
Computación y Sistemas Vol. 16 No.4, 2012 pp. 391-407
ISSN 1405-5546

A Motion Capture based Planner for Virtual Characters
Navigating in 3D Environments

Juan Carlos Arenas-Mena
1
, Jean-Bernard Hayet

1
, and Claudia Esteves

2

1
Centro de Investigación en Matemáticas, Guanajuato, Gto.,

Mexico

2
Departamento de Matemáticas, Universidad de Guanajuato, Gto.,

Mexico

{jcarenas, jbhayet, cesteves}@cimat.mx

Abstract. In this work, a strategy to automatically

generate eye-believable motions for a virtual character
that navigates in a 3D environment is presented. The
overall approach consists of four components as
follows. (1) A state-of-the-art path planner that
computes a collision-free reference path for the
character’s center of mass (COM). For this planner, a
simplified model that bounds the character’s geometry
is proposed. (2) A segmentation algorithm that divides
the path into behaviors. (3) A classifier that compares
each behavior with the corresponding motion capture
segments previously analyzed and stored in a
database. (4) A whole-body motion generator that
synthesizes the appropriate behavior determined by the
classifier. The main contribution of this work is to
produce a sampling-based global motion planner that
generates different behaviors (in addition to locomotion)
issued from environmental constraints. Several results
of our algorithm in different environments are shown
and its current limitations are discussed.

Keywords. I.3.7 computing methodologies, computer

graphics, three-dimensional graphics and realism,
motion planning, character animation, motion-capture
classification.

Un planificador basado en capturas de
movimiento para personajes virtuales

desplazándose en ambientes 3D

Resumen. En este trabajo se presenta una estrategia

para generar automáticamente movimientos
visualmente creíbles para un personaje virtual que
navega en un ambiente 3D. Esta estrategia consta de 4
componentes: (1) Un planificador de movimientos que
calcula un camino sin colisiones para el centro de
masa (COM) del personaje. Para esto, se propone un
modelo simplificado que envuelve la geometría del
personaje. (2) Un algoritmo de segmentación que
divide el camino en comportamientos. (3) Un

clasificador que compara cada comportamiento con
segmentos de captura de movimiento para identificar el
tipo de comportamiento correspondiente. (4) Un
controlador local de movimientos para todas las
articulaciones del personaje que genera los
comportamientos determinados por el clasificador. La
contribución principal de este trabajo es producir un
planificador de movimientos global basado en
muestreos que genera diferentes comportamientos
(además de locomoción) a partir de las restricciones
del ambiente. Se muestran algunos resultados de
aplicar esta estrategia en varios ambientes de prueba
de para el personaje virtual y se discuten las limitantes
del trabajo.

Palabras clave: I.3.7 metodologías computacionales,

gráficas por computadora, gráficas tridimensionales y
realismo, planificación de movimientos, animación de
personajes, clasificación de comportamientos.

1 Introduction

Generating eye-believable motions for virtual
characters has gained an increasing interest from
both Computer Graphics and Robotics
communities. This interest is mainly due to such
demanding applications as video games,
simulation environments, product design,
architectural design, education, etc. As an
example, the video game community would
greatly benefit from algorithms that would make
the evil characters motions somewhat plausible,
i.e., taking the shortest possible paths in order to
avoid obstacles, while simultaneously maintaining
a “natural” gait. Eye-believable human-like motion
synthesis is particularly challenging for two main
reasons:

392 Juan Carlos Arenas-Mena, Jean-Bernard Hayet, and Claudia Esteves

Computación y Sistemas Vol. 16 No. 4, 2012 pp. 391-407
ISSN 1405-5546

1. As we humans are very familiar with looking
at human motions, even the smallest artifacts
on the computer generated motions may
strike us as odd or unnatural.

2. The high dimensionality of the representation
of a humanoid skeleton makes the
specification of every configuration highly
redundant relative to almost any task.

To deal with the first problem, a now standard
solution is to use clips recorded from real actors
and stitch or edit them to generate new motions.
These clips are referred to as motion capture
(mocap) clips. The second issue has been tackled
from several angles; one among them is the use
of simplified models of the characters, which can
greatly reduce the dimensionality of the problem.

In this work we propose a motion planner that
computes a collision-free, eye-believable
trajectory for a character in a cluttered
environment. The planner takes as inputs the
initial and final positions and orientations of the
character as well as a set of prerecorded motion
capture clips of several different behaviors
(walking, running, jumping, bending and
crawling). These clips are used in two stages:

1. An offline motion analysis stage, where the
captured examples are processed and stored
in a compact and convenient structure, useful
to compare with the movements generated by
the planner.

2. An online motion synthesis stage, where new
collision-free paths are generated using a
reduced model of the character. These paths
are then segmented into homogeneous parts
and compared with the motion database to
find the type of action best suited to follow the
path.

The contribution of this work is two-fold:

− We provide an original simplified model that
reduces the dimensionality of the virtual
character skeleton while keeping enough
degrees of freedom (DOFs) to plan non-trivial
motions. We use it for both planning and
motion classification.

− We propose a compact PCA-based structure
to store motion-capture clips and adequately
generate new motions from a planned path.

These contributions allow us to consider more
behaviors in addition to locomotion such as
jumping or crawling when needed to avoid
obstacles. The generated combined behaviors
are more complex than those generated from
locomotion only.

The rest of this work is structured as follows. In
Section 2 we review most relevant work related to
our problem. In Section 3, an overview of our
complete strategy is presented. Section 4
describes the models of a virtual character which
we use for planning, motion classification and
motion generation. Section 5 describes a method
for building a compact motion capture database
from the original motion capture clips. In Section
6, our algorithm for generating collision-free
whole-body motions is described. Section 7
presents some of the results obtained using the
proposed strategy, and finally, in Section 8,
conclusions and future work are discussed.

2 Related Work

Among the methods proposed in the literature to
synthesize human-like motions for character
navigation using motion capture clips, one of the
most popular has been the Motion Graphs (e.g.,
[2, 11]) which stores a set of captured clips and
automatically constructs transitions between them
when these transitions are pertinent. Clips and
transitions are stored in a directed graph, the
motion graph, which is searched when new
animation sequences are needed. A graph
representation has the advantage that it
preserves the realism of the original clips and that
new animation sequences can be synthesized
only by performing graph searches. However, as
the clips are only stitched together, it is not easy
to obtain a fine control and the variability
necessary to accurately follow a reference path.
Hence, other works, mostly within the Computer
Graphics community, have proposed controllers
based on a combination of captured clips. Pettré
et al. [15] propose a locomotion controller for the
navigation of a virtual character where reference
linear and angular velocities of the character’s
center of mass (CoM) are provided by the user as
input to the controller. Within a previously
constructed database of examples, the algorithm

A motion-capture based planner for virtual characters navigating in 3D environments 393

Computación y Sistemas Vol. 16 No.4, 2012 pp.391-407
ISSN 1405-5546

looks for the three clips with the closest velocities
to the input ones and interpolates them linearly to
generate a new motion. In our work, we use
Pettré’s controller together with controllers for
different behaviors that consider obstacle height
(jumping or crawling). This makes our approach
go further than this previous work by using, in
addition to locomotion, other behaviors in a single
planning scheme. In the context of motion
planning, several planners for virtual characters
navigating in cluttered environments have also
been proposed in the literature [5, 6, 13, 16, 18].
Most of these planners take as input motion
capture clips to generate eye-believable motions.
These methods can be divided into single-query
and multiple-query approaches, depending on
which motion planning strategy is used. Within
single-query methods, the authors of [13] propose
a planner based on a finite-state machine, in
which states are motion capture clips of the same
type of behavior (running, walking, jumping, etc.)
and edges are transitions between them. The
environment is represented as a 2D height map
annotated with types of motion which could be
used near certain obstacles, and a Rapidly-
Exploring Random Tree (RRT) [12] is created
using the finite state machine as a control to
compute a collision-free path in a given
environment. Within multiple-query approaches,
among which our work can be classified, two-
stage methods have been proposed. In the first
stage of these methods, a collision-free path is
found for a reduced model of a character, and in
the second stage, the path is followed using
motion capture clips. The authors of [18] propose
a multi-layered grid, with each layer consisting of
a single posture of a character. These postures
represent a characteristic configuration of a type
of movement or behavior such as walking,
jumping or crawling. A collision-free path is found
in this grid by giving some postures throughout
the path. The postures are interpolated and
dynamically validated to obtain a collision-free
path for the whole body of the character. In [5],
the authors plan a feasible, collision-free path for
the footprints of a character. These footprints are
the nodes of a graph and are linked with motion
capture clips. Retargeting methods are used to
satisfy the constraints imposed by each footprint
position and orientation. In [16], the authors

propose a two-stage method to synthesize new
motions to avoid obstacles using existing motion
capture examples. First, they compute a collision-
free path for a box bounding a character’s
geometry. The resulting path is converted to
linear and angular velocity references and given
as input to the locomotion controller presented in
[8, 15]. The authors take a similar approach but
use a functional decomposition of a character.
This decomposition divides the model of the
character in three groups according to their
function: locomotion, manipulation and pose. The
motion planning stage is performed only for the
box bounding the locomotion DOFs (the lower
part of the character’s body). The manipulation
DOFs are computed using an inverse kinematics
algorithm appropriate for closed kinematic chains.
In the final stage, residual collisions are
eliminated using a local correction of the pose
kinematic chain. Our work is a two-stage multiple-
query method following the same idea as [8, 16].

Our contribution relative to these works is two-
fold: we added more behaviors into the planner to
handle different types of obstacles (by jumping or
crawling), and we propose a more efficient
reduced model for the character which allows to
plan a wider range of initial collision-free paths.
More recent works [6] have used sweeps of
motion capture clips as deformable models which
are fitted inside constrained environments. The
original captures are deformed in an equivalent
manner to obtain a collision-free motion following
by going as near as possible as the original
motion.

3 Our Approach

The goal of our approach is to obtain a
collision-free eye-believable path from input
motion capture clips. Fig.1 presents the overall
approach. The algorithm can be divided in two
stages: (1) a motion analysis stage and (2) a
motion synthesis stage. The first step of the
analysis stage is to use a reduced model of a
character to reduce the dimensionality of the
motion capture data. The reduced model is a
mesh which deforms as the character moves
(Section 4.1). The values at some of the vertices

394 Juan Carlos Arenas-Mena, Jean-Bernard Hayet, and Claudia Esteves

Computación y Sistemas Vol. 16 No. 4, 2012 pp. 391-407
ISSN 1405-5546

of this mesh are extracted and taken as the new
values to be analyzed by our algorithm. The
second step is to further reduce the
dimensionality of the data by extracting its
principal components (Section 5.1) and projecting
the points of the mesh of each clip on these
components producing clusters of behaviors on a
new space (Section 5.3). The result of the
analysis stage is thus a database of clustered
behaviors in a low-dimensional space (two or
three dimensions).

In the motion synthesis stage, we first produce
a path using a reduced model of a character. This
model is a set of five boxes attached to retracting
joints making them shrink or expand on the

vertical position (Section 4.2). This allows the
simplified model to avoid obstacles below or
above the default height of the character.

The second step is to segment the obtained
path to identify the different behaviors needed to
avoid the obstacles and to classify them using the
database (Section 6.2) constructed during the
motion analysis stage. Depending on the behavior
determined by the classifier, a different motion
controller is issued to generate locomotion,
crawling or jumping motions to follow the
computed path. This motion generation strategy is
summarized in Algorithm 1 (Section 6.3).

In the following sections we further describe
each step of our algorithm.

Fig. 1. Overview of our overall strategy

A motion-capture based planner for virtual characters navigating in 3D environments 395

Computación y Sistemas Vol. 16 No.4, 2012 pp.391-407
ISSN 1405-5546

4 Character Model

A virtual character is usually represented as a
series of linkages and joints rooted on the
character’s pelvis (see Fig.2 (a)). Every joint in
this whole-body model is spherical, i.e., each joint
can be completely specified by three angles if an
Euler angles representation for orientations is
chosen. Each degree of freedom (DOF) of every
joint is bounded according to its anatomical limits.
The limits to the knee and elbow joints are set to
values such that only the degree of freedom
allowing extension and flexion is allowed to move.
The root is a free floating object in the 3D space,
the configuration of which can be described using
three angles to represent its rotation and three
scalars to represent its translation. This model
has usually around 57 or more DOFs for a
realistic virtual character.

Even though modern sampling-based motion
planning methods can perfectly handle models of
dozens of degrees of freedom, human motion has
specific patterns which must be respected to
produce believable motions (e.g., locomotion).
Hence, a whole-body model is not adequate for
planning with sampling-based techniques: human
motions are living in very tight sub-manifolds of

 . In this work we therefore propose a reduced
model of the system, useful for planning and
helpful to reduce the dimensionality when
analyzing and storing the motion database. It is
not until the last stage of our algorithm that we
use the whole-body model again, when we have
to compute the required angle for each degree of
freedom. The motivation to determine the correct
reduced model is to find a common space into
which both motion analysis and synthesis can be
modeled and eventually compared.

4.1 Reduced Model for Motion Analysis

Motion capture data is frequently used when eye-
believable motions are desired as output. The
usual procedure to deal with this data is to divide
the recorded motion into small clips according to
the behavior the actor performed. The clips can
be segmented by hand or automatically (e.g., as
in [3] or more recently in [19]).

In our application, input data consists of clips
of several hundreds of frames, where the
complete pose of the character as well as its
root’s position and orientation is specified. Here,
all motion clips have been resized to contain the
same number of frames which will be referred to
as . Hence, the data we keep from each clip

can be considered as a matrix in ,
where is the number of joints. Each column of

this matrix corresponds to one frame in the clip.
Typically, the number of frames in one clip is
around 500.

To reduce the dimensionality of this input data
in the motion analysis procedure, a deformable
polygonal mesh which bounds the character is
used as illustrated in Fig. 2(b). Polygonal meshes
are of common use in the area of Computer
Graphics to handle skin or clothes of virtual
characters.

The displacement of any control point of the
mesh (any vertex on Fig. (b)) is associated to the

motion of a joint or a set of joints of the skeleton
through a weight , which empirically

represents the influence of the joint i on the

motion of the vertex point of the mesh. For

example, a weight means that the

vertex moves half the amount and in the same
direction as the center of the joint i. The
displacement of any given joint is measured

a) b) c)

Fig. 2. (a) Whole-body model of the character,

(b) Polygonal mesh used for motion analysis,
(c) Linked boxes used for motion synthesis

396 Juan Carlos Arenas-Mena, Jean-Bernard Hayet, and Claudia Esteves

Computación y Sistemas Vol. 16 No. 4, 2012 pp. 391-407
ISSN 1405-5546

relative to the initial posture, usually called the
bind pose. Hence, between two consecutive
frames t and t+1, the displacement of a vertex on
the mesh expressed on the same reference frame
is given by Eq. 1,

where ai(c) is an operator that returns the 3D
position of the center of a joint i by applying a

 vector of joint parameters to the

skeleton hierarchy (i.e., direct kinematics). The
matrix is a sparse matrix determined

empirically. Our reduced model is constructed by
taking the height of the points of the polygonal

mesh at every frame computed as in Eq. 1.

The idea is that, when constructing our motion
database, we do not use all joints but only some
of the vertices on the polygonal mesh (typically,
five points on the mesh are sufficient here) which
(1) greatly reduces the problem dimensionality
and (2) can be directly compared to the model
used in planning as explained in the next
paragraphs. Moreover, to cluster motions by
types, we will see that the heights of a few points
 are sufficient.

4.2 A Model for Path Generation

For planning purposes, the idea is also to use a
reduced configuration space, not only for
simplifying the complexity of the problem, but also
to be able to compare segments of the computed
paths with the motion capture data clips described
above. To this end, we use another geometrical
model represented in Fig. 2(c), which consists of
a series of boxes linked through vertical and
limited translating joints. The number of boxes is
the same as the number of control points ()
chosen to represent the polygonal mesh on the
previous section (five in this case). The group of
boxes has a size such that, when the translating
joints are at their default value, they bound the
character in a neutral position (Fig.3 (a)), when
they are at their upper limits, they bound a
jumping character (Fig.3 (b)), and when they are

at their lower limits, they bound a crawling or
bending character (Fig.3 (c)).

Our aim is to use such 2.5D model to plan
paths not only on the 2D floor plane on the
workspace but also (up to certain limits) in the 3D
workspace, as we can generate configuration
which jump over short obstacles or crawl under
tall ones. Since our motion capture database has
motion clips for these types of motion, we would
like to generate paths which could be reproduced
with these behaviors, where a normal 2D planner
would simply avoid all the obstacles. Then, a
configuration for the character will be fully
specified by (1) a 2D position and orientation
vector on the ground plane and (2) a

vector storing the heights of the
different boxes which are not treated at the same
level as it will be detailed in Section 6.

The way to generate valid configurations for
this box and linkage model is by applying the 3D
Chainmail Algorithm used for volume deformation
[9]. When an element of the chain is moved, its
displacement affects only the position of its
neighboring elements allowing fast propagation of
the deformation throughout the system. When the
box moves up or down, the chain linking the
boxes absorbs the motion and is stretched up to
some limit; when this limit is reached, the motion
is transmitted to the neighbors. Hence, small
displacements have only local effect while large
displacements affect the whole system. For

 ∑

[(

) (
)]

 ∑

(1)

(a) (b) (c)

Fig. 3. Simplified model of the character used for

motion synthesis: (a) neutral configuration, (b)
configuration for avoiding lower obstacles issuing
jumping behaviors, (c) configuration for avoiding tall
obstacles making the character crawl

A motion-capture based planner for virtual characters navigating in 3D environments 397

Computación y Sistemas Vol. 16 No.4, 2012 pp.391-407
ISSN 1405-5546

example, consider two consecutive boxes and

among the boxes in the reduced model with
their respective vertical positions . These
boxes are linked through a translation joint with

maximal displacement

 between them. Any
vertical displacement imposed on (e.g., due

to a collision on the box) induces new heights

 and which will satisfy Eq. 2.

The latter means that the displacement may be
propagated (or not) to . Similarly, the propagated
displacement at could also be propagated to the
next level and so on. This scheme is at the core
of the planning algorithm: the basic sampling is
done in 3D space, but in the case of a
collision with the lowest (or the highest) box, the
previous propagation scheme is applied to
eventually infer a collision-free configuration.

5 Clustering Mocap Databases

In their raw format, it can be difficult to retrieve or
compare behaviors in a motion capture database
due to a large dimensionality of the data (

 . In Section 4.1, we have described a more

compact representation for each clip which relies
on the heights of a set of points distributed on a
regular polygonal mesh bounding the character
(Fig. 4 (a)). The choice of these points (vertices
14, 11, 8, 5 and 2 in Fig.4 (a)) has been made by
observation to discriminate the behaviors that we
have chosen to use here: running/walking,
jumping and bending/crawling, but more
behaviors could be included without losing the
generality of the proposed model.

For now, the five control points we consider
are the ones that are closer to the head, the
spine, the pelvis, the midpoint between the left
and right knees and the midpoint between the left
and right feet (Fig. 4(b)).

As an example, the vertices 13, 14 and 15 on
the top of the box all include only the contribution
of the head joint , while the vertex 2 is
considered with equal weights that have the value
of 0.5; the contribution of the left foot joint and
that of the right foot joint joint .

(2)

a) b)

Fig. 4. (a) Polygonal mesh used to reduce dimensionality of

the input mocap clips. The numbered vertices are shown.

(b) Most weighted joints for the considered behaviors

a) b)

Fig. 5. (a) A frame from a bending motion bounded by the

polygonal mesh. (b) Reduced input vector for the bending
motion showing the height of the five observed vertices on the
mesh

398 Juan Carlos Arenas-Mena, Jean-Bernard Hayet, and Claudia Esteves

Computación y Sistemas Vol. 16 No. 4, 2012 pp. 391-407
ISSN 1405-5546

After this process, each input capture clip with
initial dimensionality of (57x500) is

reduced to a (5x500) vector of heights

along frames. Fig. 5(a) shows one configuration
of a bending motion bounded by the polygonal
mesh and Fig. 5(b) shows an example of the time
evolution of the five heights of the observed
control points during the same bending motion.
Fig. 5(b) clearly demonstrates that the head and
shoulders of the character lower while the feet,
knees and waist remain at the same height, which
is characteristic of any bending behavior.

5.1 PCA on Motion Capture Data

At this point, our data is represented by the
stacked entries of matrices , i.e., a vector of

dimension , which is still very

large for behavior classification. In order to further
reduce the dimensionality, we turn to Principal
Component Analysis (PCA) which has the
additional advantage of reducing noisy data
components and keeping only the most relevant
parts of the data for classification.

In addition to the problem of dimensionality,
we have as input data many more variables
(heights of the mesh vertices in all frames in a
clip) than observations (number of clips in the
database) and therefore standard PCA cannot
capture the relationships between variables.
Instead, we use Kernel-PCA with a linear kernel
[4]. Our PCA-based process for generating a
compact representation of the database consists
in the following steps:

1. Collect a simplified representation as
explained before, of each of the N clips, from
a matrix to a vector .

2. Compute the vectors mean and the

resulting centered vectors: ̃ ̅.

3. Set the data matrix.

 (
 ̃

 ̃

)

4. Set the -gram matrix .

5. Apply SVD on .

Once the SVD has been computed, any vector
 can be projected on the base formed by the

eigenvectors of (columns of), and its

coordinates are shown in Eq. 3.

Now note that, among the N eigenvectors,
some are much more significant than others.
Hence, we will simply consider the first
eigenvectors with highest eigenvalues.

Each height vector will be represented by its
coordinates on this base. An example of such a
projection is given in Fig. 6 and Fig. 7. In Fig. 6, a
set of 16 motion capture clips in the format of
heights vectors is shown.

In Fig. 7, their coordinates onto the first

eigenvectors of are shown altogether with their

Fig. 6. Sequences of heights (vectors) for different

motion capture clips forming our database. Walking,
bending and jumping behaviors are noticeable. The
vertical axis is the height of the observed points in the
mesh and horizontal axis is the number of frames

 (3)

A motion-capture based planner for virtual characters navigating in 3D environments 399

Computación y Sistemas Vol. 16 No.4, 2012 pp.391-407
ISSN 1405-5546

annotation in terms of behavior. It is interesting to
note that with this scheme, the main behaviors in
which we are interested in this work, namely,
walking/running, jumping and bending/crawling
are well separated, enough to be able to classify
new height vectors as explained hereafter.

5.2 Time-Centering of Height Vectors

For our whole process to capture the variations of the

motions in the database, special care has to be put on
the clips to avoid adding bias in the data because of
time shifts. As an example, Fig. 8(a) shows one of the

heights of a vector extracted from the CMU motion

database [7].

As the jump in this case is at the end of the
sequence, this vector would be considered quite
different from the other vectors of the same type,
where the jump occurs sooner in the sequence.
As a consequence, vectors are first centered
before being inserted in the PCA process as

Fig. 7. Projections of the previous height vectors, with annotations of behaviors. The three axes are the three main

components issued from the PCA process

(a) (b)

Fig. 8. (a) A non-centered jumping motion from the CMU database. (b) The same jumping motion, time-centered

400 Juan Carlos Arenas-Mena, Jean-Bernard Hayet, and Claudia Esteves

Computación y Sistemas Vol. 16 No. 4, 2012 pp. 391-407
ISSN 1405-5546

described before, and this centering consists
simply in identifying the highest peak in the height
vectors and setting it at the center of this time
series. Fig. 8(b) illustrates the centering process
applied on the height vector of Fig. 8(a).

5.3 Classification of Height Vectors

An important stage of our work is to segment
paths generated by a path planner and convert
them into a height vector as the ones we
described above. By doing so, we can then
extract from the database of motion capture clips
the most relevant clips to perform the required
path segment in a natural way. For selecting
these “closest” clips, we used a clustered
database, such as the one illustrated in Fig. 7:
clips are associated to a behavior, and a new
height vector has to be assigned to one of these
behaviors in order to choose an adequate
strategy to execute the motion, i.e., it has to be
classified. Here, we use a k-nearest neighbor
algorithm in which is the space of coordinates
on the base of the eigenvectors.

6 Planning and Synthesizing Motions

After the motion database is constructed using
the input clips, a motion generation stage is
needed to synthesize new motions which can
adapt to the environment. The second stage of
our method is therefore a motion planner that
computes collision-free motions for a virtual
character. For this, three main steps are followed:

1. A collision-free path is computed using the
reduced model from Fig. 2(c).

2. The computed path is segmented into
homogenous parts by detecting large
changes in the path height coordinates.

3. Each segment is compared with the elements
in the database to find the closest behavior
and to determine the adequate controller to
generate the whole-body motion which can
follow the computed path.

Each step is further described in the following
paragraphs.

6.1 Path Planner

In order to obtain a collision-free path, any
sampling-based method can be used. The main
idea of these techniques is to capture the
topology of the character’s collision-free
configurations into a roadmap without

computing the graph explicitly (i.e., by randomly
sampling). Once the roadmap is computed,

it is used to find a path connecting the initial and
final configurations. In this work, we have chosen
to use a variant of the Probabilistic Roadmap
(PRM) algorithm [10], a multiple-query sampling-
based method. Multiple-query methods are
divided in two stages: a learning phase and a
query phase.

In the learning phase, feasible random
configurations are drawn in the character’s
configuration in space . If a random
configuration is collision-free, it is connected to
the nearest sample using an edge only if this
edge also lies inside . The form of these

edges, also known as local paths, depends on the
kinematic constraints of the system for which the
path is being computed. In this work, based on
the results from the area of Movement
Neuroscience [1] suggesting that most humans
exhibit nonholonomic constraints when navigating
in large open environments, we add differential
constraints to the reduced model for planning.
Bézier curves of the third degree are used as in
[17] to ensure these differential constraints with
the additional advantage of obtaining smooth
paths.

The aim of the query phase is then to find a
path in the roadmap constructed during the
learning phase. For this, the initial and final
configurations are added as new nodes and
connected with local paths with a node of the
existing roadmap. Then, a graph search is
performed to find a path between the start and the
goal configurations. If such a path is found, then it
can be smoothened to remove useless detours.

The novelty of our planning algorithm is on the
leaning phase. As it was mentioned in Section 4,
all the DOFs of the reduced system are not
treated in the same way by the planning
algorithm. First, feasible (within DOF limits)
random configurations are drawn for the 2D

A motion-capture based planner for virtual characters navigating in 3D environments 401

Computación y Sistemas Vol. 16 No.4, 2012 pp.391-407
ISSN 1405-5546

position and orientation only, , of the
reduced system for planning (shown in Fig. 2(c)).
When colliding configurations are detected, they
are not immediately rejected from the roadmap,
but instead, the 3D Chainmail algorithm (see
Section 4) is triggered. Fig. 9 shows this process
for two boxes, one of which is avoided using the
Chainmail algorithm shrinking the boxes upwards
(Fig. 9(a)), a classic PRM algorithm would have
discarded this configuration. The second box
cannot be avoided with this technique; the
obstacle has to be avoided by going around it
(Fig. 9(b)). Here, the Chainmail algorithm looks
for a configuration that can avoid this collision by
displacing the boxes of the reduced model up or
down until the joint limits are attained or the
collision is avoided. If the collision cannot be
avoided, the sample is discarded, but if it can be
avoided, it is stored in the graph.

The resulting path computed by the planner is
a sequence of configurations specified with the
eight DOFs of the reduced model: three for the
character’s position and orientation in space
 and five for the heights of each of the
translation joints as described in Section 4.

In Fig. 9(a) and Fig. 9(b), three paths are
shown on the plane. The path in light gray
(magenta in the color version) shows the path

resulting from the algorithm before any
optimization or smoothing. This path contains
generally several sub-paths which are straight line
segments even for very small paths. The dark
gray (blue on the color version) is a path
optimized recursively to avoid useless detours.
Finally, the dotted path (green on the color
version) is the smoothed path using Bézier curves
of third degree.

Fig. 10 shows the trajectory for the heights of
the boxes in the sagittal plane. Fig. 10(a) is the
output trajectory using the Chainmail algorithm for
a big obstacle on the top of the environment (the
reduced model has to shrink in the direction of the
floor) and Fig. 10(b) shows the same trajectory
after being smoothened to simplify the
comparison with the motion capture database.

6.2 Path Segmentation and Segment
Classification

Once a path is computed, a segmentation
process needs to be applied on it in order to
extract sections of motion that can be
compared to the motions in the mocap database.
Ideally, each segment would have a unique
type of motion, regardless to its particularities and
duration. Each segment will be the input to a
simple nearest-neighbor classifier within the
samples in the mocap database so that they can
be labeled with the type of motion they
correspond to (see Section 5.3). Our
segmentation process is very simple: we detect

a)

b)

Fig. 9. Two different samples in the learning phase of

our planning algorithm. (a) A colliding configuration is
avoided using the Chainmail algorithm displacing
some boxes upward. (b) No collision-free
configuration was found using the Chainmail
algorithm. The obstacle was avoided by going around
it

(a) (b)

Fig. 10. Example of a sagittal view of the trajectory

output from the planning algorithm. Here, an obstacle
was avoided using the Chainmail algorithm by
lowering the upper elements of the reduced model.
(a) Original trajectory. (b) Smoothened trajectory

402 Juan Carlos Arenas-Mena, Jean-Bernard Hayet, and Claudia Esteves

Computación y Sistemas Vol. 16 No. 4, 2012 pp. 391-407
ISSN 1405-5546

strong changes in the heights of the boxes of the
reduced model. The cut of each segment is set

(experimentally) to a number of frames before
and after a strong change is detected to account
for the transition between motions. Fig.11 shows
an example of a path segmented into five pieces.

When all the segments are obtained, they
have to be classified using the procedure from
Section 5.3 in order to obtain the type of motion
that should be generated for each . To be able
to compare each segment with the data in the
mocap database, it is resampled to have a length
of 500 frames, so as to form a vector living in
the same space as the aforementioned reduced
motion capture clips. Each segment has therefore
a dimension of , the same as

the PCA-transformed mocap data inside the
database.

Finally, the classifier projects the segment into
the coordinate system provided by the training
data principal components and the nearest
neighbors found (see Fig. 12) give the adequate
type of movement to follow the path.

6.3 Whole-Body Motion Synthesis

Once the type of motion has been identified from
the classification process, a specific local
controller for each type of motion (walking,
jumping or bending) is used to generate the
whole-body motions needed to follow the path.
Each controller needs a different set of input
parameters, one of them being the linear velocity
provided by the user. Here, we only use three
types of motion and therefore three local
controllers. The first one is the locomotion
generator presented in [15] which uses as input
the linear and angular velocities of the desired
walking pattern (extracted from the path) and
produces a locomotion sequence by interpolating
the three closest captures from the mocap
database. This controller is used when the
segment is classified as a walking/running motion.
The second controller chooses an appropriate
jumping motion in the mocap database by using
the linear velocity and the jumping height
extracted from the path segment. The third

Fig. 12. A segment is classified by projecting it to the

coordinate system defined by the two principal
components of the training data and then finding its
nearest neighbor. In this example the segment is
classified as a jumping motion

Fig. 11. Segments are divided when a strong change

in their height is detected

A motion-capture based planner for virtual characters navigating in 3D environments 403

Computación y Sistemas Vol. 16 No.4, 2012 pp.391-407
ISSN 1405-5546

controller, for bending motions, is very similar to
the jumping controller except that it takes as an
input the amount of displacement of the highest
point of the reduced model to obtain a bending or
crawling motion capture that avoids the obstacle.
After the whole-body motions are obtained from
each segment, they are interpolated with the
previous segments to get the complete trajectory.
Algorithm 1 sums up the complete motion
generation method.

7 Simulations

In this section, we present some representative

results obtained by applying our algorithm to a
virtual mannequin asked to navigate in different
simple worlds. All the results have been obtained
with the motion capture database of CMU [7]
which is the largest public motion capture
database available online. Since it contains a lot
of motion not relevant to our application of
navigation of a character in virtual worlds (e.g.,
baseball motions are not useful to wander in
polygonal environments), we have selected a very
restricted subset of the data, namely, 16 motions
represented in Fig. 6. These motions include
walking/running, jumping or bending/crawling

patterns. To construct the database in such a way
that a comparison with planned paths is possible,
the “skinning” process (see Section 4.1) is applied

to all 16 input motions, and the resulting

dimensional vectors are projected onto the
coordinate system specified by the first principal
components obtained after applying the Kernel-
PCA method (see Section 5.1).

Interestingly, very few principal components
have to be handled to capture the database
variations. As an illustration, Fig. 13 shows the
reconstruction of one of the particular motions
(not from the database) which can be done with
an increasing number of principal components. As
it can be seen, the original motion (corresponding
to the one obtained with 16 components, on the
down-right corner) is already quite fairly
reconstructed for components. Due to this

fact, we considered in our experiments.
We checked that these three main components
contain at least 90% of the information from the
original motion data.

Fig. 13. Reconstruction of a particular motion with

increasing numbers of principal components (from 1, on
the top-left corner to 16 on the down-right corner reading
them by rows). The vertical axes of each graph are the
heights of the observed points and the horizontal axes are
the number of frames

404 Juan Carlos Arenas-Mena, Jean-Bernard Hayet, and Claudia Esteves

Computación y Sistemas Vol. 16 No. 4, 2012 pp. 391-407
ISSN 1405-5546

The software implementing our algorithm has
been entirely written in C++, and the authors of
[15] have kindly lent us their code for the motion
controller of walking patterns. The scenes shown
in our examples are quite simple but we eliminate
the clutter to make our point and show that
obstacles of different heights can be avoided
either by bending, jumping over them or walking
around them.

The first example of a synthesized motion is a
walking motion illustrated in Figures 14, 15 and
16. As it can be seen, it contains a parallelepiped
obstacle which cannot be avoided by jumping or
crawling. Our algorithm first computes a collision-
free path by using the PRM-Chainmail method
(Section 6.1) which generated a path avoiding the
obstacle by passing around it. This path is shown
in Fig. 14(a). The final smoothened path is
displayed with a thick curve (blue on the color
version). A graph of the heights of the centers of
the boxes is shown in Fig. 14(b). As there are no
strong height changes, only one segment is
extracted by segmentation and classified (Section
6.2) as a walking motion in Fig. 15(a). Fig. 15(d)
demonstrates the motion generated by the
locomotion controller following the computed
path.

The computational time for this simple
example on a standard PC was 7.02s for the
motion planner (PRM + Chainmail) plus 0.0026s
for path segmentation plus 0.018s for path
classification. One must keep in mind that the
PRM construction (the main source of complexity
for this algorithm) has to be done only once, and
that every new query for motions to be generated
use the same graph generated by the PRM initial
run. This is the main advantage of multiple-query
planning algorithms.

The second example is a walk-jump-walk
motion shown in Figures 16 and 17. As it can be
seen, there is a wall separating the initial and final
configurations. The planner could have avoided it
as in the first example, but thanks to the
Chainmail algorithm, it was able to compute a
path that goes over the obstacle.
Fig. 16(a) shows the position and orientation of
the computed path on the plane. Fig. 16(b) shows
a graph of the heights of the joints of the reduced
model. Here, three segments are extracted using
our segmentation procedure.

The three extracted segments are classified,
the first as a walking motion, the second as a
jumping behavior, and the third as another
walking behavior. The classification of the middle
segment is shown in Fig. 17(a). The third example
(Figures 18 and 19) is similar to the previous one.
Here, the scene has also one obstacle but the

(a) (b)

Fig. 14. Walking trajectory. (a) Planned path using PRM

and Chainmail. (b) Segmentation as a height vector

(a) (b)

Fig. 15. (a) Classification of the height vector of a

walking behavior. (b) Whole-body locomotion synthesis

(a) (b)

Fig. 16. Jumping trajectory: (a) Projection on the plane

of the path of the reduced model’s CoM.
(b) Segmentation of the path in function of the height of
the boxes of the reduced model

A motion-capture based planner for virtual characters navigating in 3D environments 405

Computación y Sistemas Vol. 16 No.4, 2012 pp.391-407
ISSN 1405-5546

point is to show the algorithm avoiding the
obstacle by finding a bending motion.

The planner generates a path that goes under
the obstacle, and the corresponding height vector
(Fig.18(a)) is segmented into three distinctive
parts corresponding to two walking and one
bending segments (classification of the third
segment is shown in Fig.18(b)).

The final synthesized motion is depicted in
Fig.19. This trajectory involves a bending motion
to avoid the obstacle. A hand is used naturally for
stability on the floor because it was recorded on
the closest clip.

The last example presents a more complex
scene (also not a cluttered scene but with
obstacles of variable heights) with obstacles that
can be avoided by jumping or crawling under
them. The planner managed to generate paths
avoiding the obstacles. After a segmentation
stage where seven segments where obtained,
three types of behaviors were obtained in the
following sequence: walk-jump-walk-bend-walk-
jump-walk. For this example the computational

time was 3.56s for planning, 6.26s for
segmentation and 0.018*7 for segment
classification. The resulting whole-body motion
can be seen in Fig. 20.

8 Conclusions

In this paper, we have described an algorithm that
simultaneously plans collision-free paths and
synthesize eye-believable motions for virtual
characters that evolve in cluttered environments.
By using two adequately chosen reduced models
of the system, one for the motion capture data,
one for the configuration space of the planner, our
method is able to produce human-like motions
chosen among the examples stored in a motion
database while ensuring that the generated paths
are feasible for the character. We have shown
examples of trajectories generated with our
method in challenging environments with
obstacles which can be jumped or passed under,
and we think that such an algorithm could be

(a) (b)

Fig. 17. (a) Classification of the height vector. (b)

Whole-motion walk-jump-walk synthesis

(a) (b)

Fig. 18. Crawling/bending trajectory (a) Segmentation

as walking-bending-walking behaviors in function of box
heights. (b) Classification of the segments

Fig. 19. Whole-motion synthesis for walking-bending-

walking behaviors

Fig. 20. Whole-body motion synthesis for a composite

behavior trajectory

406 Juan Carlos Arenas-Mena, Jean-Bernard Hayet, and Claudia Esteves

Computación y Sistemas Vol. 16 No. 4, 2012 pp. 391-407
ISSN 1405-5546

particularly useful in applications like video
games.

Currently, our method is limited by the fact that
the motion needed to avoid obstacles (e.g.,
bending or jumping) may have an amplitude
which is not available in the motion database, and
these motions, for the moment, cannot be
transformed directly to include this kind of
parameter. The problem can be solved firstly by
including more motions in the database. Another
solution would be to make the local controllers
use a generalized inverse kinematics method to
locally avoid the obstacle. For example, if a
bending motion has been generated, residual
collisions, which may remain between the path
and the obstacle, could be handled within a few
frames by actuating on the torso parameters.
Also, it may happen that the planner provides a
path with two consecutive segments, and that,
when synthesizing the motions, the first motion
ends further than the point where the second
motion has to start. This can be solved by
interpolating the consecutive segments according
to the obstacles or by adapting the motion length.

As future and ongoing work we are planning
new motion controllers for different types of
motion, such as jumping or bending in order to
produce new motions from existing ones. Through
this parameterization, we hope to satisfy the
constraints imposed on the character by the
computed path, e.g., to control jumps by their
widths and heights. We expect to do this by
integrating physically-based motion controllers,
which are currently being actively researched
within the Computer Graphics community, and
which we would use to edit the chosen capture
clips from the database. Moreover, we intend to
improve the transitions between the synthesized
segments which at the moment are interpolated
but which we intend to assemble in a more
natural way [14]. Lastly, we are also working on
improving the segmentation phase, which is
critical for our algorithm.

References

1. Arechavaleta, G., Laumond, J-P., Hicheur, H. &
Berthoz, A. (2008). On the nonholonomic nature

of human locomotion. Autonomous Robots, 25(1),
25-35.

2. Arikan, O. & Forsyth, D.A. (2002). Interactive
motion generation from examples. ACM
Transactions on Graphics, 21(3), 483-490.

3. Barbic, J., Safonova, A., Pan, J., Faloutsos, C.,
Hodgins, J. & Pollard, N. (2004). Segmenting
motion capture data into distinct behaviors.
Graphics Interface, 1,185-194.

4. Bishop, C.M., (2007). Pattern Recognition and

Machine Learning. Springer.

5. Choi, M.G., Lee, J., & Shin, S.Y. (2003). Planning

biped locomotion using motion capture data and
probabilistic roadmaps. ACM Transactions on
Graphics, 22(2), 182-203.

6. Choi, M.G., Kim, M., Hyun, K., & Lee, J. (2011).

Deformable motion: squeezing into cluttered
environments. Computer Graphics Forum
(Eurographics), 30(2), 445-453.

7. CMU’s Motion capture database. (2003). Retrieved
from http://mocap.cs.cmu.edu.

8. Esteves C., Arechavaleta, G., Pettré, J., &
Laumond, J-P (2006). Animation planning for
virtual characters cooperation. ACM Transactions
on Graphics, 25(2), 319-339.

9. Gibson, S. (1997). 3D Chainmail: a fast algorithm

for deforming volumetric objects. International
Symposium on Interactive 3D Graphics. 149-154.

10. Kavraki, L., Svetska, P., Latombe, J-C. &
Overmars, M. (1996). Probabilistic roadmaps for

path planning in high dimensional configuration
spaces. IEEE Transactions on Robotics and
Automation, 12(4), 566-580.

11. Kovar, L., Gleicher, M. & Pighin, F. (2002).
Motion graphs. ACM Transactions on Graphics.
21(3), 473-482.

12. Kuffner, J.J. & LaValle, S. (2000). RRT-Connect:

an efficient approach to single-query path planning.
IEEE International Conference on Robotics and
Automation. 995-1001.

13. Lau, M. & Kuffner, J.J. (2005). Behavior planning
for character animation. ACM
SIGGRAPH/Eurographics Symposium on
Computer Animation. 271-280.

14. Li, L., McCann, J., Faloutsos, C. & Pollard, N.
(2008). Laziness is a virtue: motion stitching using
effort minimization. Short Papers Proceedings of
Eurographics.

15. Pettré, J. & Laumond, J-P. (2006). A motion

capture-based control-space approach for walking
mannequins. Computer Animation and Virtual
Worlds. 17(2), 109-126.

http://mocap.cs.cmu.edu/

A motion-capture based planner for virtual characters navigating in 3D environments 407

Computación y Sistemas Vol. 16 No.4, 2012 pp.391-407
ISSN 1405-5546

16. Pettré, J., Laumond, J-P. & Siméon, T. A 2-stages
locomotion planner for digital actors. ACM
SIGGRAPH/Eurographics Symposium on
Computer Animation. 258-264.

17. Pettré, J., Siméon, T. & Laumond, J-P. (2002).

Planning human walk in virtual environments.
IEEE/RSJ International Conference on Intelligent
Robots and Systems. 3048-3053.

18. Schiller, Z., Yamane, K. & Nakamura, Y. (2001).

Planning motion patterns of human figures using a
multi-layered grid and the dynamics filter. IEEE
International Conference on Robotics and
Automation. 1-8.

19. Zhou, F., De la Torre, F. & Hodgins, J.K. (2011).

Hierarchical aligned cluster analysis for temporal
clustering of human motion. Accepted for
publication at IEEE PAMI 2012.

Juan Carlos Arenas-Mena
obtained his M.S. degree at the
Center of Research in
Mathematics (CIMAT) in
Guanajuato, Mexico, in April
2010. His research interests are
in Computer Graphics and
Software Engineering.

Jean-Bernard Hayet
graduated from ENSTA (Paris),
University Paris 6 and got his
Ph.D. from the University of
Toulouse (2003) where he
worked at CNRS-LAAS. He had
been a postdoctoral fellow at
the University of Liege from

2003 to 2007. Since 2007, he has worked at the
Center of Research in Mathematics (CIMAT) in
Guanajuato, Mexico. He teaches Computer
Science and his main research interests are in
Landmark-based Navigation, Motion Planning
with perception and visual tracking.

Claudia Esteves has been an
Associate Professor at the
Department of Mathematics of
the University of Guanajuato,
Mexico, since September 2007.
She received her Ph.D. in
Informatic Systems in 2007 from

the University of Toulouse, France, where she

worked at CNRS-LAAS on Motion Planning for
humanoid robots and virtual characters. In 2006,
she made a short stay with the Joint French-
Japanese Robotics Laboratory (JRL) in Tsukuba,
Japan, to work on the implementation of Motion
Planning algorithms. Her current research
interests are in Motion and Task Planning of
anthropomorphic mechanisms and Motion
Planning with perception constraints.

Article received on 09/02/2011; accepted on 03/11/2011.

