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Abstract. The development of Multiple Kernel 
Techniques has become of particular interest for 
machine learning researchers in Computer Vision topics 
like image processing, object classification, and object 
state recognition. Sparsity-inducing norms along with 
non-sparse formulations promote different degrees of 
sparsity at the kernel coefficient level, at the same time 
permitting non-sparse combination within each 
individual kernel. This makes MKL models very suitable 
for different problems, allowing adequate selection of 
the regularizer according to different norms and the 
nature of the problem. We formulate and discuss MKL 
regularizations and optimization approaches, as well as 
demonstrate MKL effectiveness compared to the state-
of-the-art SVM models using a Computer Vision 
Recognition problem. 

Keywords. Multiple kernel learning, object state 
recognition, norm regularizers, analytical updates, 
cutting plane method, Newton’s method. 

Aprendizaje de múltiples núcleos 
esparcidos y no esparcidos  

para reconocimiento 

Resumen. El desarrollo de técnicas MKL (aprendizaje de 
múltiples núcleos) ha sido de particular interés  para los 
investigadores en el aprendizaje automatizado, en 
tópicos de visión por computadora, así como para el 
procesamiento de imágenes, clasificación de objetos, y 
reconocimiento del estado de los objetos. En 
ecuaciones donde se combinan múltiples núcleos, las 
normas de inducción de dispersión junto con las 
formulaciones de no dispersión, promueven diferentes 
grados de dispersión a nivel de los coeficientes de 
combinación, mientras que permiten la combinación 
no esparcida en los núcleos individuales. Esto hace de 
los modelos MKL muy adecuados para diferentes 

problemas, permitiendo la selección óptima del 
regularizador, y así lograr un mejor reconocimiento de 
acuerdo a la naturaleza del problema. En este trabajo, 
formulamos y discutimos las diferentes regularizaciones 
de MKL y los métodos de optimización relacionados, 
demostrando su efectividad  en un problema de 
reconocimiento de visión por computadora. 

Palabras clave. Aprendizaje de múltiples núcleos, 
reconocimiento del estado de objetos, regularizadores 
de normas, actualizaciones analíticas, método de 
planos cortantes, método de Newton.  

1 Introduction 

The use of kernel methods has taken a 
considerable importance in Computer Vision 
problems. Among large margin methods, SVM 
(support vector machine) is one of the most 
commonly used techniques. Indeed, the proven 
generalization ability of SVM (and specifically, of 
binary classifiers) in regression and classification 
problems involved this model very often in object 
classification and recognition. The drawback of 
using SVM in classification problems is that the 
kernel should be specified (given) and this is often 
done in an empirical way. This problem is 
circumvented by using the MKL framework, 
allowing a joint learning of the optimal kernel 
mixture and the alpha coefficients from a list of 
candidate kernels. This automatic selection 
usually results in much more interpretable and/or 
accurate models. The mixture selection is very 
close to the choice of the regularizer of the MKL 
formulation. The chosen regularizer will lead to 
the degree of sparsity that will be present in the 
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resulting kernel mixture (at the kernel mixture 
coefficient level). Therefore, depending on the 
nature of the problem, by choosing different 
regularizers, we will get different kernel mixtures, 
each one with potentially different accuracy 
results for the overall classification process. In 
this work, we discuss the use of MKL in Computer 
Vision recognition problems without considering 
any particular group structure or prior information 
on the problem. 

Recent formulations of MKL models allow 
efficient computation of resulting kernel mixtures 
in different arbitrary norms, 
considering only  . In this work, we will 
separate discussions of the MKL formulation into 

sparse and       non-sparse 
formulations in order to investigate the importance 
of sparsity on the kernel coefficient in different 
Computer Vision recognition problems. Here, our 
discussion will be limited to the binary 
classification problem. In this work, we compare 
different sparsity degree selection, along with 
different optimization strategies and algorithms. 
Specifically, for the purpose of this study, we 
implemented analytical update methods such as 
Reduced Gradient and Newton’s method with 
Linear Search methods such as Golden and 
Fibonacci search, and Cutting Plane methods 
based on Semi-Infinite Programming (SIP). 
Finally, we perform an analysis of the obtained 
results and present our conclusions. 

2 MKL Framework 

Multiple Kernel Learning formulation was first 
proposed by [9] as a convex combination of 
kernels projected on the cone defined by a set of 
semi-definite kernel matrices. Later, Bach et al. 
[1] established its equivalence with a formulation 
where the kernel mixture coefficients were 

regularized in a mixed  norm; this 
formulation is the basis of actual MKL models. 
The MKL comes from the large margin methods, 
more precisely, from SVM, and consists in finding, 
given a set of observations

 with 

, a hypothesis 
that best generalizes the unseen data. It is 

sufficient to define a symmetric semi-positive 

definite kernel  as our 
reproducing kernel, to inherit its corresponding 

and unique reproducing kernel Hilbert space  
(rkHs) (see Moore-Aronzajm theorem) with 

 . For SVM, the search in the 

primal formulation of  is defined as 

 

(1) 

On the dual derivation of the previous, we use

, which is the 
reproducing kernel property, to substitute  

 

where map features from input space 

 to Hilbertian space , obtaining the following 
dual formulation of Eq. 1: 

 

(2) 

Specifically in the MKL context, not only a 

single hypothesis , but several hypotheses 

 will be found, where each kernel 

function  is used to compute inner 

products in , with  as a 

feature map, considering  

and . Then we can state that 

 

and  is its respective rkHs; therefore, the 

formulation in [1] for the mixed norm  can 
be defined as  
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(3) 

The  norm will lead to sparse solutions on

 while the  norm keeps non-
sparse combinations of the kernel function per 

selected model  . It is important to 
remark that the previous formulation is convex 

over the simplex resulting of the  norm 
constraint. However, it is non-smooth; for 

instance, it is not differentiable for . 
Although [9] has a nice property of inducing 
sparsity on the resulting kernel’s coefficients, it is 
not differentiable, and hence, limiting the set of 
optimization strategies to be used for solving it. In 
[1], the author proposed a smoothing technique 
by introducing Moreau-Yosida terms on the 
objective function in order to make it smooth and 
then applied Second Order Cone Programming 
(SOCP) for its dual derivation. As a result, it was 
possible to use Sequential Minimal Optimization 
(SMO) techniques which allowed dealing with 
medium scale sized problems. 

2.1 Sparsity Inducing Norms 

The non-smoothness of Eq. 3 has been overcome 
in a latter formulation [10] where the 
differentiability conditions for the objective 
function are granted: 

 

(4) 

Above, a framework is convened where  if 

 and  otherwise, reducing the space  

to the space of those hypothesis  such as 

, which will result in the fact that 

 whenever  in order to reach the 

finite objective value; the mixed norm of 

Eq. 3 is replaced by a weighted  norm in the 
previous Eq. 4, and its equivalence with Eq. 3 is 
established by making use of the Cauchy-
Schwartz inequality (see the proof in [10]). This 
smooth formulation allowed the use of analytical 
update methods, mostly gradient-based ones, in 
order to compute the descent direction during the 
optimization process. Some other dual derivations 
lead to Semi-Infinite Programming (SIP), more 
precisely, to Semi-Infinite Linear Programming 
(SILP) for Eq. 3, used to continuously find upper 
bound solutions by generating many linear 
constraints. This is known as the cutting plane 
method [12] (note that this method does not 
require the differentiability conditions on the 
objective function). However, it was empirically 
proved in [10] that gradient descendant methods 
on formulation of Eq. 4 converge faster than 
cutting plane methods over formulation of Eq. 3. 

2.2 Non-Sparse Lp-Norms 

Sparse models like  norm formulations have a 
nice property of making solutions more 
interpretable due to the selection of only a few 
kernels from the list of all candidates. However, it 
has been demonstrated in [6] that sparse kernel 
mixtures do not always lead to best accuracy and 

therefore some others regularizers, like  norm, 
which lead to non-sparse kernel mixtures, might 
be better for improving accuracy.  

 

(5) 
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More recently, [8] proposed a formulation 

where arbitrary  norms induce a different 
degree of sparsity on the solutions (Eq. 5). 

The above formulation is smooth, considering 
the same previously convened framework, and in 

order to extend the norm , the constraint 

 is replaced by a  norm 
regularization, where p is an arbitrary value; 
however, convexity cannot be granted any longer, 
so the solution proposed by [8] consists in the 

relaxation of the constraint  to 

 , which leads to Eq. 5 in order to apply 
convex optimization methods. In [8], it was proven 
that the optimal solution will always lay on the 

boundary of the search space where . 

2.3 Proposed Numerical Schemes 

In this work, we did enhance the MKL Newton’s 
method in a wrapper approach with a modified 
Golden and Fibonacci linear search (see 
Algorithm 2) instead of using the common binary 
search available in Shogun toolbox and in [2]. Our 
second contribution is focused on the correction 
of the descent direction, for the cases when the 
Hessian matrix is singular, by updating the 
direction with the Reduced Gradient method. Our 
final contribution consists in an empirical 
demonstration that MKL models solved with the 
proposed algorithm outperform the Cutting Plane 
methods (in a wrapper approach), considering 
both accuracy and execution time. Formulations 
with different sparsity degrees can indeed lead to 
different accuracy results on Computer Vision 
recognition problems. We use a real recognition 
problem to illustrate this. 

Several optimization models have been 
proposed in order to solve Eq. 4 and Eq. 5 such 
as wrapper approaches [2, 7, 8, 10] and 
interleaving approaches [6, 8, 12], among other 
approaches. In this paper, we will focus on 
wrapper-based approaches (see Algorithm 1), 

where  is optimized in the outer loop and SVM 
dual  coefficients are computed in the inner loop 
by using standard Quadratic Programming (QP) 
solvers. 

Algorithm 1. General Scheme of MKL Wrapper-Based 

Approach Methods 
 

Init 

 

while conditions for     not met do 

  update    with some specific method 

  while conditions for    not met do 

    solve   with SVM solver,  

          

               where  

 

  end while inner loop 

end while outer loop 

 

 
Algorithm 2. Enhanced Newton Descendant in a 

Wrapper Approach for MKL 
 

init  

 

while (dual gap=0 | KKT) not met do 

  compute       and Hessian   

                      

                    for a fixed   

  if  not singular 

     

   then compute  

 

   else correct  with ReducedGradient 

  

  while     decrease for a fixed  

    update   

    solve  with SVM solver, 

                  

                 where  

 

  end while 

  Custom Golden/Fibonacci Search 

                   to find the best  

  update    

end while 

As mentioned above,  can be updated using 
analytical methods such as Newton’s descent. 
Compared to other gradient methods, this method 
has a high convergence rate due to the inclusion 
of curvature information on the formulation by 
making use of the second order derivatives with 
the computation of the Hessian matrix. It is very 
suitable for large scale problems and a medium 
size list of kernels candidates; however, it 
requires the granting of the second order 
differentiability conditions for the objective 
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function. It is also known that the calculation of 
the gradient has a high computational cost and 
this issue is accentuated for techniques based on 
Newton’s method, as it requires the calculation of 
the Hessian matrix; it is then recommended to 
use quasi-Newton’s methods (i.e. Broyden-
Fletcher-Goldfarb-Shanno, BFGS) for the case 
when the list of kernels candidates is large. Also, 

in the norm MKL formulation context, the global 
convergence of Newton’s method cannot be 
granted due to the relaxation in Eq. 5 to enforce 
convexity. To diminish this global convergence 
issue, we propose Algorithm 2. 

Algorithm 3. Cutting plane method in a wrapper 

approach for MKL 
 

init  
 

repeat 

  compute  with SVM solvers, 

            

where                 ,  
               

  compute new cutting plane  from  

  include  in active constraints set 

  update  with active constraints 

until (gap < Epsilon) is met 

After discussing pros and cons of the analytical 
update methods, we remark that the wrapper 
approach has also been used with the Cutting 

Plane method (see Algorithm 3), where  is 

updated in the inner loop. In this case, is 
updated by solving a Linear Problem (LP) (for the 

 norm) or a Quadratic Constrained Linear 

Problem (QCLP) (for the  norms, ) 
with several and continuously added new 
generated constraints (see Algorithm 3). Although 
this method does not require the differentiability 
conditions on the formulation, its convergence 
rate has not been estimated and could reach a 
steady state for the objective function while still 
being far from convergence; also high 
computational costs are presented due to the 

update of  in every outer step with an LP or 
QP solver. 

Some other combined methods have been 
proposed recently in order to improve the 

memory-less and slowly convergent cutting 
planes in a combined projection to the level set 
method converging much faster than any of the 
previous methods alone [3]. Also, recent works 

[13] formulate the  norm MKL in a way that it is 

generalized to , and the kernel 
coefficients are computed in a closed form very 
efficiently. 

3 Experimental Results 

To illustrate the use of MKL in computer vision, 
we selected facial expression analysis as an 
application. To measure subtle facial changes, 
Ekman et al. [3] developed the Facial Action 
Coding System (FACS), which is a human-

AU Action Description Appearance 

12 Oblique 
Lip Corner 

Puller 
 

Fig. 1. Example of an action unit (AU) 

 

Fig. 2. Comparing accuracy values of models for 
different training sample sizes 
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observer-based system designed to detect subtle 
changes in facial features, and it describes facial 
expressions by action units (AUs). An example of 
an AU is given in Fig. 1. 

To recognize AUs in image sequences, 
geometrical features [15], describing 
displacement of 83 facial feature points [4], are 
estimated. In this work, we compare our earlier 
findings for the recognition of lower AUs. In this 
case, only AU12 will be considered. The results 
are summarized in Table 1, and a comparison of 
accuracy, F1 rate, and execution time values is 
performed in Fig. 2, 3, 4 respectively. 

The experimental settings are similar to the 
ones used in [10], with the difference that we use 
a list of 23 radial basis function (RBF) kernels as 
candidates on the MKL. The state-of-the-art 
solutions based on SVM models can be found in 
[4], the same SVM model has been used for 
comparison in Table 1. 

We tested the chosen methods for different 
sizes of training data sets, selecting the samples 
randomly. This process is repeated 10 times in 
order to compute accuracy and F1 rates at the 

end. As it can be seen, the sparse  norm 
model, despite of not being the best model, is 
very competitive, but this is not surprising since 
the best reported model for the problem (in [4]) is 

 

 
Fig. 4. Comparing execution time of models for different 

training sample sizes 

 
 

Fig. 3. Comparing F1 rate of models for different 
training sample sizes 

Table 1. Classification accuracy for different 

algorithms in different regularization norms: Best 
reported SVM (BSVM), Gradient (GD), Newton’s 
(ND), SILP (S1), Sequentially QCLP(S2) 

Training 

Samples 
1 33 71 91 

BSVM 74.37 94.73 96.01 98.18 

GD L1 73.49 95.03 96.58 97.27 

ND L1.25 81.41 94.99 96.36 100.0 

ND L1.50 81.41 95.21 96.01 100.0 

ND L2.00 81.52 95.29 96.01 99.09 

S1 L1 77.10 92.64 93.05 95.45 

S2 L1.25 79.68 95.12 96.47 97.27 

S2 L1.50 80.91 95.21 96.24 99.09 

S2 L2.00 81.82 95.42 96.13 99.09 
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within the list of candidate kernels and could be 
the choice for sparse models; however, it is 
reached and improved several times by other 
non-sparse models. For the AU12 recognition 

problems, it is recommended to use the  
norm, considering the data used in our 
experiment. 

4 Conclusions 

In this article, we have studied an application of 

different MKL  norms formulations, optimization 
strategies, and algorithms for Computer Vision 
recognition problems, showing that MKL should 
be considered when facing such kind of problems. 
We have also shown that the sparsity/accuracy 
trade-off should be considered during the 
experimental process for each particular 
recognition problem as a part of the selection 
process of the regularizer of MKL formulation. 
Indeed, the regularizer highly depends on the 
correlation of features in the feature space and 
also on the training data nature. We have finally 
shown that our proposed algorithm is indeed 
more effective in terms of execution time and 
leads to a slightly better predictive performance. 
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