed scene. LTC was proposed in [21] 
as a rank constraint for solving the correspondence 
problem in multiple view stereo. In two-frame stereo, 
the simplest setting for LTC requires only two 
illumination variations and a single light source. Under 
this scenario, the rank constraint can be formulated 
through ratio images, and standard stereo algorithms 
can be applied in order to obtain a disparity map. 
Unfortunately, a ratio image may be subject to 
saturated pixel values, and this may diminish the quality 
of disparity maps. To solve this problem, as a first 
contribution in this work, we propose a post-processing 
operation based on slope angles related to the ratio 
values. Experiments show that new angular ratio 
images are more robust and deliver improved disparity 
maps. A second contribution of this paper consists in 
performing an experimental evaluation of angular ratio 
images under the standard test bed for two-view stereo 
algorithms, i.e., using different aggregation and 
optimization approaches. The results of our research 
are consistent with previously reported conclusions for 
two-view stereo surveys. It means that LTC may benefit 
from a vast variety of existent methods to solve the two-
view stereo problem. 

Keywords. Light Transport Constancy, two-frame 
stereo, ratio images.  

Incorporación de las imágenes  
de relación angular  

en algoritmos de estéreo binocular 

Resumen. La Constancia de Transportación de la Luz 
(LTC) establece que la relación de reflectancia obtenida 
de dos diferentes variaciones en iluminación 
permanece constante para cualquier vista dada de la 
escena observada. En [21] LTC fue propuesta como una 

restricción de rango para resolver el problema de la 
correspondencia en estéreo de múltiples vistas. En 
estéreo binocular, el escenario más simple para LTC 
requiere solamente dos variaciones en iluminación y 
una sola fuente de luz. Bajo este escenario, la restricción 
de rango puede ser formulada a través de las imágenes 
de relación y los algoritmos estéreo estándar son 
aplicados con el objeto de obtener un mapa de 
disparidad. Desafortunadamente, una imagen de 
relación puede ser sujeta a valores de pixeles saturados, 
los cuales pueden disminuir la calidad de los mapas de 
disparidad. Para superar este problema, como una 
primera contribución en este artículo presentamos una 
operación de post-procesado basada en los ángulos de 
pendiente relacionados a los valores de relación. Los 
experimentos muestran que las nuevas imágenes de 
relación son más robustas y ofrecen mejores mapas de 
disparidad. Como una segunda contribución, 
realizamos evaluación experimental de las imágenes de 
relación angular bajo una cama de pruebas estándar 
para algoritmos de estéreo binocular, i.e., usando 
diferentes enfoques de agregación y optimización. Los 
resultados de esta investigación son consistentes con 
conclusiones previamente reportadas en estudios sobre 
estéreo. Esto significa que LTC puede beneficiarse de 
una vasta variedad de métodos existentes para el 
problema de estéreo binocular.  

Palabras clave. Constancia de Transportación de la Luz, 
estéreo binocular, imágenes de relación. 

1 Introduction 

Acquiring a three-dimensional surface of objects 
is an important problem in computer vision 
because a 3D surface simplifies modeling of the 
object’s appearance. A 3D surface can be 
obtained using contact devices such as laser 
scanners. Other possibilities imply information 
provided by one or more cameras. This 
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methodology is known as image-based 3D shape 
recovery. Although the image-based approach is 
appealing, the nature of the image acquisition 
process makes input images prone to errors. With 
respect to this, lighting manipulation represents a 
way to pose constraints on image-based shape 
recovery techniques. For instance, the light 
intensity can be regulated in order to obtain a 3D 
shape. This is the core idea of Light Fall-off 
Stereo (LFS) [12], where a number of images are 
gathered from a stationary camera as the 
illumination source moves away from the scene. 
Based on the inverse square law for light 
intensity, ratio images are directly related to the 
scene depth from the perspective of the light 
source. Controlling the geometric position of the 
light source is another option to attack the 
problem. The Photometric Stereo Method (PSM) 
[6, 22] is a classical technique in this respect. 
Here, a single camera captures images while the 
light source moves around the object in a fixed 
pose. 

When more than one camera is required, 
binocular stereo (two-frame stereo) is obtained 
using the image-based 3D shape recovery 
method with the simplest setting. Here, only two 
cameras are needed to capture a still scene, and 
the correspondence problem is solved between 
the two views in order to obtain depth information. 
Unfortunately, when Lambertian reflectance and 
color/brightness constancy are not observed, 
calculation of correspondences becomes a 
difficult task. In binocular stereo, the manipulation 
of lighting has also been proposed. For example, 
structured light patterns may be projected over 
the surface of an object [17]. This is normally 
done using a projector, but colored laser rays can 
also be projected if more accurate results are 
needed. Another approach based on lighting 
variations is Helmholtz stereopsis. This method 
allows matching arbitrary Bidirectional 
Reflectance Distribution Functions (BRDF) and 
uses reflectance function reciprocity as an 
invariant [13, 24]. By collocating point light 
sources with each camera, it is possible to record 
reciprocal pairs using two different lighting 
conditions. Due to the reciprocity, the reflected 
light to the cameras will be equal. This method, 
however, requires the light sources to be 

collocated with respect to the optical center of 
each camera. 

Other approaches combine photometric and 
geometric cues. For instance, in multiple-view 
photometric stereo, a number of images of an 
object are obtained from multiple viewpoints 
under varying lighting directions. Here, the 
silhouette of the object is used to recover camera 
motion. The correspondence problem, however, 
is not solved by means of illumination variations 
[10, 18]. 

Recently, Light Transport Constancy (LTC) 
[21] has been proposed as a correspondence 
clue in multiple-view stereo. LTC is used to 
formulate a rank constraint matching cost when 
the scene is observed in several lighting 
variations (changes in light intensity). LTC asserts 
that the reflectance ratio obtained from two 
different illumination variations remains constant 
for any given view of the observed scene. LTC 
does not require the position of light sources to be 
precisely calibrated or even known. In two-frame 
stereo, the simplest setting requires only two 
illumination variations. Under this scenario, the 
rank constraint can be formulated through ratio 
images, and standard stereo algorithms can be 
applied in order to obtain a disparity map. 
Unfortunately, a ratio image may be subject to 
saturated pixel values, noise, and occlusions, 
which may diminish the quality of disparity maps. 

On the other hand, unlike classical grayscale 
(or color) image pairs which usually assume 
brightness/color constancy, ratio images rely on 
LTC and have demonstrated to provide improved 
disparity maps. For these reasons, Wang et al. 
pointed out a potential use of ratio images in 
future as the most feasible and robust way to deal 
with the two-frame stereo problem. Using ratio 
images for such a task may borrow ideas from the 
extensive literature related to two-frame stereo 
algorithms [4, 8, 11, 16]. For example, from the 
taxonomy of Scharstein and Szelisky [16], 
different matching costs, aggregation support, 
and optimization approaches can be applied to 
make calculation of dense disparity maps from 
ratio images more robust.  
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1.1 Aim and Contribution  

The aim of this paper is to provide a new insight 
into the use and performance of the LTC 
constraint in binocular stereo approaches. The 
topic has been practically unexplored due to the 
original multi-view formulation of the LTC 
constraint, which differs from the binocular 
approach in the methodologies used to address 
the correspondence problem. With respect to our 
objective, the contribution of this paper is twofold. 
First, we introduce a post-processing operation 
based on the slope angles related to ratio values, 
which we call the angular ratio image. This 

operation attempts to overcome the unavoidable 
problem of either highly saturated or too dark ratio 
values in traditional ratio images. Experiments 
show that new angular ratio images are more 
robust and deliver improved disparity maps in 
comparison with their traditional counterparts. 

Second, we perform an experimental 
evaluation of angular ratio images under the 
standard test bed for two-view stereo algorithms, 
i.e., under different aggregation and optimization 
approaches. To the best of our knowledge, this is 
the first work to report a detailed experimentation 
related to LTC under the well-known two-view 
stereo test bed. The results of this research are 
consistent with previously reported conclusions in 
stereo surveys, and this fact suggests that 
angular ratio images conserve some properties of 
intensity images and therefore are eligible to be 
put into any binocular stereo frameworks. In other 
words, LTC, in the form of pairs of angular ratio 
images, may benefit from a vast variety of 
existent methods for the two-view stereo problem. 

The paper is organized as follows. In Section 
2, LTC and use of angular measures for 
improving ratio images are explained; Section 3 
presents experimental evaluation of angular ratio 
images based on the standard stereo taxonomy; 
finally, Section 4 gives conclusions and outlines 
further research directions. 

2 Light Transport Constancy and 
Angular Ratio Images 

For an easier comprehension of notation used in 
this article, Table 1 presents expressions referring 
to cameras, pixels, light source intensity 
variations, and ratio images. Light Transport 
Constancy states that the percentage of light 
reflected by a surface patch (the BRDF) remains 
constant for any given viewing direction of a static 
scene. Following the explanation in [21], let us 
denote a particular point in the scene as ݔ௜. This 
point will reflect light to cameras ܥଵ  and 
ଶܥ according to ܫ஼ೕሺݔ௜ሻ ൌ ,௜ݔ௜ሻܴ൫ݔሺܮ ,ܮ ,௝൯ܥ  where 
 ௝ܥ ௜ሻ is the reflected intensity in the direction ofݔ஼ೕሺܫ
from the point ݔ௜, ܮሺݔ௜ሻ is the incident light intensity 
at point ݔ௜ , and ܴሺݔ௜, ,ܮ ௝ሻܥ  is the reflectance 
function or BRDF at point ݔ௜, indexed by vectors 

Table 1. Notation used in this paper 

Expression Meaning 

 ௜ The ݅௧௛ pixel in an imageݔ

 ௝ The ݆௧௛ cameraܥ

 ௜ሻݔ஼ೕሺܫ
Reflected intensity (grayscale 
value) in the direction of ܥ௝  from 
the pixel at ݔ௜ 

 ௜ሻݔሺܮ
Incident light source intensity at 
pixel position ݔ௜ 

ܴሺݔ௜, ,ܮ  ௝ሻܥ
Reflectance function (BRDF) at 
pixel position ݔ௜ 

݇ሺݔ௜ሻ 
Variation factor between two 
different illumination intensities at 
pixel position ݔ௜ 

 ஼௏ܫ

The matrix formed by the 
grayscale values registered by the 
݆௧௛  camera under the ݇௧௛  lighting 
variation and for the pixel position 
 ௜ݔ

 ஼ೕ௏ೖܫ

The grayscale value observed by 
the ݆௧௛  camera under the ݇௧௛ 
lighting variation and for the pixel 
position ݔ௜ 

ܴሺݒଵ, ,ଶݒ ௜ሻݔ ൌ ݇௜ 

Ratio image expressed as a 
function of parameters ݒଵ and ݒଶ 
(two different light source 
intensities) and the pixel position 
 ௜ݔ

݇′ଵ ൌ |tanିଵሺ݇ଵሻ| 
Angular variation factor between 
the two lighting variations 
registered by the camera ܥଵ 

݇′ଶ ൌ |tanିଵሺ݇ଶሻ| 
Angular variation factor between 
the two lighting variations 
registered by the camera ܥଶ 

ܴ′ሺݒଵ, ,ଶݒ ௜ሻݔ ൌ ݇′௜ Angular ratio image as a function 
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in the direction of ܮ  and ܥ௝ . The Lambertian 
assumption states that the reflected light is equal 
in the directions of ܥଵ  and ܥଶ , i.e., the BRDF is 
shared and ܴሺݔ௜, ,ܮ ଵሻܥ ൌ ܴሺݔ௜, ,ܮ ଶሻܥ . Thus, we 
have ܫ஼భሺݔ௜ሻ ൌ  ௜ሻ. However, this relation willݔ஼మሺܫ
not hold in general for arbitrary (non-Lambertian) 
BRDFs. Light transport constancy assumes that 
the surface reflectance function, ܴ൫ݔ௜, ,ܮ ௝൯ܥ , 
remains constant under variable illumination. If we 
vary lighting conditions so that the incident 
illumination varies by a factor of ݇ሺݔ௜ሻ, then the 
observed reflected light, ܫ஼ೕሺݔ௜ሻ, will also vary by a 

factor of ݇ሺݔ௜ሻ because  

௜ሻݔ஼ೕሺܫ ൌ ݇ሺݔ௜ሻܮሺݔ௜ሻܴ൫ݔ௜, ,ܮ  ௝൯. (1)ܥ

Wang et al. [21] have shown how LTC can be 
used in multiple-view stereo to impose a rank 
constraint on the matrix  

஼௏ܫ ൌ

ۉ

ۇ

஼భ௏భܫ ஼మ௏భܫ ⋯ ஼೘௏భܫ
஼భ௏మܫ ஼మ௏మܫ ⋯ ஼೘௏మܫ
⋮ ⋮ ⋱ ⋮

஼భ௏೘ܫ ஼మ௏೙ܫ ⋯ ی஼೘௏೙ܫ

 (2) ,ۊ

where ܫ஼ೕ௏ೖ		 is the observed grayscale value by 

the ݆௧௛  camera under the ݇௧௛  lighting variation. 
Note that, for the sake of simplicity, we omit the 

expression	ሺݔ௜ሻ. However, each of the remaining 
equations in the paper is related to a single pixel 
at the position	ݔ௜ . The matrix with the minimum 
rank is therefore sought, i.e., if LTC is observed 
through different camera viewing positions and 
lighting variations, then the dimension of the 
column space of the matrix ܫ஼௏ should be minimal. 

The rank constraint holds only when the 
number of light sources is less than both the 
number of lighting variations and the number of 
cameras. Then the rank of ܫ஼௏ is equal at most to 
the number of light sources. Since ܫ஼௏  will be 
corrupted with noise, it is impossible to calculate 
the rank exactly. The Singular Value 
Decomposition of ܫ஼௏  may be used for rank 
approximation. A matrix with most of their energy 
in the first few principal components is preferred, 
and moments can be used to approximate the 
notion of the minimum rank, as 

ࣧ ൌ෍݅ ∙ ௜ߪ
ଶ

௜

෍ߪ௜
ଶ

௜

൘ , (3) 

where ߪ௜ are singular values of ܫ஼௏ . For multiple-
view and multiple-lighting stereo, the minimum 
score is used as the matching cost. 

 

Fig. 1. Acquisition setting and illumination variation. The left image shows the acquisition setting: a stereo camera, a 
desk lamp, and an object. The 20W lamp was mounted on a rotating ruler on a tripod approximately 50cm away from 
the closest object to the camera, so that rotations could be measured. The right image shows a top-down sketch of the 
setting, where the degree of separation between each camera shot can be seen 
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Let us now consider the simplest setting for 
LTC-based stereo, which is the case of interest in 
this paper: a single light source and two cameras. 
For each pixel in the left and right images, the 
intensities observed with the first lighting variation 
can be explained in terms of the intensities 
observed with the second lighting variation, as 
஼భ௏మܫ ൌ ஼మ௏మܫ ஼భ௏భ݇ଵ andܫ ൌ  .஼మ௏భ݇ଶܫ

Therefore, the relation between lighting 
variations is given by the ratio: 

஼భ௏మܫ
஼భ௏భܫ

ൌ
஼భ௏భ݇ଵܫ
஼భ௏భܫ

ൌ ݇ଵ, (4) 

஼మ௏మܫ
஼మ௏భܫ

ൌ
஼మ௏భ݇ଶܫ
஼మ௏భܫ

ൌ ݇ଶ. (5) 

The matrix of intensities, ܫ஼௏  can be now 
defined as  

஼௏ܫ ൌ ൬
஼భ௏భܫ ஼మ௏భܫ
஼భ௏మܫ ஼భ௏మܫ

൰. (6) 

Note that LTC holds only if the second singular 
value of ܫ஼௏ is zero. This means that the minimum 
rank of ܫ஼௏ is one (the number of light sources) if 
and only if ݇ଵ ൌ ݇ଶ . Therefore, minimizing the 
second singular value is equivalent to minimizing 

 

Fig. 2. Ratio images and angular ratio images. From top to bottom, the rows of the figure include lighting 
variation pairs (-60º, 60º) and (-40º, 40º). The left-camera images for lighting variations 1 and 2, the ratio 

images and the angular ratio images are placed column-wise 

 

  

Fig. 3. Varying 	߬  for ratio image generation. Normalization results for ߬ ൌ 3 and 	߬ ൌ 5  are shown with 
lighting variations as indicated by the labels above the images 
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Eq. 3. The so-called ratio image is a 
functionܴሺݒଵ, ,ଶݒ ௜ሻݔ ൌ ݇௜, where ݒଵ and ݒଶ are two 
different lighting variations. 

The ratio image is defined only for the two 
frame/two lighting variations scenario, and at 
most two ratio images can be recorded for a given 
stereo image pair as in Eq. 4 and Eq. 5. Note how 
the minimization of Eq. 3 can also be carried out 
using a simple absolute difference matching cost 
over the ratio image pair. In this sense, a wide 
variety of two frame stereo algorithms provide 
extensive ways to calculate dense disparity maps 
through ratio images.  

In practice, unfortunately, the intensities of 
pixels do not necessarily observe ݇ଵ ൌ ݇ଶ. This is 
due to several reasons, among which insufficient 
lighting and a poor camera response are most 
common. Moreover, in some regions of an image, 
i.e., where specularities and edges occur, the 
ratio is likely to be either a value close to zero or 
an overly saturated value, that is, much greater 
than 	100% , and as a consequence, 
correspondence cannot be solved. The unwanted 
effect of these pixel values can be reduced if the 
ratios are redefined as: 

݇′ଵ ൌ ଵሺ݇ଵሻ|,      ݇′ଶି݊ܽݐ| ൌ  , (7)	ଵሺ݇ଶሻ|ି݊ܽݐ|

where | · | is the absolute value. The angular data 
constrain the ratio values from the intervalሾ0,∞ሻ to 
the interval	ሾ0°, 90°ሿ. We can now define a new 
ratio ܴ′ሺݒଵ, ,ଶݒ ௜ሻݔ ൌ ݇′௜ which will be referred to as 
the angular ratio image.  

2.1 Experiments on Angular Ratio Images 

For image acquisition, a Bumblebee stereo 
camera, 9ܿ݉  baseline was used. The size of 
grayscale images was 640 ൈ 480  pixels. A 20ܹ 
Halogen-bulb desk lamp was mounted on a 
rotating ruler in order to capture illumination 
variations around a range of 180° , with 20° 
increment as shown in Figure 1 (right). The 
acquisition setting is shown in Figure 1 (left). 

Before ratio values are converted into image 
values (grayscale), a normalization operation has 
to be performed. Let ܴሺݒଵ, ,ଶݒ ௜ሻݔ  be the ratio 
values obtained from a pair of left images with 
lighting variations ሺݒଵ,  ଶሻ (the same observationsݒ
hold for its corresponding right pair), i.e., using 

 

Fig. 4. Disparity results on brightness constancy and angular ratio images. The first row presents disparity maps, 
the second row shows the lines of interest with constant ݕ െ  along the disparity map ݏ݅ݔܽ
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Eqs. 4 and 5. Ratio images are stored after the 
following filter has been applied: 

ܴሺݒଵ, ,ଶݒ ௜ሻݔ ൌ ൜
߬, if ݇௜ ൒ ߬
݇௜, otherwise

 (8) 

where ߬ is a cut ratio value. Once high values are 
filtered, the final image is generated from the 
normalized values: 

ܴሺݒଵ, ,ଶݒ ௜ሻݔ ൌ
ܴሺݒଵ, ,ଶݒ ௜ሻݔ

߬
	. (9) 

Note that, once Eq. 8 is applied, τ becomes the 
maximum value of ܴሺݒଵ, ,ଶݒ  ௜ሻ. As far as angularݔ
ratio images are concerned, i.e., ܴ′ሺݒଵ, ,ଶݒ  .௜ሻ, Eqݔ
8 is not required, since Eq. 9 can be directly 
applied with ߬ ൌ ߨ 2⁄  (radians). Once a ratio (or 
angular ratio) image is generated, dense disparity 
maps are calculated using the standard platform 
developed in [21]. The sum of absolute 

differences (SAD) and the mean filter 9 ൈ 9 
window were respectively used as matching cost 
and aggregation support parameters. The 
disparity maps were finally calculated under the 
winner-takes-all (WTA) criteria. 

The experimental analysis commences with 
Figure 2, where the difference between ratio and 
angular ratio images can be appreciated. From 
top to bottom, the rows of Figure 2 show the 
lighting variation pairs ሺെ60°, 60°ሻ  and 
ሺെ40°, 40°ሻ . The left-camera image for lighting 
variations 1 and 2, the ratio image	ሺ߬ ൌ 1ሻ, and 
the angular ratio image are shown row-wise. 
Recall that ratio and angular ratio images are 
calculated for a single view (i.e., left or right 
camera images) and two variations. In Figure 2, it 
is noticeable that the angular ratio images reveal 
a more robust adjustment of values than the ratio 
images, where the cut value has set the ratios to 
saturated values. This is the main problem in ratio 
image generation, i.e., choosing an optimum cut 

 

Fig. 5. Additional scenes. The first row presents input images; the second row, the obtained disparity maps; the third 
row, the lines of interest 
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value. This effect can be visualized in Figure 3, 
where different values of ߬ are applied to different 
lighting variations. Again, a generalized optimum 
value of ߬ is not clear, since the figure shows that 
߬ ൌ 5  favors the ratio obtained from the pair 
ሺെ60°, 60°ሻ, but over-darkens the ratio obtained 
from the pair ሺെ40°, 40°ሻ.  

As far as the disparity results are concerned, 
these are demonstrated in Figure 4. Here, the first 
row includes disparity maps, while the second row 
shows the lines of interest with constant ݕ െ  ݏ݅ݔܽ
along the disparity map. For visualization 
purposes, a mask has been applied for isolating 
the objects of interest from the background. The 
first column demonstrates the results for 
brightness constancy, i.e., neither ratio images 
nor angular ratio images are used here. Instead, a 
usual grayscale image left/right image pair is used 
as stereo input. The rest of the columns present 
results from the angular ratio images with lighting 
variation pairs of ሺെ60°, 60°ሻ , ሺെ40°, 40°ሻ,  and 
ሺെ20°, 20°ሻ . As expected, there is an 
improvement in disparity calculation for the 
angular ratio images over the brightness 
constancy, that is, the disparities are located over 
more continuous regions. Interestingly, there is 
little difference between the results related to 
angular ratio images, which suggests that the 
angles may represent a robust way to obtain 
similar disparity maps through different lighting 

variations. Additional scenarios are presented in 
Figure 5, where again, the disparity results for 
angular ratio images are better than for those 
relying on the brightness constancy assumption. 

We explore the use of two alternative 
adjustment functions for ratio values, namely, the 
standard histogram equalization for ratio images 
and a linear mapping which fits the elements of 
vector ঘ into the upper and lower boundaries ܾ௨ 
and ܾ௟, respectively. This linear mapping is given 
by the formula:  

݂ሺঘ, ,௕ݑ ݈௕ሻ

ൌ ൬
ܾ௟ െ ܾ௨

minሺঘሻ െ maxሺঘሻ
൰ ௜ݔ

൅ ൬ܾ௨ െ ൬
ܾ௟ െ ܾ௨

minሺঘሻ െ maxሺঘሻ
൰maxሺঘሻ൰	, 

(10) 

where ݔ௜  is the ݅௧௛  element of ঘ. Figure 6 shows 
the behavior of different adjustment methods as a 
function of grayscale values, i.e., grayscale 
values ranging from 0 to 1 ሺݔ െ  ሻ are dividedݏ݅ݔܽ
by a fixed grayscale value in order to obtain a 
ratio ሺݕ െ ሻݏ݅ݔܽ . From left to right, Figure 6 
presents the results for the fixed grayscale values 
of 0.1, 0.5, and 1, respectively. The purpose of 
this figure is to provide a perspective of possible 
ratios which can be obtained from a fixed value. 
The linear mapping, equalization, arctangent and 

Fig. 6. Different fitting functions. The behavior of different adjustment methods is presented as a function of 
grayscale values, i.e., grayscale values ranging from 0 to 1 ሺݔ െ  ሻ are divided by a fixed grayscale value inݏ݅ݔܽ
order to obtain a ratio	ሺݕ െ  ,ሻ. From left to right, the results for the fixed grayscale values of 0.1, 0.5, and 1ݏ݅ݔܽ
respectively, are given 
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ratio functions are shown as dark dotted, dark 
dashed, dark solid and gray solid plots, 
respectively. The arctangent function was 
bounded from ሺ0, ሻߨ  to ሺ0,1ሻ  for visualization 
purposes.  

There are several features to note in Figure 6. 
First, the ratio function assigns values between 0 
and 1 only if the fixed value is 1. This means that 
many pixels are prone to become saturated or too 
dark. Second, the remaining functions are able to 
bind the ratio values between 0 and 1. Third, the 
arctangent function appears as an interpolated 
plot between both equalization and linear 
mapping, allowing a more continuous mapping 
between different ratio values, thus avoiding the 
probabilities of assigning the extreme ratio values. 
Only when the fixed value tends to one (right-
most diagram), the ratio function (which is 
identical to linear mapping) and the equalization 
function seem suitable for value assignment. 

The last step of the analysis in this section is 
presented in Figure 7. Here, the top and bottom 
rows display the results using histogram 
equalization and linear mapping, respectively. In 
this figure, a standard histogram equalization 
operation was performed on a raw ratio image 
with the variationሺെ60°, 60°ሻ.  

Despite the equalized ratio image looks similar 
to its angular ratio image counterpart (top right 
corner of Figure 2), the disparity results are rather 
different, favoring the use of angular ratio images 
again. Similarly, the results of linear mapping 
present a deep discontinuity at the end of the 
depth line plot. Note that the linear mapped image 
is much darker than both the histogram equalized 
image and the angular ratio image. 

3 Angular Ratio Images and the 
Standard Stereo Taxonomy 

In [16], Scharstein and Szeliski proposed 
taxonomy developed to study and classify a wide 
variety of two-view stereo methods. Their work 
has become a benchmark for testing and 
reviewing novel stereo approaches. Recently, 
some papers also used this taxonomy to evaluate 
the robustness of stereo algorithms on changes in 
illumination and color [9, 11]. Roughly, the 
taxonomy establishes the principle that any stereo 
algorithm can be divided into the following main 
steps:  

 Matching cost. A cost of correspondence is 
calculated in order to determine pixel 

 

Fig. 7. Results on a histogram-equalized ratio image and a linear mapped ratio image. First row, from left to right: an 
equalized ratio image, a disparity map, a line of interest along the disparity map. Second row, from left to right: a 
linear mapped ratio image, a disparity map, a line of interest along the disparity map 
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disparity. Sum of Absolute Differences (SAD) 
and Sum of Square Differences (SSD) are 
typical examples of matching cost functions. 

 Aggregation. The initial costs of 
correspondence are spatially aggregated over 
support regions. Square windows of fixed and 
varying shape and size are typical examples 
used as aggregating regions. 

 Optimization. A disparity for each pixel is 
chosen as the result of minimizing a local or 
global objective function. Graph cut and 
dynamic programming are amongst the most 
popular optimization approaches. 

 Refinement. The generated disparity maps 
are post-processed in order to remove errors, 
i.e., filling regions where disparity could not 
be determined. 

The above steps can be combined into a 
specific sequence. Different stereo algorithms 
consist of different sequences of steps. For 
example, in local algorithms (window-based), the 
calculation of disparity at a given point depends 
only on the intensity values within a finite window 
(i.e., the aggregation step). These algorithms 
usually make implicit the softness assumptions 
due to aggregation. Typically, only matching cost 
with aggregation is used in these approaches [2, 
23]. Global algorithms, on the other hand, make 
explicit the softness assumptions and solve the 
optimization problem. These algorithms do not 
usually include the aggregation step. Instead, 
they assign the disparity that minimizes the 
objective function. In some cases, this idea is 
realized with the help of a function that combines 
data of the first step with regularization terms 
[3, 14, 15]. 

 

Fig. 8. Four different scenarios used in the experimental section. Left images of stereo pairs (light source 
direction at 0º) are given. From left to right: Fps, Bot, Gift, and Edy 

 
 

Fig. 9. The standard aggregation approach in scenario Gift. From left to right, the first two pictures are left images 
of the stereo pair Gift with illumination variations of 40° and െ40°, respectively. The third and fourth images 
correspond to the angular ratio image and the recovered disparity map using the standard approach: 9 ൈ 9 
square window aggregation 
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The purpose of this section is to explore the 
influence of different aggregation and optimization 
approaches on disparity maps delivered from 
pairs of angular ratio images. The outcome of this 
experiment is relevant, since it may show if 
angular ratio images can be incorporated into 
standard two-view stereo frameworks. Following 
the experimental protocol in [16], we compare the 
results of applying the following aggregation 
methods to ratio images: shiftable window [1, 20], 
iterated binomial [5], regular diffusion [15], and 
membrane diffusion [15]. Likewise, we studied the 
performance of the following optimization 
methods: dynamic programming [1], scanline 
optimization [16], graph cut [3], simulated 
annealing [7]. 

Figure 8 illustrates different scenarios used in 
the experiments. Stereo image pairs were 
gathered under the same acquisition setting as 
explained in Section 2.1. From left to right, the 
scenarios are named Fps, Bot, Gift, and Edy. Fps 
and Bot were taken on a plain black background. 

A 20ܹ  halogen desk lamp was used as a light 
source. 

The lamp was located proximately 50ܿ݉ away 
from the closest object to the camera.  

These scenarios were used in Section 2.1. For 
scenarios Gift and Edy, a textured background 
was used. A 150ܹ  halogen reflector functioned 
as a light source. The reflector was located 
approximately 80ܿ݉ away from the closest object 
to the camera. In Figure 8, only the left image with 
central illumination configuration (i.e., 0° 
according to the diagram in Figure 1 from each 
stereo pair is presented. 

By using two different light source intensities, 
we aim to provide comparisons among different 
illumination scenarios. It is important to mention 
that this evaluation does not include a quantitative 
analysis, since no range scanner or structured-
light equipment was available for the experiments. 

 

Fig. 10. Four different aggregation approaches in scenario Gift. The figure presents disparity maps calculated under 
angular ratio images using different aggregation methods: square shiftable window, iterated binomial, regular 
diffusion, and membrane diffusion 

 

 

Fig. 11. Close-up images for regions of high discontinuity. From left to right, close-up images of a specific high 
discontinuity region of the disparity maps from Figure 10 are shown 
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Nonetheless, we believe that qualitative results 
provide a fair idea of the performance of different 
methods. Also, no information about a public 
database suitable for LTC tests was available. 

3.1 Evaluating Aggregation Methods on 
Angular Ratio Images 

In this section, we present experiments aimed to 
compare the performance of different aggregation 
methods applied to angular ratio images. For all 
experiments, a matching cost of SAD and a WTA 
optimization were used. Following the suggested 
experiments in [16], we selected the following 
aggregation parameters: square shiftable window 
size 9 ൈ 9 , iterated binomial with 6 iterations, 
regular diffusion with  30 iterations, membrane 
diffusion with 150 iterations, and  ߚ ൌ 0.2. In order 
to show a classical aggregation example, i.e., 
9 ൈ 9  square window aggregation, we start with 
Figure 9. It presents, column-wise, a left image 
with a 40° illumination variation, a left image with 
a െ40°  illumination variation, an angular ratio 

image, and the obtained disparity map from the 
angular ratio image in scenario Gift. The results of 
applying the aggregation steps mentioned 
previously are shown as disparity maps in Figure 
10. Here, square shiftable window, iterated 
binomial, regular diffusion and membrane 
diffusion are presented from left to right. At a first 
glance, Figures 9 and 10 reveal the fact that there 
is no significant difference between aggregation 
methods and the classical one. However, it can 
be noticed that the most successful aggregation 
method over regions of high discontinuity (located 
along the boundaries of the different boxes and 
the ball) is the square shiftable window. This 
observation is clearly consistent with the 
conclusions reported in [16], where it was shown 
that the best approach to deal with discontinuity 
errors was the square shiftable window. In order 
to emphasize the former observation, a close-up 
of the bottom-right corner area of different 
disparity maps of Figure 10 is shown in Figure 11. 
Here, it is noticeable that the shiftable window 
aggregation outperforms the rest of the 

 

Fig. 12. The standard aggregation approach and the square shiftable window in scenarios Fps, Edy, and Bot. 
Scenarios Fps, Edy, Bot, are shown row-wise. From left to right, the first two columns show the left image from 
the stereo pair with 40° and െ40° light source direction. The last two columns show disparity maps calculated 
using 9 ൈ 9 square aggregation window (standard approach) and square shiftable window over the angular ratio 
image pair, respectively 
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aggregation methods, i.e., the error surrounding 
the contour of the ball does not affect the 
disparities obtained from the square shiftable 
window approach. Besides, object-to-background 
transition is sharper for the square shiftable 
window result, which is more noticeable around 
the boundaries of the boxes, that is, the shiftable 
window presents a less diffuse transition around 
such areas. Note that the rest of the aggregation 
approaches present a rather softened object-to-
background transition.  

As far as the remaining scenarios are 
concerned, only comparisons between the 
standard 9 ൈ 9  square window and the square 
shiftable window are presented in Figure 12, 
since no major changes were observed using 
iterated binomial, regular diffusion, and 
membrane diffusion. The results in scenarios Fps, 
Edy, and Bot are shown row-wise. Note that in 
scenario Fps, the square shiftable window helps 
to improve the disparity map by diminishing the 
error around the shaded area of the vases. A 
similar phenomenon can be noticed in Edy and 
Bot scenarios in the shaded area of the 
mannequin’s head and the pots, respectively. 

Finally, in order to demonstrate that LTC 
provides a substantial help to solve the 
correspondence problem in stereoscopy, we 
included Figure 13. The figure presents the 

results of different aggregation methods using 
only the brightness constancy constraint, i.e., no 
angular ratio images were used as inputs for 
these experiments. Instead, intensity images 
taken at 0° light source direction were used. From 
left to right, Figure 13 presents disparity maps 
recovered using square shiftable window, iterated 
binomial, regular diffusion and membrane 
diffusion. For all aggregation cases, only 
recovered disparity maps of less quality than 
those obtained with angular ratio images can be 
observed. Basically, this is due to the presence of 
irregularities in the recovered disparity maps. 
Such irregularities are not noticeable when 
angular ratio images are used (Figure 10). Recall 
that the purpose of Figure 13 is not to compare 
different aggregation methods, but to compare the 
results obtained from using LTC (in the form of 
angular ratio images) against a usage of 
brightness constancy (in the form of traditional 
grayscale images). 

3.2 Evaluating Optimization Methods on 
Angular Ratio Images 

In this section, we present experiments aimed to 
compare the performance of different optimization 
methods when applied to angular ratio images. 
Following the suggested experiments in [16], we 
used the following optimization parameters: 
dynamic programming with a softness weight 

 

Fig. 13. Four different aggregation methods in scenario Gift using brightness constancy. From left to right, disparity 
maps recovered using square shiftable window, iterated binomial, regular diffusion, and membrane diffusion are 
shown. Note that no angular ratio images were used in this experiment 
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ߣ ൌ 20  and occlusion cost 20 , scanline 
optimization with ߣ ൌ 20, graph cut with ߣ ൌ 20 , 
simulated annealing with ߣ ൌ 20  and 500 
iterations. 

Figure 14 shows four optimization approaches 
in different scenarios. From top to bottom, the 
figure presents disparity maps obtained from 
angular ratio images in scenarios Edy, Fps, Gift, 
and Bot. From left to right, the following 
optimization approaches are shown: dynamic 
programming, scan line optimization, graph cut, 
and simulated annealing. Observing the figure, 
interesting facts can be noticed. First, graph cut 
seems to group different regions of the disparity 
maps into clusters of disparity. These results 
resemble a clustered version of the standard 
approach (Figure 12); among the four methods, 
graph cut delivers the sharpest object 
segmentation. Unfortunately, this method is prone 
to errors due to self-shadowing in objects, as it 
can be seen mainly in scenarios Edy and Fps. 

Dynamic programming, on the other hand, seems 
to cope well with self-shadowing, but the 
boundaries between different objects and the 
background are not defined as well as in the 
graph cut case. Scan-line optimization seems to 
be an intermediate option, between dynamic 
programming and graph cut.  

Finally, the worst performance is delivered by 
simulated annealing, especially regarding the 
smoothness of the recovered depth maps. These 
results are consistent with the observations 
reported in [16], [3], and [19], where similar 
conclusions were derived for brightness 
constancy in grayscale images. Optimization 
methods were also applied to intensity images, 
i.e., to test the performance of brightness 
constancy against LTC and angular ratio images. 
The results of different optimization methods are 
presented in Figure 15; in these experiments, only 
the brightness constancy constraint was applied, 
i.e., no angular ratio images were used as inputs 

 

Fig. 14. Results using different optimization methods. From top to bottom, disparity maps obtained from angular 
ratio images in scenarios Edy, Fps, Gift, and Bot are shown. From left to right, the following optimization 
approaches are presented: dynamic programming, scan line optimization, graph cut, and simulated annealing 
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for these experiments. Instead, intensity images 
taken at 0° light source direction were used. From 
left to right, Figure 15 shows the disparity maps 
recovered using dynamic programming, scan line 
optimization, graph cut, and simulated annealing. 
For all aggregation cases, only poorly recovered 
disparity maps compared to those obtained with 
angular ratio images can be observed. 

4 Conclusions 

We have focused on a potential issue in LTC-
based two-frame stereo algorithms: generating 
ratio images suitable for standard stereo 
algorithms. To this end, we have shown that the 
arctangent function can transform the original 
ratio image values into a stabilized range of 
values, outperforming alternative adjustment 
functions such as histogram equalization or linear 
mapping. We have also fulfilled an experimental 
evaluation of performance of the standard 
benchmarking method in two-frame stereo 
algorithms over several angular ratio image 
scenarios. The main results of this evaluation 
confirm that aggregation and optimization 
techniques in two-view stereo algorithms applied 
to angular ration images present a behavior 
comparable to the behavior of aggregation and 
optimization approaches applied to grayscale 
images. The former fact suggests that the 
standard taxonomy for binocular stereo may be 
applied to angular ratio images, keeping specific 
properties of different aggregation and 
optimization approaches as when applied on 
grayscale imagery. As LTC is an emerging tool 

whose potential use in the stereo vision area is 
mainly related to the two-frame case, this study 
represents the first attempt to validate the 
penetration of ratio images into the extensive two-
frame stereo vision literature. Further promising 
directions of research include a rigorous study 
and, possibly, an appropriate automatization of 
light source intensity and position for two-frame 
stereo vision using LTC. This is motivated by the 
idea that an automatic control of the intensity of a 
light source based on information provided by 
cameras, i.e., the number of pixels out of normal 
ratio values, can deliver more appropriate 
disparity maps in accordance with the specific 
illuminations needs of the observed scene. 
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