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Abstract. We consider a pickup and delivery vehicle 
routing problem (PDP) commonly found in the real-
world logistics operations. The problem includes a set 
of practical complications that have received little 
attention in the vehicle routing literature. There are 
multiple vehicle types available to cover a set of 
transportation orders with different pickup and delivery 
time windows. Transportation orders and vehicle types 
must satisfy a set of compatibility constraints. In 
addition, we include some dock service capacity 
constraints as required in real-world operations when 
there are a large number of vehicles to schedule. This 
problem requires to be attended on large scale 
instances: transportation orders ≥ 500, single-haul 
vehicles ≥ 100. Exact algorithms are not suitable for 
large scale instances. We propose a model to solve the 
problem in three stages. The first stage constructs initial 
solutions at the aggregated level relaxing time 
windows and dock service constraints of the original 
problem. The other two stages impose time windows 
and dock service constraints within a cut generation 
scheme. Our results are favorable in finding good 
quality solutions in relatively short computational time. 

Keywords. Vehicle routing optimization, logistics and 
transportation planning, time windows, PDP-TWDS.  

Solución casi óptima para 
transportación de movimiento 

continúo con restricciones de ventana 
de tiempo y de servicio de andenes 

Resumen. Se considera un problema de vehículos 
dedicados a la carga y descarga de producto (PDP) el 
cual es comúnmente encontrado en las operaciones 
logísticas. El problema incluye un conjunto de 

complejidades prácticas encontradas en el mundo real 
y que han recibido relativamente poca atención en la 
literatura científica dedicada a los problemas de ruteo 
de vehículos. Existen múltiples tipos de vehículos 
disponibles para cubrir un conjunto de órdenes de 
transporte con diferentes ventanas de atención tanto 
en la carga como también en la descarga. Las órdenes 
de transporte así como los vehículos deben satisfacer 
ciertas restricciones de compatibilidad. Además, se 
incluyen algunas restricciones de capacidad de 
andenes de servicio en los nodos de carga y descarga. 
Este problema requiere ser resuelto para instancias de 
gran tamaño: ordenes de transporte ≥ 500, vehículos ≥ 
100. Los algoritmos de solución exacta no son 
adecuados para este tipo de instancias. Por tanto se 
propone un modelo de tres etapas. La primera etapa 
construye las soluciones iniciales de manera agregada 
mediante la relajación temporal de las restricciones de 
ventanas de horario y andenes disponibles. Las otras 
dos etapas van añadiendo dichas restricciones al 
problema dentro de un esquema iterativo de 
generación de cortes. Los resultados obtenidos son 
favorables tanto lo que respecta a la calidad de las 
soluciones como en los tiempos computacionales 
requeridos.  

Palabras clave. Optimización y ruteo de vehículos, 
planeación logística y transportación, ventanas de 
horario, PDP-TWDS. 

1 Introduction 

The Pickup and Delivery Problem with Time 
Windows and Dock Service Constraints (PDP-
TWDS) is a variant of the well-known Vehicle 
Routing Problem with Time Windows (VRP-TW). 
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Vehicle routing plays a central role in logistics 
management. Different vehicle routing problems 
address different practical situations but focus on 
a common problem, the efficient use of a fleet of 
vehicles that must pick up and/or deliver a set of 
transportation orders within a time window 
framework. This implies the task to identify which 
transportation orders should be covered by each 
vehicle and at what time, in order to minimize the 
total transportation cost subject to a variety of 
constraints and complications. This paper 
illustrates the potential of the proposed approach 
in the context of a case study of a large soft drink 
company. Embotelladoras ARCA is the second 
largest bottler of Coca-Cola products in Latin 
America and the fifth in the world. The company 
faces a PDP-TWDS in transportation operations 
in the northern territory of Mexico. With each head 
haul move of a truck, the goods are transported 
from their origin to their destination so that 
revenue is generated. However, without the 
goods, the truck moves an empty haul, and in 
such cases only costs are incurred. Any attempt 
to enforce a transportation order from a given 
destination location back to the origin location 
results in unsuccessful practice. Pooling 
transportation orders among several dispatchers 
may avoid simple trips by replacing the empty 
return of a simple trip with a transportation order 
of another dispatcher. Thus, the collaboration of 
two or more dispatchers allows important cost 
savings for the company. The cost of an overall 
route is smaller when two trips are pooled 
together in comparison with making them 
independently. If trips Ti1,j1 and Ti2,j2  are 
combined then the following will be fulfilled: 

– Deliver goods from origin i1 to destination j1. 
– Make an empty haul move to a new origin i2.  
– Pick up goods from origin i2 and deliver them 

to destination j2. 

– Return to the initial origin i1. 

It is estimated that at least 38% of truck 
movements of the company are empty haul 
moves. This means millions of kilometers and 
also millions of liters of fuel lost per year. This is a 
major economic loss for the company, especially 
in the current situation where fuel prices have 
skyrocketed. Since our PDP-TWDS is NP-hard, 
combined with the fact that the real world PDPs 

are very big, there is no much hope for finding an 
optimal model that will work acceptably fast in 
practice. Thus, we propose a Hybrid Mixed 
Integer Programming (HMIP) approach to this 
problem. The paper is organized as follows. In 
Section 2 we introduce the problem definition and 
its associated complications. In Section 3 we 
briefly sketch some related problems and 
previous research work. In Section 4 we introduce 
some notation and present our model approach 
structured in three stages. Section 5 contains a 
description of some empirical results we obtained 
in our implementation. Model contributions and 
applicability are explained in Section 6. We 
present some concluding remarks in Section 7.  

2 Problem Definition 

PDP-TW solutions are case-specific, since each 
one of them has its own constraints and 
objectives. Due to this fact, it is virtually 
impossible to create an algorithm that can be 
applied to all situations. Rather, we present the 
building blocks of broad applicability.  

2.1 Objective Function 

The goal of our model is to determine an optimum 
route for multiple vehicles dedicated to physical 
distribution operations. A route is defined as the 
arrival sequence of a vehicle (i.e., a single or 
double trailer) which has to attend a set of nodes 
or warehouses waiting for service. A service can 
be defined as delivery or pickup of any type of 
items (in our case, products). An optimal route is 
obtained when we achieve the minimal cost (or 
distance or time) in order to attend all the 
customer nodes waiting for service. 

2.2 Operation Constraints 

1. Let us define N as a set of nodes for pickup 

and delivery operations, and i ∈ N. Set M is 

defined for different vehicles, and m ∈ M.  

2. We define P(i) as a subset of vehicles located 

at node i, where P(i) ⊆ M and ∀ i ∈ N. At the 
start of the day, each vehicle departs from the 
origin node. Then each vehicle attends to a set 
of geographically scattered nodes i (i.e., 
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customers). At the end of the route, each 
vehicle returns to its origin point.  

3. We have a set of transportation orders R. 

Each order r ∈ R consists of a pickup at a 
location i and a delivery at a location j. 
Precedence constraints imply that a vehicle m 
should visit i before j for each transportation 
order r.  

4. Let us define K as a set of different products 
(stock keeping units, SKUs) to be transported, 

where k ∈ K. The parameter Dijk is the total 
demand to transport from node i to node j for 

SKU k, where (i,j,k) ∈ R, ∀ i,j ∈ N. We define V 
as a subset of transportation lanes along 
which some volume has to be delivered or 

picked up, where (i,j) ∈ V, ∀ i,j ∈ N. 

5. Since trailers have a loading and unloading 
access by the sides, such design is not 
affected by nested precedence constraints. 

6. We define the parameter Hk as the quantity of 
cases of SKU k that can be loaded per cubic 

meter, ∀ k ∈ K. 

7. Each order r ∈ R has a specific mix of SKUs. 
The capacity constraints guarantee that any 
mixture load of items on a vehicle m should be 
less than the vehicle capacity. We define the 

parameter Qm as the cubic meter capacity for 
vehicle m, where m ∈ M.  

8. The use of a vehicle is constrained at the 

transportation lane level. Let us define A(i,j) as 
a subset of compatible vehicles m that can be 
used for transportation lane (i,j), where A(i,j) ⊆ 
M, m ∈ M, (i,j) ∈ V, and i,j ∈ N.  

9. We define TS as the service time for a single 
trailer configuration and TF for a double trailer. 

10. Each node has a particular time window for 

service. Let us define parameters INi and CNi 
as the opening time and the closing time, 

respectively, at a node i, where i ∈ N. 

11. A vehicle m cannot operate either before its 
window opens or after its window closes. Let 
us define parameters IVm and CVm as the 
opening time and closing time for a vehicle m, 

where m ∈ M.  

12. The dock service capacity is constrained as 
the quantity of vehicles that can be attended at 
each node and at each hour of the day. Let us 

define the parameter Sih as the quantity of 
docks available for service at a node i at a 

working hour h, where i ∈ N, h ∈ {1, ..., 24}.  

13. Let us define the time and cost required to go 
from each node to all the others on the 
distribution network as follows:  
STij = transportation time for single trailer ∈ (i,j)∈ V 
FTij = transp. time for double trailer ∈ (i,j)∈ V 
SCij = transp. cost for single trailer ∀ (i,j) ∈ V 

FCij = transp. cost for double trailer ∀ (i,j) ∈ V 

3 Related Research 

PDP-TW is more difficult to solve than VRP-TW 
(Vehicle Routing Problem with Time Windows) 
and TSP-TW (Traveling Salesman Problem with 
Time Windows). J.N. Tsitsiklis [13] showed that 
the basic TSP-TW is strongly NP-complete. M.M. 
Solomon [12] developed 87 test instances for the 
VRP-TW. The biggest instance he solved 
included about 100 nodes. Until the year 1999, 
there had been 17 instances that still remained 
unsolved Ascheuer et al. [1, 2] tested TSP-TW 
instances containing up to 233 nodes. For an 
instance of 69 nodes, 5.95 minutes of solution 
time was required. All bigger instances required 
more than 5 hours of solution time to converge to 
a feasible solution. Dumas et al. [6] presented a 
dynamic programming algorithm for the TSP-TW. 
These authors were able to solve problems of up 
to 200 nodes. 

PDP-TW is a generalization of VRP-TW M. 
Palmgren [8] and is NP-hard Desrosiers et al. [6]. 
The first optimization algorithm for the PDP-TW 
was a branch-and-price algorithm presented by 
Dumas et al. [5]. A set partitioning formulation is 
solved by a branch-and-price method in which 
columns of the negative reduced cost are 
generated by dynamic programming. This 
approach is capable of solving some instances 
with up to 22 vehicles and 190 requests. 
Savelsbergh and Sol [11] proposed a branch-and-
price algorithm for the PDP-TW using both a 
heuristic algorithm and a dynamic programming 
algorithm for the column generation problem.  

More recently, a branch-and-cut algorithm for 
the PDP-TW was described by Lu and Dessouky 
[7]. Their formulation contains a polynomial 
number of constraints and uses two-index flow 
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variables, but relies on extra variables to impose 
pairing and precedence constraints. Instances 
with up to 5 vehicles and 25 requests were solved 
optimally. Ropke et al. [10] introduced a new 
formulation for the PDP-TW which did not require 
the use of a vehicle index to impose pairing and 
precedence constraints. They showed that this 
approach was capable of solving some instances 
with up to 8 vehicles and 96 requests. 

In general, heuristics can solve larger scale 
problems in less solution time than exact 
methods. Recently, some progress has been 
achieved in meta-heuristics by developing tabu 
search and genetic algorithms. An extensive 
survey on methods to solve the PDP-TW can be 
found in Parragh et al. [9]. In this work, the best 
results are obtained by column generation 
methods. Instances of up to 500 requests and 53 
vehicles can be solved with this method. Given 
the enormous complexity of PDP problems, it is 
not realistic to apply pure optimization methods. 
Thus, we develop a hybrid approach to integrate 
some heuristics into an optimization method 
based on a cut generation strategy. In the next 
section, we present our model. Briefly speaking, 
there are two main differences between our 
approach and the previous methods: (1) dock 
capacity constraints handling and (2) iterative cut 
generation strategy. 

4 Proposed Model  

We can figure out two objective functions: (1) 
minimize the total time, distance, or cost of 
vehicles needed to execute all the set of 
transportation orders or (2) minimize the number 
of vehicles. Our model is based on a continuous 
move strategy. Here, attempts are made to match 
multiple truckload pickups and deliveries to one 
truck. The benefit of continuous moves is derived 
from the overall reduction of empty haul 
distances. For each trip, we compute its total cost, 
including trips associated with empty hauls. All 
trips are planned for one day of operation in order 
to enforce and simplify truck location 
requirements. We propose to solve the problem in 
three stages. The first stage constructs initial 
solutions at the aggregated level relaxing some 
constraints of the original problem. The other two 

stages impose time windows and dock service 
constraints, respectively. 

4.1 Relaxed Capacitated Vehicle Routing 
Problem (C-VRP) Model 

We assume different vehicle capacities that are 
initially located at different nodes (i.e., depots). At 
this stage, our model constructs initial solutions at 
the aggregated level. We relax time windows and 
dock service constraints. This means that 
transportation orders have no specific service 
time window constraints to satisfy. The objective 
is to find an optimal cost solution that completes 
all the transportation workload orders at the 
aggregated level taking into account vehicle cubic 
capacity constraints, vehicle compatibility 
constraints, and the constraint of 24 hours of 
operation per vehicle. The main output of this 
relaxed C-VRP model is an optimal assignment of 
the vehicles to cover all the transportation orders. 
In transportation operations, the regular case is 
when we operate a single trailer with just one 
haul. However, our first C-VRP model considers 
the case to operate a route with a vehicle m1 
grouped with another vehicle m2. As a result, we 
obtain one new vehicle with a combined capacity. 
This is a double trailer case or a vehicle with two 
hauls. Thus, the C-VRP model identifies if one 
vehicle m1 should be grouped with another 
vehicle m2 to operate a certain route. We present 
the first stage of our C-VRP model as follows: 

Sets and parameters: 

N = set of nodes (plants and distribution centers), i ∈ N 

M = set of vehicles (trailers), where m ∈ M 

P(i) = subset of vehicles at node i, P(i) ⊆ M and i ∈ N 

K = set of different SKUs k, where k ∈ K 

Hk = # of cases of SKU k per cubic meter, ∀ k ∈ K 

R = set of transportation orders, where r ∈ R 

Qm = # of cubic meters on vehicle m, where m ∈ M 

A(i,j) = subset of vehicles that can be used on transp. 

lane (i,j), ∀ (i,j) ∈ V, where A(i,j) ⊆ M, m ∈ M 

TS = service time for single trailer configuration 

TF = service time for double trailer configuration   

STij = transp. time for single trailer  ∀ (i,j) ∈ V, i,j ∈ N 

FTij = transp. time for double trailer ∀ (i,j) ∈ V, i,j ∈ N 

SCij = transp. cost for single trailer  ∀ (i,j) ∈ V, i,j ∈ N 

FCij = transp. cost for double trailer ∀ (i,j) ∈ V, i,j ∈ N 
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Dijk = demand from i to j for SKU k, ∀ (i,j)∈V,(i,j,k)∈ R 

INi 
 
= opening time at node i, ∀ i ∈ N  

CNi 
 
= closing time at node i, ∀ i ∈ N  

IVm 
 
= opening time of vehicle m, ∀ m ∈ M  

CVm 
 
= closing time of vehicle m,∀ m ∈ M  

UB = demand covering factor (upper bound).  

Decision variables: 

Wm1,m2  binary ⇒ (1) if vehicle m1 is grouped with 

vehicle m2, (0) otherwise, ∀ (m1,m2) ∈ P(i). 

Xij 
m1,m2 

≥ 0, integer ⇒ # of trips from node i to node j 
using vehicle (m1,m2), ∀ (i,j) ∈ V, (m1,m2)∈ A(i,j)⊂ P(i)  

Fijk ≥ 0, ⇒ quantity of cases to transport from node i to 

node j of SKU k, ∀ (i,j,k) ∈ R 
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Objective Function 1.1 is formulated to 
minimize the variable cost (i.e., distance) needed 
to execute the set of transportation orders. 
Alternatively, we have another Objective Function 
1.2 which is formulated to minimize the total 
number of vehicles required to execute the set of 
transportation orders. Constraints 1.3-1.4 assure 
that each vehicle is assigned exclusively to a 
single or double trailer operation only. Constraints 
1.5-1.6 restrict the maximum quantity of trips so 
that a single and double trailer can perform on a 
24-hour time horizon. Constraint 1.7 assures that 
the quantity of cubic meters used to transport 
products from node i to node j is equal to the total 
cubic meters of available capacity considering 
single and double trailer operation. Constraint 1.8 
corresponds to the balance flow constraint which 
assures that the total transportation volume from 
node i to node j is sufficient to cover the total 
demand at each SKU level. Constraint 1.9 
restricts the maximum volume of the product to be 
transported from node i to node j (i.e., the upper 
bound). Finally, constraint 1.10 corresponds to 
the balance flow constraints imposed at the 
vehicle level. 
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4.2 Pickup and Delivery Problem with Time 
Window Constraints (PDP-TW) Model 

As a result from the previous model, we obtain an 
optimal assignment of the vehicles. Binary 
variable Wm1,m2  identifies which vehicles are going 
to operate on a single trailer basis and which 
ones will operate on a double trailer basis. From 
here to the end, all double trailers will be modeled 
as a single vehicle with the combined capacity. 
Integer variable Xij 

m1,m2 
calculates an optimal 

number of trips for each vehicle between the 
origin and destination nodes. The next PDP-TW 
model will take advantage from the previous 
information. Thus, for this model we add time 
window constraints. We model as follows: 

Sets and parameters: 

L = set of stops on a given route (1,…, 9) 

Xij 
m 

= trips i-j with vehicle m, ∀ (i,j) ∈ V, m∈M ∈ A(i,j) 

INi 
 
= opening time at node i, ∀ i ∈ N  

CNi 
 
= closing time at node i, ∀ i ∈ N  

IVm 
 
= opening time of vehicle m, ∀ m ∈ M  

CVm 
 
= closing time of vehicle m,∀ m ∈ M  

TCij
m

 = transp. cost (i,j) of vehicle m,∀(i,j)∈ V, m∈ 

M∈A(i,j) 

Zij
m 

= transp. and service time for lane (i,j) on vehicle m 

Decision variables: 

Yij 
ml 

binary ⇒ (1) if vehicle m is routed from i to j on 

sequence l, (0) otherwise.∀ (i,j)∈ V, m∈ M∈ A(i,j), l∈ L 

Tij 
ml 

≥ 0 ⇒ arrival time at node j from node i on vehicle 
m at sequence l. ∀ (i,j) ∈ V, m ∈ M, l ∈ L 
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Expression 2.1 is formulated as a multi-term 
objective function. The first part is used to 
minimize the transportation cost of the vehicles. 
The second part minimizes the entire set of arrival 
times that corresponds to each individual trip 
(i,j,m). Constraint 2.2 assures that the whole set 
of trips obtained by Model 1 are fully covered by 
Model 2. Equation 2.3 shows the balance flow 
constraints imposed at the vehicle level. 
Constraints 2.4-2.7 are formulated for time 
window constraints for each node and vehicle. 
Constraint 2.8 assures that each vehicle departs 
from only one origin node at each trip. Constraints 
2.9-2.10 calculate the arrival times for the entire 
set of trips.  
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4.3 Pickup and Delivery Problem with TW and 
Dock Service Constraints (PDP-TWDS) 
Model 

As a result from the previous PDP-TW model, we 
obtain an optimal assignment of the vehicles 
considering the vehicle capacity and time window 
constraints as well. Binary variable Yij 

ml 
identifies 

if vehicle m is routed from node i to node  j on 
sequence l. Positive variable Tij 

ml
 calculates the 

arrival time at each node for all the vehicles. Our 
previous PDP-TW model works as the master 
model. Then, the logic we apply here is to 
iteratively generate cuts in a branch and cut 
scheme. We identify in the incumbent solution, at 
each arrival node and at each working hour, the 
subset of vehicles that are violating the dock 
service constraint. We compare the quantity of 
vehicles that are being dispatched simultaneously 
at a given node and at a given hour versus the 
quantity of docks that the node is capable to 
attend at a given hour. Then, we add these cuts 
to the master model accordingly. This procedure 
continues until we find the first feasible-optimal 
solution for the problem that does not violate the 
dock service capacity. We model as follows: 

Sets and parameters: 

Sjh = docks available at node j at hour h, j∈N, h∈{1..24}  

E = set of cases where vehicle   is violating the dock 
service constraint at node  j at hour h 

OT=min. offset time between arrivals of vehicles α and 
β 

 (       )∈ E  if and only if  

  {

|    
       

   
|            

                                               

      {   } ∈   

 

Decision variables:  

dock constraints for node j at hour h  

Case e: where e(jα,jβ,h)∈ E 

B
+

e ≥ 0 time gap between arrivals of vehicles α 
and β to node j at hour h,  

B
-
e ≥ 0 time gap between arrivals of vehicles β 

and α 

Ue binary ⇒ (1) if vehicle α arrives before vehicle 

β to node j at hour h, (0) otherwise, where e ∈ E 

subject to: 

   
       

   
   

    
         ∀   (       ) ∈     

where 

Constraint 3.1 deals with a set of deviational 
variables to calculate the gap on the arrival times 
to node j for each pair of vehicles α and β. 
Constraint 3.2 assures that the gap time for any 
given pair of vehicles α and β arriving at node j 
asking for dock service capacity must be at least 
of size OT (e.g., one hour). Constraints 3.3–3.4 
correspond to upper bounds imposed on 
deviational variables. We define 24 hours as the 
time frame horizon.  

As it can be verified, these constraints grow 
exponentially because the number of nodes and 
vehicles is big. Thus, in our third model we add 
these constraints on an iterative scheme only 
when required. In summary, we model a linear 
relaxation of the PDP-TW problem that results in 
a very efficient solution of the master problem by 
the MIP solver. At this stage, we fully apply the 
time window constraints but relax the dock 
service capacity constraints. Thus at each 
iteration, a feasible solution is obtained for the 
time window constraints at all nodes and for all 
vehicles. An iteration procedure is performed 
within the MIP solver framework to add the dock 
capacity constraints only when necessary. We 
have found that our approach is capable of 
obtaining competitive solutions in acceptable 
computational time for real business instances of 
around 160 vehicles and 500 transportation 
orders. Figure 1 presents the tree stages and 
their relationships. We indicate where heuristics is 
applied as well. 

(   ) ∈      ∈  ∈  (   )  ∈   (3.1) 

  
    

     ∀  ∈   (3.2) 

  
                     ∀  ∈   (3.3) 

        
       (    ) ∀  ∈        (3.4) 
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5 Test Instances and Results 

We implement our model for a real-world case. 
Although we test the model on different number of 
available vehicles, however, the number of 
transportation orders corresponds to a given real-
world instance that the company faces regularly. 
Our experiments can be structured as follows:  
(1) Aggregated solutions for the C-VRP model. 
Several instances are tested with different values 
of parameters that are used to setup the 
transportation network. Thus, the main feature 
that makes the difference for each instance 
corresponds to the number of vehicles that can be 
considered for each transportation lane and also 
the number of transportation lanes that can be 
considered for each vehicle.  
(2) Detailed solutions for PDP-TWDS instances. 
We make tests with different values of the number 
of available docks for service. Here, we obtain 
some efficiency measures for vehicles operation 
as well. These different instances are justified as 
we can anticipate some requirements to the 
management of the firm in terms of transportation 
infrastructure (i.e., docks available for service at 
each node). 

In the first model, we relax time windows and 
dock service constraints. Instead, some side 
constraints at the aggregated level are included in 
order to assure feasibility when solving the 
original problem. This heuristic stage works at the 

aggregated level to create a network simplification 
for the original PDP-TWDS in order to reduce the 
search space. The basic idea in our heuristic is to 
identify a subset of incumbent decision variables 
in such a way that transportation orders and 
vehicles are compatible. We point out the 
compatibility between transportation orders and 
vehicles types, the compatibility between 
transportation lanes and vehicles types, and the 
compatibility between transportation nodes and 
vehicles types. Thus, one of the main 
contributions of our work is the development of a 
model that is stable for input data in order to find 
a way to dismiss enough links to make the 
solution of the first aggregated MIP model very 

efficient. This trade-off on optimality will be 
detailed in the next section. We present some 
results showing that our method is efficient for 
solving large scale instances. The CPU 
configuration used in our implementation is Win 
X32, 2 Intel Cores 1.4GHz. We implement our 
model on X-PRESS MIP Solver from FICO

TM 
(Fair 

Isaac, formerly Dash Optimization). 

Table 1 shows optimal solutions found by our 
first stage model using different combinations of 
input parameters: (F1) the quantity of vehicles to 
be considered for each transportation lane and 
(F2) the quantity of transportation lanes to be 
considered for each vehicle. These two heuristic 
parameters F1 and F2 affect the matrix size of the 
decision variables and the complexity to be 
considered by our first stage model when feasible 
solutions are obtained at the aggregated level.  

Particularly, Table 1 shows the results 
obtained for Objective Function 1.1. As it can be 
verified in the last column, the number of tractors 
or single hauls is not actually minimized when 
compared with Table 2. It is seen from Table 1 
that with an appropriate setting of parameters F1 
and F2, we obtain good quality solutions in a 
short computational time. However, the trade-off 
we have to pay with this strategy is a possibility to 
have an over-constrained solution space. When 
we set F1 = 40 and F2 = 40, better solutions can 
be obtained but more time is required to solve the 
problem. The gap to optimality in Column #7 is 
expressed as a percentage comparing the best 
MIP solution found in Column #6 with the best 
bound obtained by the solver at a given iteration

 

Fig. 1. Three-Stage Model for PDP-TWDS 

Relaxed C-VRP Model

Master 
PDP-TW Model

Cut Strategy 
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Heuristic for Transportation Network
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Add Dock Service 
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In Table 2, we present the results obtained for 
Objective Function 1.2. This objective function 
minimizes the total number of tractors (i.e., 
vehicles) required to cover the entire set of 
transportation orders. As it is expected, Table 2 
shows better solutions for the number of vehicles 
than Table 1. It makes sense to use Objective 
Function 1.2 reported in Table 2 instead of 
Objective Function 1.1 because the former 
reflects the transportation cost more precisely. 
Thus, the best solution we find from Tables 1-2 is 
about 39 tractors only (71 single hauls). At the 
aggregated level, we get an optimization around 
34% when compared with the actual number of 
single hauls in use and 27% when compared with 
the actual number of rented trucks. Now the 
challenge is to assure this optimization by the 
next stage model when time windows and dock 
capacity constraints are included. From here, we 
set a value of 1% for our MIP solver optimality 
tolerance in order to identify a true near-optimal 
solution for each instance to test.  

In order to build our model successively, we 
generate several instances using different values 

for the dock service capacity available at each 
transportation node. Thus, since we have an 
instance with less available docks for service, we 
generate a more difficult problem to solve and a 
longer solution time is expected. There are 34 
different transportation nodes in our problem. The 
number of docks available for service at each 
node ranges from one to eight.  In Table 3, we 
present the instances and some obtained results. 
The first 10 columns of the table contain the 
number of available docks at each node. “Total 
Docks” is the total number of docks in the entire 
instance considering all transportation nodes. The 
next columns are “# ITERs” and “# CUTs”, the 
former is the number of iterations and the latter is 
the number of constraints required for each 
instance to converge to a feasible near-optimal 
solution.  

The columns “Max. Docks” and “Avg. Docks” 
refer to the maximum and average number of 
transportation orders in which the dock capacity is 
violated. This average number of orders is 
weighted by the length of computational time that 
the solver spends to solve the incumbent dock 

Table 1. Aggregated-Level Solutions for the Relaxed CVRPmodel. Objective function minimizes the cost variable 

(F1) # of 
Vehicles 

per 
Transp. 

Lane 

(F2) # 
of 

Transp. 
Lanes 

per 
Vehicle 

# of 
Binary 

Variables 

Linear 
Prog 

Solution 

Comput. 

Minutes 

Best 
MIP 

Solution 

% of 
GAP to 
optimal 

# of 
Single 

Trailers 

# of 
Double 
Trailers 

# 
Tractors/  
# Single 

hauls 

20 20 8,751 172,569 2 211,876 14.10% 11 45 56 / 101 

20 20   3 193,818 6.09% 9 41 50 / 91 

20 20   5 192,238 5.32% 9 40 49 / 89 

20 20   10 190,278 4.34% 9 39 48 / 87 

30 30 15,915 168,632 2 191,382 6.82% 9 37 46 / 83 

30 30   3 190,262 6.26% 9 37 46 / 83 

30 30   5 189,076 5.67% 9 38 47 / 85 

30 30   10 188,002 5.13% 9 38 47 / 85 

40 40 21,534 166,062 2 NA NA NA NA NA 

40 40   3 190,378 7.77% 10 43 53 / 96 

40 40   5 187,860 6.53% 9 37 46 / 83 

40 40   10 186,018 5.60% 9 38 47 / 85 
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constraints. The last column is a speed measure 
that indicates the quantity of dock constraints 
solved per second. Since we have a larger 
quantity of docks available for service, Table 3 
verifies that the number of iterations and 
constraints required to be added at the cut 
generation stage is less. Less iterations and 
constraints to be added to the master problem 
mean less solution time to solve to problem. 
Furthermore, a bigger number of the 
transportation orders where the dock service is 
violated (i.e., the 15th column) means a larger 
quantity of cuts required to solve the problem. 
The average number of orders is not correlated 
with the number of available docks. In fact, this 
measure ranges from 2.4 up to 10.4 and is 5.1 on 
average. For example, 2.4 means that, for the 
most part of the time required to converge to a 
fully feasible solution, we have a cuasi-feasible 
solution with only 2.4 orders which does not have 
dock capacity available for service. Finally, 
concerning the efficiency indicator in the last 
column, as we have a more constrained instance 
(i.e., with less available docks), the quantity of the 
dock constraints solved per second is reduced. 

In Table 4, we present the same set of 
instances as in Table 3 according to the total 
docks available for service. In this table, we focus 

on some activity measures for vehicle operation. 
The third column of Table 4 corresponds to the 
second part of the objective function presented in 
Equation 2.1. This is the total sum of the arrival 
times of all vehicles used to attend the entire set 
of orders. This indicator is very useful in order to 
estimate how much efficiency and time delay we 
have for the vehicles. As this instance is more 
constrained (i.e., with less available docks), we 
have a larger waiting time for the vehicles. The 
waiting time can be observed at the origin or at 
the destination node. Either way, such delay of a 
vehicle has a negative impact on its efficiency and 
also on the finish time when each vehicle 
completes its route at the end of the working day. 
The 4th column of Table 4 corresponds to the 
sum of all finish times of the vehicles in each 
instance. Thus, if we divide the sum of all finish 
times of the vehicles by the total number of the 
vehicles, we obtain the average finish time of the 
entire fleet, indicated in the 5th column. In the 
next column, we give the number of vehicles that 
are running on or after the 22nd hour. From the 
bottler’s operation perspective, it is preferable that 
all waiting times of a vehicle take place at the end 
of the working day. Indeed, this strategy would 
allow the planning managers to have a more clear 
status of vehicle locations for the next operation 

Table 2. Solutions for the Relaxed C-VRP model. Objective function minimizes # of vehicles 

(F1) # of 
Vehicles 

per Transp. 
Lane 

(F2) # of 
Transp. 

Lanes per 
Vehicle 

Binary 
Variable

s 

Computational 

Minutes 

% of 

GAP to 
optimal. 

# of Single 
Trailers 

# of 
Double 
Trailers 

# Tractors 
/ 

# Single 
hauls 

20 20 8,754 3 21.89% 9 37 46 / 83 

20 20  5 19.92% 9 36 45 / 81 

20 20  10 17.86% 9 35 44 / 79 

30 30 15,915 3 31.03% 11 40 51 / 91 

30 30  5 20.55% 9 35 44 / 79 

30 30  10 17.40% 8 34 42 / 76 

40 40 21,534 3 25.99% 9 37 46 / 83 

40 40  5 25.98% 9 37 46 / 83 

40 40  10 17.01% 8 33 41 / 74 

40 40  20 7.58% 7 32 39 / 71 
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cycle. The last column of the table includes a 
measure of the length of time (a percentage) that 
a vehicle spends in waiting during its route and 
just before the last stop. It can be observed in 
Table 4 that as we have a more constrained 
instance (i.e., with less available docks), the 
values for all previously mentioned indicators are 
higher. Indeed, we obtain a big negative 
correlation coefficient of about 89% between the 
number of docks and the total sum of the vehicle 
arrival times. Similar correlation coefficients are 
obtained for the sum of the vehicle finish times 
and for the % of the waiting time of the vehicles. 

6 Model Contributions and 
Applicability 

The novelty of our model presented in this paper 
is the combination of three basic stages that 
interact in order to solve the PDP-TWDS 
effectively. The main contribution of our work is 
the development of dock service constraints. Our 
implementation is based on a cut generation 
strategy. The empirical results show the efficiency 
of these valid inequalities to constraint connected 
routes considering dock service constraints at 
each node. To the best of our knowledge, our 

Table 3. Instances for the complete PDP-TWDS model. Available docks for service and efficiency measures 

1 2 3 4 5..6 14 15 16..27 28 29..34 
Total 

Docks 

# 
ITERs 

# 
CUTs 

Solution 

Time 

Max. 
Docks 

Avg. 
Docks 

Docks 

/Secs. 

8 6 4 4 4 3 3 2 3 2 75 6 40 13 21 4.7 1.58 

8 6 4 4 4 3 3 1 3 2 63 10 49 26 24 3.5 0.92 

7 6 4 4 4 3 3 1 3 2 62 8 60 28 25 4.6 0.89 

6 6 4 4 4 3 3 1 3 2 61 5 50 14 27 6.4 1.89 

6 5 4 4 4 3 3 1 3 2 60 9 55 28 28 3.9 1.00 

6 4 4 4 4 3 3 1 3 2 59 12 69 45 29 3.0 0.65 

6 3 4 4 4 3 3 1 3 2 58 4 62 9 32 10.4 3.66 

6 3 3 4 4 3 3 1 3 2 57 8 74 25 33 6.1 1.30 

6 3 2 4 4 3 3 1 3 2 56 7 65 23 34 5.4 1.51 

6 3 1 4 4 3 3 1 3 2 55 14 98 67 36 4.2 0.54 

6 3 1 3 4 3 3 1 3 2 54 12 102 118 39 2.4 0.33 

6 3 1 2 4 3 3 1 3 2 53 21 134 110 42 4.2 0.38 

6 3 1 2 3 3 3 1 3 2 51 18 137 98 45 5.0 0.46 

6 3 1 2 2 3 3 1 3 2 49 18 149 117 49 4.3 0.42 

6 3 1 2 2 2 3 1 3 2 48 12 147 86 55 6.8 0.64 

6 3 1 2 1 2 2 1 3 2 45 23 198 378 62 3.9 0.16 

6 3 1 2 1 2 1 1 2 2 43 20 225 236 66 6.0 0.28 

6 3 1 2 1 2 1 1 2 1 37 16 226 218 71 7.7 0.33 
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work is the first to implement these valid 
constraints. Our implementation indicates that the 
considered model provides an appropriate trade-
off for the solution quality and computational time. 
The proposed model not only addresses the 
difficulties embedded in common PDP 
applications but also some practical concerns 
about pre-defined and/or forbidden route 
assignments at the node and vehicle level. Pre-
assigned or forbidden requirements arise from 
such business issues like routing realignment. 
From a practical standpoint, the issue of routing 
realignment is how the model can efficiently 
accommodate such changes as transportation 
order additions or dropouts trying not to disrupt 
the previous design considerably. All these 
features are very important if we consider how 
easily this model can be extended to other cases. 

It is important to point out that our 
methodology presents an HMIP model that 
ensures time window feasible solutions at each 
iteration. Thus, it is interesting to verify how 
rapidly our implementation can converge to cuasi-
feasible solutions for dock service constraints 
(see Table 3). However, future research is 
necessary to prove viability of this paradigm when 
gap optimality is required to be confirmed. The 
obtained computational results serve only as 
evidence for our arguments. They are not 
intended to be used for in–depth comparison of 
available methods for PDP. From a practical 
business application standpoint, this operations 
research (OR) application is developed and 
implemented in order to optimize the 
transportation network between manufacturing 
plants and distribution centers. During the last 

Table 4. Instances for the complete PDP-TWDS model. Activity measures for vehicle operation 

Total 
Docks 

Solution 
Time in sec. 

Total Sum for 
Vehicle Time 

Vehicle Sum 
End Times 

Vehicle 
Average End 

Times 

# Vehicles 
with End Time 

> 22 

Vehicles 

% of Wait. 

75 13 2,184.70 697.70 17.89 7 4.51% 

63 26 2,136.90 688.83 17.66 6 3.41% 

62 28 2,159.07 696.22 17.85 7 3.47% 

61 14 2,213.75 702.68 18.02 11 4.32% 

60 28 2,198.50 696.93 17.87 10 3.66% 

59 45 2,168.37 694.53 17.81 7 4.06% 

58 9 2,210.57 705.55 18.09 9 4.54% 

57 25 2,228.33 710.00 18.21 9 4.32% 

56 23 2,249.00 721.93 18.51 10 4.37% 

55 67 2,300.70 728.50 18.68 13 5.33% 

54 118 2,238.43 707.72 18.15 8 4.69% 

53 110 2,258.85 728.78 18.69 11 5.08% 

51 98 2,240.35 709.47 18.19 8 4.65% 

49 117 2,311.65 727.12 18.64 12 5.77% 

48 86 2,310.92 729.27 18.70 12 5.82% 

45 378 2,385.28 748.45 19.19 12 6.65% 

43 236 2,358.55 743.78 19.07 10 7.05% 

37 218 2,416.90 754.80 19.35 14 7.26% 



Near Optimal Solution for Continuous Move Transportation with Time Windows and Dock Service Constraints 245 

Computación y Sistemas Vol. 16 No. 2, 2012 pp 233-247 
ISSN 1405-5546 

years, the firm was interested in developing a 
better transportation and routing schedules. 
Indeed, this is the first OR application that has 
been implemented in a bottler company. It is 
important to point out that the overall results have 
been very positive. The first plans for 
transportation routes suggested by the 
optimization model were implemented eight 
months ago. Since then, a significant increase in 
productivity and direct savings to the firm has 
been achieved.  

Some of the benefits the company obtained 
within this project: (1) the firm achieved an 
optimal truck capacity to attend the demand on 
each territory. This represents 27% of truck 
reduction. (2) An increase of effectiveness for the 
planning process of the transportation schedule. 
The fully manual planning process time was 
reduced from 6 hours to less than 20 minutes. (3) 
As a result of our continuous move model, the 
new routes are more efficient so the total travel 
time is decreased, thus improving the productivity 
of the truck drivers. The added throughput allows 
the firm to defer investments on trucks and hauls. 
Our model was able to optimize the number of 
hauls reducing the actual 120 available hauls to 
71 only. In accordance with this productivity, the 
management decided to rationalize the number of 
available hauls in the firm. The save on 
investments for hauls was about 15% of the 
current fleet. Beside all these economic benefits, 
this new OR model allows the company to speed 
up others inventory optimization initiatives which 
are of special interest among Coca Cola bottlers. 
The proposed model approach can extend the 
basic problem to address different specific 
business rules or additional planning criteria. 
Nowadays, our model is being used by the firm to 
reach business solutions with significant benefits. 

7 Conclusions 

Many logistics problems found in the 
manufacturing and transportation industry can be 
modeled as a PDP-TWDS application. Along with 
the increasing fuel cost, companies seek to 
improve their transportation operations in order to 
tap the full potential of possible cost reduction. 
Transportation problems have been widely 

studied in the operations research literature. Still, 
there are some unstudied areas and sub-
problems. Several different objectives and 
constraints in the transportation design process 
(i.e., continuous move strategy) are identified and 
discussed. In this paper, we consider a particular 
PDP-TWDS application that incorporates a 
diversity of practical complexities. Among those, 
we can mention a heterogeneous vehicle fleet 
with different travel times, travel costs and 
capacities, order/vehicle compatibility constraints, 
time window constraints, and different start and 
end locations for vehicles. Particularly, in our 
PDP-TWDS extension, we add some constraints 
for dock capacity service at each node and at 
each hour of the day.  

PDP-TWDS is NP-hard since this is a 
generalization of the well-known PDP and VRP. 
Within various OR algorithmic approaches that 
have been proposed, some are based on integer 
linear programming, others on classical heuristics, 
and more recent approaches are based on meta-
heuristics. However, solving a real-world PDP 
poses a significant challenge for both researchers 
and practitioners. Real-world instances of this NP-
hard combinatorial optimization problem are very 
large, so exact methods have failed even for 
relatively medium-size instances. Furthermore, 
field people who are going to deploy the solution 
of our PDP application may have to pay more 
attention to feasibility of a solution in practice than 
to a pure optimal solution in terms of 
mathematics. 

In this paper, a business application case at 
Embotelladoras ARCA is studied. With a real-
world application from the service industry, we 
present a rich featured PDP-TWDS model. It is of 
interest to deal with large scale instances with a 
high presence of time window constraints. As a 
result, some real-world difficulties arise for dock 
service capacity issues. In order to tackle these 
simultaneous and conflicting objectives, a hybrid 
MIP approach has been developed to meet 
particular business requirements. We present the 
components of the model and a step-by-step 
description of the solution procedure. We 
implement a three stage HMIP model. The last 
stage includes a cut generation strategy to add 
dock service capacity constraints on an iterative 
scheme only when required. We believe that this 
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is an important contribution of our work. The 
obtained empirical results show the efficiency of 
these valid inequalities.  

Computational results for a real-world instance 
of about 100 single-haul vehicles and 500 
transportation orders are reported, showing that 
our model is suitable to provide good quality 
solutions. A Relaxed Capacitated Vehicle Routing 
Problem (C-VRP) model is used to find a solution 
at the aggregated level. At this stage, we relax 
time windows and dock service constraints. 
Instead, some side constraints at the aggregated 
level are included in order to assure feasibility for 
the original problem. With the solution obtained at 
the aggregated level, we reduce the complexity of 
the original problem. At this aggregated level of 
results, we report an optimization of 34% when 
compared with the actual number of single hauls 
in use and 27% when compared with the actual 
number of rented trucks. The empirical results 
show that our simplification of the C-VRP model 
has no impact on the optimal solution found for 
the original problem at the PDP-TWDS stage 
when time windows and dock capacity constraints 
are fully included. Thus, optimization and 
economic benefits for the company are assured.  

It is clear that optimal solutions for our tested 
instances are estimated using the gap to 
optimality information shown in Tables 1 and 2. 
This is a very pessimistic estimation because all 
these results correspond to the aggregated C-
VRP model. Furthermore, when we apply the full 
PDP-TWDS model, the previous solutions are 
assured as seen in Table 3. In Table 2, a good 
quality solution reached (i.e., gap to optimality = 
7.6%) in short computational time (total solution 
time ≤ 10 minutes) is presented. In general, it is 
difficult to compare the performance of methods. 
Obviously, the diversity of theoretical and 
practical problems is immense. Consequently, 
there are not too many papers devoted to the 
same problem. It is clear that future research 
should be done in order to test our method 
statistically. This issue will be covered in future 
work. However, the results obtained so far 
indicate that our model is robust to solve this hard 
problem, reaching good solutions in a short 
computational time. 

Finally, with respect to the literature on routing 
and scheduling problems, it is interesting to 

observe that PDP have received far less attention 
than VRP applications. However, assigning 
orders to vehicles in PDP-TW is much more 
difficult than in VRP-TW. In VRP-TW, all the 
origins of transportation orders are located at a 
depot. Therefore, transportation orders with 
geographically close destinations are likely to be 
served by the same vehicle. In PDP-TW, 
geographically close destinations may have 
origins that are geographically far apart and we 
cannot conclude that they are likely to be served 
by the same vehicle. The current situation in 
freight transportation reflects a need for improved 
efficiency, as the traffic volume increases much 
faster than the road network grows. 
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