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Abstract. Microarray classification poses many challen-
ges for data analysis, given that a gene expression
data set may consist of dozens of observations with
thousands or even tens of thousands of genes. In this
context, feature subset selection techniques can be very
useful to reduce the representation space to one that is
manageable by classification techniques. In this work we
use the discretized multivariate joint entropy as the basis
for a fast evaluation of gene relevance in a Microarray
Gene Expression context. The proposed algorithm com-
bines a simulated annealing schedule specially designed
for feature subset selection with the incrementally com-
puted joint entropy, reusing previous values to compute
current feature subset relevance. This combination turns
out to be a powerful tool when applied to the maximiza-
tion of gene subset relevance. Our method delivers
highly interpretable solutions that are more accurate than
competing methods. The algorithm is fast, effective
and has no critical parameters. The experimental re-
sults in several public-domain microarray data sets show
a notoriously high classification performance and low
size subsets, formed mostly by biologically meaningful
genes. The technique is general and could be used in
other similar scenarios.

Keywords. Feature selection, microarray gene expres-
sion data, multivariate joint entropy, simulated annealing.

Selección de caracterı́sticas para
datos de expresión de los genes
mediante microarreglos usando
recocido simulado guiado por la
entropı́a conjunta multivariada

Resumen. La clasificación de microarreglos plantea
muchos desafı́os para el análisis de datos, dado que un

conjunto de datos de expresión de genes puede con-
tener docenas de observaciones con miles o incluso de-
cenas de miles de genes. En este contexto, las técnicas
de selección de subconjuntos de caracterı́sticas pueden
ser muy útiles para reducir el espacio de representación
a uno manejable mediante técnicas de clasificación. En
este trabajo se utiliza la entropı́a conjunta discretizada
multivariada como base para la evaluación rápida de
la relevancia de genes en el contexto de expresión
génica mediante microarreglos. El algoritmo propuesto
desarrolla una técnica de recocido simulado diseñada
especialmente para la selección de subconjuntos de
caracterı́sticas, a través de la entropı́a conjunta. Ésta
es calculada incrementalmente, reutilizando los valores
anteriores para calcular la relevancia de los subconjun-
tos de caracterı́sticas. Esta combinación resulta ser
una herramienta poderosa cuando se aplica a la maxi-
mización de la relevancia de un subconjunto de genes.
Nuestro método ofrece soluciones altamente interpreta-
bles y más precisas que las propuestas por métodos
competidores. El algoritmo propuesto es rápido, eficaz
y no presenta parámetros crı́ticos. Los resultados de
los experimentos con varios conjuntos de datos de mi-
croarreglos de dominio público revelan alto rendimiento
de clasificaciń y subconjuntos de pequeño tamaño, for-
mados en su mayorı́a por genes biológicamente signi-
ficativos. La técnica es general y podrı́a ser utilizada en
otros escenarios similares.

Palabras clave. Selección de caracterı́sticas, datos
de expresiones de los genes mediante microarreglos,
entropı́a conjunta multivariada, recocido simulado.
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1 Introduction

In cancer diagnosis, accurate classification of the
different tumor types is of paramount importance.
An accurate prediction of different tumor types pro-
vides better treatment and toxicity minimization on
patients. Traditional methods of tackling this situ-
ation are based primarily on morphological char-
acteristics of tumorous tissue [13]. These conven-
tional methods are reported to have several diag-
nosis limitations. In order to analyze the problem of
cancer classification using gene expression data,
more systematic approaches were developed [34].

Pioneering work in cancer classification by gene
expression using DNA microarray showed the pos-
sibility to help the diagnosis by means of Machine
Learning or more general Data Mining methods
[22], which are now extensively used for this task
[16]. However, in this setting gene expression data
analysis entails a heavy computational consump-
tion of resources, due to the extreme sparseness
compared to standard data sets in classification
tasks [51]. Classifying cancer types using such
a very high ratio of the number of variables to
the number of observations is a delicate process.
As a result, dimensionality reduction and in par-
ticular feature subset selection (FSS) techniques
may be very useful. The finding of small subsets
of very relevant genes among a huge quantity of
genes could result in much specific and thus effi-
cient treatments.

This work addresses the problem of selecting a
subset of features by using the TAFS (Thermody-
namic Algorithms for Feature Selection) family of
methods for the FSS problem. Given a suitable
objective function, these algorithms make use of
a special-purpose simulated annealing (SA) tech-
nique to find a good subset of features that max-
imizes the objective function. A distinctive char-
acteristic over other search algorithms for FSS is
the probabilistic capability to momentarily accept
worse solutions, which in the end may result in
better hypotheses.

Despite their powerful optimization capability,
SA-based search algorithms usually lack execu-
tion speed, involving long convergence times. In
consequence, they have been generally excluded
as an option in FSS problems, let alone in highly

complex domains such as microarray gene expres-
sion data. Nonetheless, a few contributions using
the classical SA algorithm for FSS are found in
prostate protein mass spectrometry data [32], mar-
keting applications [35], or parameter optimization
in clustering gene expression analysis [18].

Our answer to these computational problems is
twofold. First, we use a filter objective function for
FSS (thus avoiding the development of a predictive
model for every subset evaluation). Second, the
objective function itself is evaluated very efficiently
based in the reutilization of previous computations.
Specifically, a way to calculate the multivariate joint
entropy for categorical variables is presented that
is both exact and very efficient. This measure
is then used by a SA-based TAFS algorithm to
search for small subsets of highly relevant genes.
Classification experiments in five public domain mi-
croarray datasets yield some of the best prediction
results reported so far for these problems while
offering a drastic reduction in subset sizes.

The paper is organized as follows. Sec-
tion 2 briefly reviews the necessary background.
Section 3 develops the proposed method, the
new information-theoretic measure for feature rel-
evance, its efficient implementation and its embed-
ding into a TAFS-like algorithm, which we name
µ-TAFS. Section 4 describes the data sets and
the experimental settings, Section 5 presents the
results and their interpretation. The paper ends
with the conclusions and directions for future work.

2 Preliminaries

In this section we briefly review the necessary
background: the Simulated Annealing technique,
basic Information Theory concepts and the TAFS
family of thermodynamic algorithms for feature
subset selection.

2.1 Simulated Annealing

Simulated Annealing (SA) is a stochastic tech-
nique inspired on statistical mechanics for finding
(near) globally optimal solutions to large optimiza-
tion problems. SA is a weak method in that it needs
almost no information about the structure of the
search space. The algorithm works by assuming
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that some parts of the current solution belong to a
potentially better one, and thus these parts should
be retained by exploring neighbors of the current
solution. Assuming the objective function is to
be minimized, then SA would jump from hill to
hill and hence escape or simply avoid sub-optimal
solutions.

When a system S (considered as a set of pos-
sible states) is in thermal equilibrium (at a given
temperature T ), the probability that it is in a certain
state s, called PT (s), depends on T and on the
energy E(s) of the state s. This probability follows
a Boltzmann distribution:

PT (s) =
exp

(
−E(s)

kT

)
Z

, with Z =
∑
s∈S

exp

(
−E(s)

kT

)

where k is the Boltzmann constant and Z acts
as a normalization factor. Metropolis and his co-
workers developed a stochastic relaxation method
that works by simulating the behavior of a system
at a given temperature T [36]. Being s the current
state and s′ a neighboring state, the probability of
making a transition from s to s′ is the ratio PT (s →
s′) of the probability of being in s to the probability
of being in s′:

PT (s→ s′) =
PT (s′)

PT (s)
= exp

(
−∆E

kT

)
(1)

where we have defined ∆E = E(s′)−E(s). There-
fore, the acceptance or rejection of s′ as the new
state depends on the difference of the energies
of both states at temperature T . If PT (s′) ≥
PT (s) then the “move” is always accepted. It
PT (s′) < PT (s) then it is accepted with probability
PT (s, s′) < 1 (this situation corresponds to a tran-
sition to a higher-energy state).

Note that this probability depends upon the cur-
rent temperature T and decreases as T does. In
the end, there will be a value of T low enough
(the freezing point), wherein these transitions will
be very unlikely and the system will be considered
frozen. In order to maximize the probability of
finding states of minimal energy at every value of
T , thermal equilibrium must be reached. To do this,

according to Metropolis, an annealing schedule is
designed to prevent the process from getting stuck
at a local minimum. The SA algorithm introduced
in [30] consists in using the Metropolis idea at each
temperature T for a finite amount of time. In this
algorithm T is first set at a initially high value,
spending enough time at it in order to approximate
thermal equilibrium. Then a small decrement of T
is performed and the process is iterated until the
system is considered frozen.

If the cooling schedule is well designed, the final
reached state may be considered a near-optimal
solution. However, the whole process is inherently
slow, mainly because of the thermal equilibrium
requirement at every temperature T .

2.2 Information Theory

Entropy, a main concept in Information Theory [47],
can be seen as an average of the uncertainty in a
random variable. If X is a discrete random variable
with probability mass function (PMF) p, its entropy
is defined by1

H(X) = −
∑
x

p(x) log p(x) = −EX [log p(X)] (2)

being E[ ] the expectation operator over the PMF
of X. If a variable (X) is known and another
one (Y ) is not, the conditional entropy of Y with
respect to X is the mutual entropy with respect to
the corresponding conditional distribution:

H(Y |X) = −
∑
x

∑
y

p(x, y) log p(y|x). (3)

The mutual information (MI) can be interpreted
as a measure of the information that a random
variable has or explains about another one:

I(X;Y ) = H(Y )−H(Y |X)

= EX,Y [log p(x,y)
p(x)p(y) ] (4)

where H denotes the entropy. Note that I(X;X) =
H(X), since H(X|X) = 0 and I(X;Y ) = I(Y ;X).

1All logarithms are taken in base 2.
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The conditional MI is expressed in the natural way,
by conditioning in (4):

I(X;Y |Z) = H(Y |Z)−H(Y |X,Z) (5)

MI has been successfully used in feature se-
lection, as a way to measure the influence that
a feature has over the class or target variable.
Sometimes a normalized variant is used, given by
CXY = I(X;Y )

H(Y ) , where Y is the class or target vari-
able, commonly known as coefficient of constraint
or uncertainty coefficient –note that the maximum
value that I(X;Y ) can take is H(Y ). This coeffi-
cient can be understood by analyzing Fig. 1.

Fig. 1. Mutual information (eq. 4) between X and Y

Increasing the value I(X;Y ), H(Y |X) is de-
creased which means that the uncertainty about
a variable Y is reduced by the knowledge of X.
There is an index of relevance that exploits this
property to measure the relevance of a feature
X (with respect to a class or target value Y ) by
conditioning on a third variable Z [4]:

R(X;Y |Z) =
I(X;Y |Z)

H(Y |Z)

=
H(Y |Z)−H(Y |X,Z)

H(Y |Z)

(6)

where R(X;Y |Z) = 0 if H(Y |Z) = 0. Using
a forward selection strategy to maximize it, Eq.
(6) has been applied with some success to low-
dimensional data sets [4].

2.3 Thermodynamic Algorithms for Feature
Selection

In this section we review TAFS (Thermodynamic
Algorithm for Feature Selection), an algorithm for
FSS that was originally designed for problems of
moderate feature size (up to one hundred) [23]. If
we consider FSS as a search of possible feature
subsets of the full feature set X , then SA acts
as a combinatorial optimization process [41]. In
this sense, TAFS finds a subset of features that
optimize the value of a given objective function
J : P(X ) → R, which we assume as non-negative
and to be maximized2.

To this end, a special-purpose forward/backward
mechanism is embedded into an SA algorithm, tak-
ing advantage of its most distinctive characteristic:
the probabilistic acceptance of worse scenarios
over a finite time. This characteristic is enhanced
by the notion of an ε-improvement: a feature ε-
improves a current solution if it has a higher value
of the objective function or a value not worse than
ε%. This mechanism is intended to account for
noise in the evaluation of the objective function
(caused either by the finiteness of the data set or
introduced by the chosen resampling method).

The pseudo-code of TAFS is presented in Algo-
rithm 1. The algorithm consists of two major loops.
The outer loop waits for the inner loop to finish and
then updates T according to the chosen cooling
schedule. When this loop reaches Tmin, the algo-
rithm halts. It keeps track of the best solution found
(which is not necessarily the current one).

The inner loop is the core of the algorithm and is
composed of two interleaved procedures: Forward
and Backward, that iterate until an equilibrium point
is found. These procedures work independently
of each other, but share information about the
results of their respective searches (the current
solution). Within each of them, FSS takes place
and the mechanism to escape from local minima
starts working. The pseudo-code for Forward and
Backward procedures, and ε-improvement is out-
lined in Algorithms 2, 3 and 4. These procedures
iteratively add or remove features one at a time in

2This is the case of accuracy, mutual information, inter-class
distances and many other useful measures.
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Algorithm 1: TAFS algorithm for feature selec-
tion

input : X : Full Feature set {X1 . . . Xn}
J() : Objective Function

α() : Cooling Schedule

ε : Epsilon

T0 : Initial Temperature

Tmin : Final Temperature

1 Xcur ← ∅ Initial Current Subset

2 Jcur ← 0 Initial Objective Function Value

3 T ← T0 Initial Temperature

4 while T > Tmin do
5 repeat
6 Y ← Xcur
7 Forward (Xcur, Jcur)
8 Backward (Xcur, Jcur)

9 until Y = Xcur
10 T ← α(T )

Algorithm 2: Procedure Forward (Z, JZ are
modified)

input : Z, JZ
1 repeat
2 x← argmax

Xi∈X\Z
J(Z ∪ {Xi})

3 if >ε (Z,x, true) then
4 accept← true
5 else
6 ∆J ← J(Z ∪ {x})− J(Z)

7 accept← rand(0, 1) < e
∆J
T

8 if accept then
9 Z ← Z ∪ {x}

10 if J(Z) > Jcur then
11 JZ ← J(Z)

12 until not accept

such a way that an ε-improvement is accepted un-
conditionally, whereas a non ε-improvement is ac-
cepted probabilistically. When Forward and Back-
ward finish their respective tasks, TAFS checks if
the current solution is the same as it was prior to
their execution. If this is the case, then we consider
that thermal equilibrium has been reached and T
is adjusted, according to the cooling schedule. If
it is not, another loop of Forward and Backward is
carried out.

Algorithm 3: Procedure Backward (Z, JZ are
modified)

input : Z, JZ
1 repeat
2 x← argmax

Xi∈Z
J(Z \ {Xi})

3 if >ε (Z,x, false) then
4 accept← true
5 else
6 ∆J ← J(Z \ {x})− J(Z)

7 accept← rand(0, 1) < e
∆J
T

8 if accept then
9 Z ← Z \ {x}

10 if J(Z) > JZ then
11 JZ ← J(Z)

12 until not accept

Algorithm 4: Function >ε
input : Z,x, d
output: boolean

1 if d then
2 Z′ ← Z ∪ {x}
3 else
4 Z′ ← Z \ {x}
5 ∆x← J(Z′)− J(Z)
6 if ∆x > 0 then
7 return true
8 else
9 return −∆x

J(Z)
< ε

3 Proposed Method

The proposed method represents a development
of the TAFS algorithm in three ways: first, we
enhance the algorithm to make it much faster and
effective; second, we derive a new information-
theoretic measure for feature relevance; and third,
we present an efficient incremental implementation
of this measure. We name this new algorithm
µ-TAFS.

3.1 eTAFS: an Enhanced TAFS Algorithm

A modification to Algorithm 1 aimed at speeding
up relaxation time is presented in this section. The
algorithm—named eTAFS, see Algorithms 5 and
6—is endowed with a feature search window (of
size l) in the backward step as follows. In forward
steps always the best feature is added (by looking
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at all possible additions). In backward steps this
search is limited to l tries at random (without re-
placement). The value of l is incremented by one at
every thermal-equilibrium point. This mechanism is
an additional source of non-determinism and a bias
towards adding a feature only when it is the best
option available. On the contrary, to remove one,
it suffices that its removal ε-improves the current
solution. Another direct consequence is of course
a considerable speed-up of the algorithm. Note
that the design of eTAFS is such that it grows more
and more deterministic, informed and costly as it
converges toward the final configuration.

Algorithm 5: eTAFS algorithm for feature se-
lection

input : X : Full Feature Set {X1 . . . Xn}
J() : Objective Function

α() : Cooling Schedule

ε : Epsilon

T0 Initial Temperature

Tmin Final Temperature

1 Xcur ← ∅ Initial Current Subset

2 Jcur ← 0 Initial Objective Function Value

3 T ← T0 Initial Temperature

4 l← 2 Window Size (for backward steps)

5 while T > Tmin do
6 repeat
7 Y ← Xcur
8 Forward (Xcur, Jcur, l)
9 Backward (Xcur, Jcur, l)

10 until Y = Xcur
11 T ← α(T )
12 l← l + 1

3.2 Information-Theoretic Feature Relevance

The definition in Eq. (6) lacks some compo-
nents, Fig. 2 represents a three-variable interac-
tion diagram. The stronger shaded area repre-
sents Eq. (6), where two components are missing,
I(X;Y ;Z) and I(Y ;Z|X), and therefore normal-
ization is done in a bigger area than it should,
namely, in H(Y |Z) rather than in H(Y |X,Z). As a
consequence, establishing a measure with respect
to the reference entropy H(Y ) is incomplete.

In this work we calculate the conditional MI be-
tween a class variable Y and two variables X
and Z as the joint information that X,Z explain
about Y .

Algorithm 6: eTAFS Backward procedure
(Z, JZ are modified). Note that X0 can be
efficiently computed while in the for loop)

input : Z, JZ , l
1 A← ∅;AB ← ∅
2 repeat
3 for i := 1 to min(l, |Z|) do
4 Select x ∈ Z \AB randomly
5 if >ε (Z,x, false) then
6 A← A ∪ {x}
7 AB ← AB ∪ {x}
8 X0 ← argmax

X∈AB
{J(Z \ {X})}

9 if X0 ∈ A then
10 accept← true
11 else
12 ∆J ← J(Z \ {X0})− J(Z)

13 accept← rand(0, 1) < e
∆J
t

14 if accept then
15 Z ← Z \ {X0}
16 if J(Z) > JZ then
17 JZ ← J(Z)

18 until not accept

Fig. 2. Conditional mutual information (eq. 5) between
X,Y and Z

The shaded area in Fig. 3 represents
I(Y ;X,Z) = H(Y ) − H(Y |X,Z), the information
that two variables explain about a third one. Re-
markably, this quantity can be calculated without
explicit conditioning as follows:
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Fig. 3. Mutual information between two variables X and
Z and a class variable Y , as in Eq. (7)

I(Y ;X,Z) = H(Y )−H(Y |X,Z)

=
∑
Y

P (Y ) log
1

P (Y )

−
∑
X,Y ,Z

P (X,Y ,Z) log
1

P (Y |X,Z)

=
∑
X,Y ,Z

P (X,Y ,Z) log
1

P (Y )

−
∑
X,Y ,Z

P (X,Y ,Z) log
1

P (Y |X,Z)

=
∑
X,Y ,Z

P (X,Y ,Z) log
P (Y |X,Z)

P (Y )

=
∑
X,Y ,Z

P (X,Y ,Z) log
P (X,Y ,Z)

P (Y )P (X,Z)

=H(Y ) +H(X,Z)−H(X,Y ,Z),

from which we obtain

I(Y ;X,Z) = H(Y ) +H(X,Z)−H(X,Y ,Z). (7)

Given that I(Y ;X,Z) ≤ 1 and that H(Y ) acts
as the baseline reference, it is wise to normalize
Eq. (7) as

J(Y ;X,Z) =
H(Y ) +H(X,Z)−H(X,Y ,Z)

H(Y )
.

(8)

An index of relevance is then obtained which
evaluates the influence of two variables X,Z with
respect to a class variable Y . It takes values be-
tween zero (no relevance) and one (maximum rel-
evance). This index acts as the objective function J
to be optimized. The reward of using this objective
function by a TAFS-like algorithm consists in the
possibility of testing it in highly complex domains
such as microarray data sets. We name the com-
bination of eTAFS and the objective function in
Eq. (8) as the µ-TAFS algorithm.

3.3 Incremental Multivariate Joint Entropy

For a pair of discrete random variables X,Y , it is
known that the joint entropy obeys

H(X,Y ) ≥ H(X). (9)

This property says that joint entropy is always at
least equal to the entropies of the original system:
adding a new variable can never reduce the avail-
able uncertainty. If we rewrite (9) as an equation

H(X,Y ) = H(X) +4X(Y ), (10)

then 4X(Y ) ≥ 0 represents the increment in en-
tropy due to the addition of the variable Y to the
system. In a feature selection setting, given Z
a class variable, τ ⊂ X the current subset and
H(τ) its joint entropy, if a new feature Xi ∈ X \ τ
is considered for possible inclusion in the current
subset then:

H(Z, τ ∪ {Xi}) = H(Z, τ) +4Z,τ (Xi). (11)

It turns out that, to obtain the next calculation, it
is computationally far more advantageous to store
H(Z, τ) and calculate the quantity 4Z,τ (Xi) than
to compute the full joint entropy H(Z, τ ∪ {Xi})
directly. In order to obtain this value, an incremen-
tal procedure to calculate multivariate joint entropy
has been developed as described in what follows.

The incremental multivariate joint entropy (11)
must be computed at every evaluation step involv-
ing a possible candidate feature Xi to be included
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Table 1. Marginal Entropy Scheme (MES) tables for one variable (left) and the addition of a second variable (right). P (·)
is the probability mass function, obtained from the data (all entropies are in bits)

X1 P (X1) −P (X1) logP (X1)
0 0.538 0.481
1 0.462 0.515

H(X1) = 0.996

X1 X2 P (X1,X2) −P (X1,X2) logP (X1,X2)
0 0 0.231 0.488
0 1 0.308 0.523

H(X1,X2) = 1.011
1 0 0.154 0.415
1 1 0.308 0.523

H(X1,X2) = 0.939

in the current subset τ . Throughout the process,
τ is associated with its current Marginal Entropy
Scheme (MES), a table storing the unique values
contained in the data set for its forming features
and its corresponding entropy value. An example
of a MES table for two binary variables {X1,X2} is
shown in Table 1.

At the initial step (τ = ∅) the MES table for the
addition of X1 to ∅ is indicated in the left part of
Table 1. The two unique values and their entropies
H(X1 = 0) = 0.481 and H(X1 = 1) = 0.515 are
calculated. Let us suppose that a feature X2 is to
be evaluated w.r.t the current subset τ = {X1}.
The MES table with its unique forming patterns
is indicated in the right part of Table 1. We can
see that by introducing X2 to the current subset
τ , four partitions are generated for each unique
value of X1: {00, 01, 10, 11}. In the particular case
of X1 = 0, a change in its entropy contribution is
produced by the action of X2 by splitting it into two
entropy values: H(X1 = 0,X2 = 0) = 0.488 and
H(X1 = 0,X2 = 1) = 0.523, for a total entropy
of H(X1 = 0,X2) = 1.011. The increment in
entropy 4τ is obtained as the difference between
the current MES (considering the addition of X2)
and the previous scheme (without it), see Table 2.

Table 2. 4τ computations from the Marginal Entropy
Scheme, see Table 1

4τ H(X1,X2) −P (X1) logP (X1) difference
4τ (X1 = 0) 1.011 0.481 0.531
4τ (X1 = 1) 0.939 0.515 0.424

4τ 0.954

Finally, this last value is applied to Eq. (11)
to obtain the joint entropy H(X1,X2) = H(X1) +
4τ (X2) = 0.996 + 0.954 = 1.950. The listings in
Algorithms 7 and 8 show the pseudo-code to com-
pute the procedure explained above. The notation

D|τ stands for the restriction of the dataset D to
the features in τ .

Algorithm 7: Incremental Multivariate Joint En-
tropy

input : τ : Current subset;
Xi: Feature to be added;
Hτ : Current subset joint entropy;
Eτ : Marginal entropies scheme of Hτ ;
D : Data set;

output: τ , Hτ , Eτ
1 if |τ | = 0 then
2 τ ← {Xi}
3 D ← Sort(D)
4 Hτ ← Joint Entropy of D
5 Eτ ←MarginalEntropyScheme(D|τ)

6 else
7 τ+ ← τ ∪ {Xi}
8 Sort(D|τ+)

9 Eτ+ ←MarginalEntropyScheme(D|τ+)

10 Eτ− ←
∑
j

Ejτ //j runs through the values of τ

11 4τ ←
∑
i

Ei
τ+ − Eiτ−

12 τ ← τ+
13 Hτ ← Hτ +4τ
14 Eτ ← Eτ+ // new MES

Initial entropy is evaluated in lines 2-5. This first
step calculates the starting joint entropy as well as
its first MES (lines 4-5), which will be taken as input
to the next computation. Note that these two lines
can be efficiently implemented as one function
using only one loop-cycle with complexity θ(|D|),
where |D| is the number of training instances.

In the else part of the if clause, the MES is
calculated with the addition of Xi to the current
subset τ (named Eτ+ ). Taking into account that
previous MES inherits the ordering sequence de-
rived from a previous stage (because of lines 5 and
9), entropies generated by changes in the MES
given by τ ∪ {Xi} are summed (Eτ− ) in groups
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(line 11) by the newly formed patterns, rendering a
one-to-one correspondence between the previous
MES and the current MES.

Algorithm 8: MarginalEntropyScheme Func-
tion

input : D : Data set;
output: E

1 foreach unique value v in D do
2 Υ[v]← fraction of instances in D with value v

3 E ← H(Υ) //calculate entropy of this distribution

Thus, the entropy contribution 4τ (Xi), showing
the effect of adding Xi to τ , is computed by the dif-
ference in both MESs (line 11), being finally added
to the current entropy Hτ (line 13). The implemen-
tation of lines 10-11 follows the same consideration
as that of lines 4-5, and hence complexity is of the
same order.

4 Experimental Work

4.1 Data Sets

Five public-domain microarray gene expression
data sets are used to test and validate the ap-
proach proposed in this work:

— Colon Tumor : 62 observations of colon tis-
sue, of which 40 are tumorous and 22 normal,
2, 000 genes [2].

— Leukemia: 72 bone marrow observations
and 7, 129 probes: 6,817 human genes and
312 control genes [22]. The goal is to tell
acute myeloid leukemia (AML) from acute lym-
phoblastic leukemia (ALL).

— Lung Cancer : distinction between malignant
pleural mesothelioma and adenocarcinoma of
lung [25]; 181 observations with 12, 533 genes.

— Prostate Cancer : used in [49] to analyze dif-
ferences in pathological features of prostate
cancer and to identify genes that might an-
ticipate its clinical behavior; 136 observations
and 12, 600 genes.

— Breast Cancer : 97 patients with primary inva-
sive breast carcinoma; 24, 481 genes have to
be analyzed [52].

To compute the necessary entropies described
in previous sections, a discretization process is
needed. This change of representation does not
often result in a significant loss of accuracy (some-
times significantly improves it [39], [40]); it also of-
fers reduction in learning time [10]. In this work, the
CAIM algorithm was selected for two reasons: it is
designed to work with supervised data and does
not require the user to define a specific number of
intervals [31].

4.2 Settings

Provided that the core nature of the µ-TAFS al-
gorithm resides in its stochasticity, multiple runs
can be performed and used to obtain better solu-
tions. The experimental design to test the µ-TAFS
algorithm measures performance by carrying out
100 different independent runs. In each run, the
algorithm is executed on the corresponding dataset
and returns the set of all those feature subsets
reaching the best found performance (maximum
relevance, in this case). The subset that offers the
lowest mutual information (MI) among its elements,
i.e., the less redundancy, is taken as the subset
delivered in this run.

The µ-TAFS parameters are set as follows: ε =
0.01,T0 = 0.1 and Tmin = 0.0001; these are stan-
dard settings and are kept constant for all the prob-
lems [23]. The cooling function was chosen to be
geometric α(t) = 0.9 t, following recommendations
in the literature [41].

Table 3. µ-TAFS running performance. Time indicates
the running time (in minutes) over the 100 executions;
Jeval is the number of evaluations of J ; size is the
average size of the final solutions and its standard error

Data set Time Jeval size
Colon Tumor 6.41 503,901 6.93 ± 0.06
Leukemia 6.51 506,489 3.36 ± 0.06
Lung Cancer 7.45 560,972 2.58 ± 0.04
Prostate Cancer 98.74 7,119,800 9.85 ± 0.05
Breast Cancer 136.93 10,943,628 9.62 ± 0.03
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Fig. 4. µ-TAFS search processes. The x-axis is the iteration counter for the outer loop of the algorithm

5 Experimental Results

5.1 µ-TAFS Performance Results

The evolution of µ-TAFS from a high temperature
state to a frozen point is depicted in Fig. 4. Highly
unstable, i.e., high temperature condition, read-
ings are observed at the initial stages in each of
the datasets. As soon as the algorithm becomes
more relaxed due to Eq. (1), worse solutions are
avoided. The frozen condition is observed at the
final stages of each execution, where J values

consecutively reach the maximum possible value
(J = 1) in all cases.

The running performance of µ-TAFS is summa-
rized in Table III. The results show that µ-TAFS
yields subsets of considerably low size and also
low variability. Notorious readings correspond to
Leukemia and Lung Cancer. It is conjectured that
such sizes respond to the nature of the information-
theoretic model on discretized data sets, in the
sense that only a few genes significantly con-
tribute to increasing the index of relevance given
by Eq. (8). On the one hand, working with con-
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tinuous features, the index would tend to vary
smoothly, i.e., generating small increments; as a
consequence, more features are added-deleted.
On the other hand, discrete features variations are
normalized by their discretization scheme, so small
increments in the real-value are merged into a sin-
gle discrete value. Therefore, mostly significant in-
crements are truly reflected in its addition-deletion
from the current subset.

Computational demands are kept by µ-TAFS
considerably low, see Table III. Three of the five
problems take 5 to 10 minutes. This is true for the
smaller data sets (as Colon tumor, with 2, 000 fea-
tures and Leukemia, with just over 7, 000), but also
for a larger one, Lung Cancer, which needs the pro-
cessing of more than 12, 500 genes. This behavior
is in accordance with the plots in Fig. 4. More
complex problems tend to last longer –whereby
complexity is related to difficulty in maximizing the
objective function, as well as to the dynamics of the
forward/backward process. In this sense, Prostate
and Breast Cancer require approximately 1.5 and 2
hours of total processing time. Unfortunately, there
is scarcely any reporting on time consumption in
recent scientific literature that would enable us to
establish a reasonable comparison.

5.2 µ-TAFS Accuracy Results

Seven classifiers were evaluated by means of 10
times 10-fold Cross Validation (10x10 CV), a re-
sampling method that has been suggested as ad-
equate for small sample situations [7]. The chosen
classifiers are the k-nearest-neighbors technique
(kNN) in which the parameter k is the number of
neighbors running from 1 to 15, the Naı̈ve Bayes
classifier (NB), the Linear and Quadratic Discrimi-
nant Analysis classifiers (LDA/QDA), Logistic Re-
gression (LR), the Support Vector Machine with
linear kernel (lSVM) (regularization parameter C =
2k, k running from −7 to 7) and the Support Vector
Machine with radial basis function kernel (rSVM) (C
parameter in the same conditions, and smoothing
parameter γ = 2k, k running from −7 to 7)3. The

3For the experiments, we use a MATLAB implementation;
specifically, for the SVMs we use the MATLAB interface to
LIBSVM [12]. All tests are run on on a regular x86 workstation.

non parametric Wilcoxon signed-rank test4 is used
for the (null) hypothesis that the median of the
differences between the errors of the best classifier
per data set and another classifier’s error is zero.
The non-parametric Wilcoxon signed-rank test will
be used for the (null) hypothesis that the median
of differences between classifiers accuracies are
zero, at the 95% level of significance.

Table 4. µTAFS: 10x10 mean cross-validation accuracy
(10x10 CV ) complemented with its standard error for
the best model in each data set. The Classifier column
indicates the best method along with best parameters

Data set Classifier 10x10 CV size
Colon Tumor lSVM (C = 21) 89.19±0.38 5
Leukemia lSVM (C = 2−7) 99.62±0.27 3
Lung Cancer LR 99.89±0.07 4
Prostate Cancer kNN (k = 6) 95.66±0.21 7
Breast Cancer rSVM (C = 23, γ = 2−1) 86.90±0.48 6

The obtained solutions are displayed in Table 4.
The first fact to note is that the developed algorithm
tends to obtain high accuracies that are both very
stable and low-sized. This is a very remarkable
result, given the big differences among the prob-
lems and among the inducers. In particular, Lung
Cancer, Leukemia and Prostate Cancer reach re-
markably high accuracies, while Colon Tumor and
specially Breast Cancer show lower 10x10 CV
readings. In all cases, the subset that delivers
this performance is considerably small, having 7
genes or less (and only 3 genes in the Leukemia
data set). Moreover, all Wilcoxon test p-values
signal significant differences (p < 0.05) between
the best method and all the other methods in the
corresponding data set, except for the lSVM vs. LR
in Colon Tumor (p = 0.312).

The results diverge for different classifiers, as
it may be reasonably expected. Also, it is very
important to assess whether an improvement is
consistent or is limited to a certain type of method.
In this sense, kNN seems to be the best method for
Prostate Cancer, LR for Lung Cancer and the SVM

4The Wilcoxon signed-rank test is a non-parametric statisti-
cal hypothesis test for the analysis of two related samples, or
repeated measurements on a single sample. It can be used
as an alternative to the paired Student’s t-test when the popu-
lation cannot be assumed to be normally distributed. It should
therefore be used whenever the distributional assumptions that
underlie the t-test cannot be satisfied.
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for the other three. The SVM also tends to deliver
smaller gene subsets. Given that the SVM parame-
ters were not optimized beyond educated guesses,
we think there is room for further improvement in
the modeling, specially on the accuracy side.

5.3 Comparison with Other Methods

It is a common practice to compare to similar works
in the literature. Unfortunately, the methodological
steps are in general very different, especially with
respect to resampling techniques, making an ac-
curate comparison a delicate undertaking. Eight
references which are illustrative of recent relevant
work are analysed and presented in Table 5 (in-
cluding previous work from the authors). Three of
them are filter methods, three other are wrappers
and the remaining two are a combination of filters
and wrappers. In this table the resampling method,
the best classifier and the best result are detailed
(the final reported accuracy and number of genes).

The Colon Tumor data set presents difficulties
in classification, never reaching 90%. The solution
delivered by µ-TAFS is comparable with the best
known (that of BGS3 [24]); however, it uses 5
genes against the 9 used by BGS3. The other
difficult problem seems to be Breast Cancer. In this
data set, µ-TAFS gives the best result among the
references consulted, using also less genes and
in front of solutions that employ a pure wrapper
strategy. For the other three problems, µ-TAFS
is also able to yield better solutions compared to
other approaches, many of them using a much
bigger gene subset.

5.4 Discriminatory Visualization of Selected
Features

The genes corresponding to the solutions dis-
played in Table IV are detailed in Table VI. More-
over, expression levels for each model in the
five data sets are given in Fig. 5. It is seen
that each model contains genes that are visually
identified as presenting abnormal expression lev-
els: Colon Tumor genes M76378 and T51288;
Leukemia genes AFFX-CreX-5 at and L09209;
Lung Cancer gene 37157 at; Prostate Cancer

genes 38322 at and 37639 at; and Breast Can-
cer genes Contig14882 RC, Contig53822 RC and
Contig57657 RC.

Leukemia

1 2 3

10

20

30

40

50

60

70

Fig. 5. Expression levels formed as indicated in Table
VI. Samples for each data set are distributed as follows:
Colon Tumor : Tumor 1-41, Normal 42-62; Leukemia:
Tumor 1-48, Normal 49-72; Lung Cancer : Tumor 1-31,
Normal 32-181; Prostate Cancer : Tumor 1-78, Normal
79-136; and Breast Cancer : Tumor 1-46, Normal 47-97

If classification accuracy on the basis of the
available data were the only relevant outcome of
a modelling method, then feature selection would
become a redundant process. Indeed, the inter-
pretability of the results is a compulsory require-
ment in this problem. In a medical context, data
visualization in a low-dimensional representation
space may become extremely important, helping
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Table 5. Results reported in the literature for the explored problems: (F) indicates that the referenced work uses a
Filter-Based Algorithm, (W) for wrapper and (FW) for a combination of both schemes; in parentheses, the size of the
subset (number of genes) and the inducer optimized (see text). The − sign indicates that the problem was not studied
in the reference. The resampling methods are 10CV (10-fold Cross Validation), 10x10 CV (10 times 10-fold Cross
Validation), N -RS (N times Random Subsampling), and 200-B.632 (0.632 bootstrap of size 200)

Colon Lung Prostate Breast
Work Validation Tumor Leukemia Cancer Cancer Cancer
[24](F) 10x10CV 89.36 97.89 98.84 93.43 83.37

(9,3NN) (2,NB) (4,LR) (3,10NN) (12,lSVM)
[9](F) 200-B.632 88.75 98.2 − − −

(14,lSVM) (23,lSVM) − − −
[43](W) 10x10CV 85.48 93.40 − − −

(3,NB) (2,NB) − − −
[53](W) 100-RS 87.31 − 72.20 − −

(94,SVM) − (23,SVM) − −
[8](W) 50-RS 77.00 96.00 99.00 93.00 79.00

(33,rSVM) (30,rSVM) (38,rSVM) (47,rSVM) (46,rSVM)
[27](FW) 10x10CV − − 99.40 96.30 −

− − (135,5NN) (79,5NN) −
[26](F) 10CV − 98.6 99.45 91.18 68.04

− (2,SVM) (5,SVM) (6,SVM) (8,SVM)
[45](FW) 1-RS − − 98.66 67.65 −

− − (8,SVM) (22,SVM) −

Table 6. Identification of genes for each model

Data set Gene ID
Colon Tumor M76378, H08393, T51849, M19311,

T51288
Leukemia AFFX-CreX-5 at, L09209,

X75755
Lung Cancer 37157 at, 33221 at, 107 at,

40790 at
Prostate Cancer 1230 g at, 38322 at, 37639 at,

32909 at, 660 at
35998 at, 34107 at

Breast Cancer AB014543, Contig14882 RC,
Contig53822 RC, Contig57657 RC,
Contig53713 RC, NM 006191

oncologists to gain insights into what undoubtedly
is a complex domain. In this work we use a
method based on the decomposition of the scatter
matrix, with the remarkable property of maximizing
the separation between the projections of compact
groups of data [33]. Such visualization is illustrated
by the plots in Fig. 6. These are scatter plots of
2-D projections of the classes (using the first two
eigenvectors of the scatter matrices).

5.5 Biological Evidence

In this section, known biological evidence is pre-
sented about the effect of the found gene expres-
sions in each cancer disease. This evidence is
assembled by examining recent relevant medical
literature.

Colon Tumor

— M76378 CSRP1-Cysteine and glycine-rich
protein 1. This gene encodes a member of
the cysteine-rich protein (CSRP) family. It
may be involved in regulatory processes im-
portant for development and cellular differenti-
ation. Hypomethylation, a decrease in the epi-
genetic methylation of cytosine and adenosine
residues in DNA, of CSRIP1 and other genes
were confirmed in cancer cells by bisulfite se-
quencing [54].

— H08393 COL11A2-collagen, type XI, alpha 2
(Homo sapiens). Two alpha chains of type
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Colon Tumor Leukemia Lung Cancer

Breast Cancer Prostate Cancer

Fig. 6. Visualization of the solutions using the first two eigenvectors of each scatter matrix. Legend: In Colon Tumor
and Prostate Cancer circles represent tumorous samples and squares indicates normal tissue; in Leukemia circles
indicate ALL cells and squares AML cells; in Lung Cancer circles are malignant pleural mesothelioma and squares are
adenocarcinoma; in Breast Cancer circles indicate relapse samples and squares, non-relapse samples

XI collagen, a minor fibrillar collagen are en-
coded by this gene [38]. Up-regulation of
this gene in the mucosa stromal cells of both
familial adenomatosis polyposis and sporadic
colorectal cancer has been detected [6].

— T51849 EPHB1-Tyrosine-protein kinase re-
ceptor elk precursor. EphB1 is a member of
receptor tyrosine kinases of the EphB subfam-
ily and has been positively identified in the
development, progress and prognosis of col-
orectal cancers [48].

— M19131 CALM2-calmodulin 2 (phosphorylase
kinase, delta). Caml2 plays an important role
in intracellular calcium signaling, which reg-
ulates a variety of cellular processes, such
as cell proliferation and gene transcription [5].
Increased expression levels of this gene were
found in anaplastic large cell lymphoma cell
lines [42].

— T51288 ASS1-argininosuccinate synthase
(human). Arginine, a semi-essential amino
acid in humans, is critical for the growth
of human cancers as in primary ovarian,

stomach and colorectal cancer, whose
expression levels read high values [15].

Leukemia

— AFFX-CREX-5 AT NOT IDENTIFIED.

— L09209 APLP2-amyloid beta (A4) precursor-
like protein 2 (Homo sapiens). The function of
this gene is not fully understood, but it is con-
jectured that it may play a role in the regulation
of hemostasis [19]. This gene was reported as
over-expressed by other scientific literature as
in [46].

— X95735 at ZYX-ZYXIN. It is involved in the
spatial control of actin assembly and in the
communication between the adhesive mem-
brane and the cell nucleus [20]. This is a gene
found in many cancer classification studies
[22, 14, 11], and it is highly correlated with
acute myelogenous leukemia.
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Lung Cancer

— 37957 at ATG4-Autophagy related 4 homolog
A. Autophagy is the process by which en-
dogenous proteins and damaged organelles
are destroyed intracellularly. Autophagy is
postulated to be essential for cell homeosta-
sis and cell remodeling during differentiation,
metamorphosis, non-apoptotic cell death, and
aging [19]. It is activated during amino-acid
deprivation and has been associated with neu-
rodegenerative diseases, cancer, pathogen in-
fections and myopathies [44].

— 33221 at PAXIP1-PAX interacting (with
transcription-activation domain) protein 1.
Member of the paired box (PAX) gene family,
this gene plays a critical role in maintaining
genome stability by protecting cells from DNA
damage [19, 37]. Analysis of pulmonary
adenocarcinomas in experiment GDS1650 in
[38] records shows over-expression levels of
this gene.

— 40790 at BHLHE40-basic helix-loop-helix
family, member e40. This gene encodes a
basic helix-loop-helix protein expressed in
various tissues, it may be involved in the
control of cell differentiation [38]. Experiments
suggest that loss of DEC1 expression is an
early event in the development of lung cancer
[21]

— 107 at RAB40A-member RAS oncogene fam-
ily. This gene encodes a member of the
Rab40 subfamily of Rab small GTP-binding
proteins that contains a C-terminal suppres-
sors of cytokine signaling box [19]. No medical
evidence was found in literature about its role
in cancer.

Prostate Cancer

— 1230 g at MTMR11-myotubularin related pro-
tein 11. In experiments on patients with acute
lymphoblastic leukemia and with Burkitt lym-
phoma, three putative oncogenes or tumor
suppressor genes were found, one of them
was the MTMR11 [50].

— 38322 at PAGE4-P antigen family, member 4
(prostate associated). This gene is strongly
expressed in prostate cancer; and also ex-
pressed in other tissues such as testis, fallop-
ian tube, uterus, placenta; besides, it is ex-
pressed in testicular cancer and uterine can-
cer [19].

— 37639 at HPN-Hepsin. Hepsin is a cell sur-
face serine protease and plays an essential
role in cell growth and maintenance of cell
morphology; it is highly related with prostate
cancer, benign prostatic hyperplasia [19].

— 32909 at AQP5-aquaporin 5. Acting as a wa-
ter channel protein, Aquaporins are a family
of small integral membrane proteins linked to
other proteins, whose role is the generation
of saliva, tears and pulmonary secretions [19].
Experiments with cases of normal and epithe-
lial ovarian tumor tissues suggest an important
role of this gene in the tumorigenesis of the lat-
ter, and a possible relationship with the ascites
formation of ovarian carcinoma [55].

— 660 at CYP24A1-cytochrome P450, family 24,
subfamily A, polypeptide 1. This gene en-
codes a member of the cytochrome P450 su-
perfamily of enzymes. The cytochrome P450
proteins catalyze many reactions involved in
drug metabolism and synthesis of cholesterol,
steroids and other lipids [19]. This gene has
been reported as responsible for degrada-
tion of the active vitamin D metabolite 1,25-
dihydroxyvitamin D3 which is known to be an-
timitotic in prostate cancer cells [17].

— 35998 at Hypothetical protein LOC284244
(LOC284244). No evidence found.

— 34107 at PFKFB2-6-phosphofructo-2-
kinase/fructose-2,6-biphosphatase 2.
The protein encoded by this gene is
involved in the synthesis and degradation
of fructose-2,6-bisphosphate, a regulatory
molecule that controls glycolysis in eukaryotes
[19]. It has been suggested that the induction
of de novo lipid synthesis –a process that
protects cancer cells from free radicals and
chemotherapeutics– by androgen requires the
up-regulation of HK2 and PFKFB2 [29].
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Breast Cancer

— AB014543 CLUAP1-clusterin associated pro-
tein 1 (Homo sapiens). This gene is highly
expressed in osteosarcoma, ovarian, colon,
and lung cancers [28].

— Contig57657 RC PAK1-p21 protein
(Cdc42/Rac)-activated kinase 1 (Homo
sapiens). This gene encodes a family
member of serine/threonine p21-activating
kinases, known as PAK proteins, whose
role is the regulation of cell motility and
morphology [38]. Pak1 is directly related
with the Etk/Bmx protein, the latter acts as
a control to the proliferation and tumorigenic
growth of mammary epithelial cancer cells [3].

— NM 006191 PA2G4-Proliferation-associated
2G4, 38kDa (PA2G4). Also known as EBP1,
this gene encodes an RNA-binding protein
involved in growth regulation [19]. The EBP1
has been shown to be a transcriptional
corepressor that inhibits the growth of human
breast cancer cell lines [1].

— Contig14882 RC, Contig53822 RC, Con-
tig53713 RC NOT IDENTIFIED.

6 Conclusions

An algorithm for feature selection using Simulated
Annealing guided by the discrete multivariate joint
entropy has been introduced and evaluated. Our
experimental results are concerned with the search
for small subsets of highly relevant genes in five
public-domain Microarray Gene Expression data
samples. The excellent results indicate that the
algorithm offers a promising general framework
for feature selection in very high dimensional data
sets.

We have also shown how feature selection ap-
pears to be a viable avenue for dimensionality re-
duction in this field: a reduction of several orders of
magnitude in the number of features leads to sub-
stantial improvements. This behavior is important,
both for computational and scientific reasons. Even
without optimization of free parameters (a neces-
sary step in normal conditions), cross-validated

wrapper computations with hundreds of thousands
of features may take several days of computing
time on a standard desk machine. Scientifically,
coping with hundreds of features and pretending
interpretability of the role of every feature in the
model is out of the question in many cases. This is
aggravated in the present situation of data scarcity.

The entropic relevance measure has shown to
be a good candidate as the objective function to be
optimized by the algorithm. The reported classifi-
cation results are competitive to current standards
in analyzing microarray gene expression data with
a very affordable execution time. This last aspect
should not be overlooked, since database size is
constantly growing and the complexity of optimiza-
tion scenarios (which make extensive use of re-
sampling methods) is ever greater.

One should bear in mind that the excellent re-
ported results do not –by themselves– entail a
medical solution to the diseases, a situation that
is faced by all statistical and ML solutions. On
the contrary, a main goal of exploratory studies of
this kind should be directed towards understanding
how the variables selected by the model fit in rela-
tion to prior knowledge from the medical domain.
In this sense, it is our hope that this and related
investigations boost studies that unveil the real
significance of the findings and advance toward a
better understanding of the involved processes.
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