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Abstract. Hardware/Software partitioning (HSP) is a 

key task for embedded system co-design. The main 
goal of this task is to decide which components of an 
application are to be executed in a general purpose 
processor (software) and which ones, on a specific 
hardware, taking into account a set of restrictions 
expressed by metrics. In last years, several approaches 
have been proposed for solving the HSP problem, 
directed by metaheuristic algorithms. However, due to 
diversity of models and metrics used, the choice of the 
best suited algorithm is an open problem yet. This 
article presents the results of applying a fuzzy approach 
to the HSP problem. This approach is more flexible 
than many others due to the fact that it is possible to 
accept quite good solutions or to reject other ones 
which do not seem good. In this work we compare six 
metaheuristic algorithms: Random Search, Tabu 
Search, Simulated Annealing, Hill Climbing, Genetic 
Algorithm and Evolutionary Strategy. The presented 
model is aimed to simultaneously minimize the 
hardware area and the execution time. The obtained 
results show that Restart Hill Climbing is the best 
performing algorithm in most cases.  

Keywords. Hardware/software co-design, 

hardware/software partitioning, metaheuristic 
algorithms. 

Aplicación de lógica difusa para el 
particionado hardware/software en 

sistemas embebidos 

Resumen. El Particionado Hardware/Software (PHS) 

es una etapa fundamental en el co-diseño de sistemas 
embebidos. El objetivo principal de esta etapa es 
decidir qué componentes de la aplicación serían 
ejecutados en un procesador de propósito general 

(software) y cuáles en un hardware específico, 
teniendo en cuenta las restricciones. En los últimos 
años, se han propuesto diferentes estrategias para 
resolver el problema PHS, las cuales utilizan en su 
mayoría algoritmos metaheurísticos. Sin embargo, 
debido a la diversidad de modelos y métricas 
utilizadas, decidir qué algoritmo es mejor que otro es 
un problema abierto. Este artículo presenta los 
resultados de aplicar lógica difusa en el problema PHS. 
Esta estrategia es más flexible que muchas de las 
otras propuestas, ya que es posible aceptar soluciones 
bastante buenas o rechazar otras que no parezcan 
buenas. Además en este trabajo se comparan seis 
algoritmos metaheurísticos: Búsqueda aleatoria, 
Búsqueda tabú, Recocido simulado, Escalador de 
colinas, Algoritmo genético y Estrategia evolutiva. El 
modelo que se presenta está dirigido a minimizar de 
forma simultánea el área de hardware y el tiempo de 
ejecución del sistema. Los resultados muestran que el 
escalador de colinas es el algoritmo que obtiene 
mejores resultados en la mayoría de los casos. 

Palabras clave. Co-diseño hardware/software, 

particionado hardware/software, algoritmos 
metaheurísticos. 

1 Introduction 

Nowadays there are many scenarios where you 
can find devices that include Embedded Systems 
(ES) to manage their operation. These systems 
have three main characteristics [1]: they are (1) 
single-functioned, (2) tightly constrained and (3) 
reactive and real-time. The second feature means 
that the design of an ES is guided by several 
design metrics. There are many metrics which 
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can be used to guide the design, e.g., size, 
performance, cost per unit, flexibility, power 
consumption, among others; given often the case 
that for designing a system more than one metric 
is involved. This implies that the design process 
itself is complex, since it is necessary to reach a 
compromise among different metrics. 

ES design is fairly complex in most cases; the 
development of a system requires implementing it 
on a microprocessor (software component or Sw) 
and partly on hardware (hardware component or 
Hw). Traditionally, the design of Hw and the 
design of Sw are developed separately and in 
early stages of the design process. This 
procedure does not ensure compliance with the 
requirements and generate iterations which 
increase costs for refining the design. The current 
trend is to use a unified approach, namely, co-
design [2], for the hardware and software 
components to allow, in addition, verifying the 
correctness of design, exploring for various 
possibilities of partitioning without having to go 
through the costly phase of implementation. 

One of the most important stages in the co-
design process is the Hardware/Software 
Partitioning (HSP) [2, 3]. At this stage, the final 
configuration which the system will adopt must be 
defined, i.e., a decision about the functional 
blocks to be implemented in software or in 
hardware is taken. Usually, this decision is based 
on the experience of the designer and/or making 
a brief exploration of the design space. This 
procedure, in addition to not complying with any 
methodology, does not ensure an optimal result, 
since for obtaining the best configuration it is 
necessary to solve an optimization problem which 
in most of its formulations is NP-hard [4]. 

To replace these ad-hoc methods, several 
models [5, 6, 7, 8, 9, 10, 11] have been proposed 
to reach a solution. These models vary in the 
applied metrics and in the strategies or algorithms 
used to solve the optimization problem. In most 
cases, these models are driven by optimization of 
a single design metric (area of hardware, 
execution time or power consumption) and by 
establishing restrictions over other metrics in 
order to obtain a desirable solution according to 
the defined model and to the system interests. 

On the other hand, some of these models use 
exact algorithms to obtain an exact solution to the 

problem, but the search time increases 
proportionally to the problem size. Taking into 
account that in some cases a near optimal 
solution is considered as good enough, many 
models use metaheuristics algorithms (Simulated 
Annealing, Tabu Search, Genetic Algorithms, 
etc.), which allow to explore the design space to 
find a good solution achieving an acceptable time 
for searching a solution. The diversity of used 
algorithms together with the lack of benchmarks 
prevents the correct selection of an algorithm that 
best suits to solve the HSP problem.  There are 
approaches that use other strategies like expert 
systems combined with the use of fuzzy logic [5] 
to model the reasoning of the designer and the 
implicit subjectivity in how this designer solves the 
problem in practice, modeling variables as fuzzy 
linguistic variables. 

This article presents three contributions. The 
first contribution involves the proposal of a new 
HSP model based on the use of the Performance 
factor metric [12] which is used for finding 
partitions that take into account two conflicting 
objectives such as hardware cost (area) and 
runtime. This approach use fuzzy logic to model 
the behavior of variables involved in the decision 
criteria. The second contribution is the application 
of metaheuristic algorithms with no evidences of 
prior use for the HSP problem and its comparison 
with other metaheuristics that have been used 
actually, yielding interesting results. The third 
contribution is our study of the feasibility of 
combining fuzzy logic with metaheuristic 
algorithms, i.e., applying Soft Computing [13] for 
solving the HSP problem. 

2 Related Work 

In recent decades there have been several works 
that have proposed solutions to HSP. Usually, all 
the proposals introduce variations in one or more 
of three basic elements that make up this 
problem: (1) initial system specification, (2) 
modeling of the system and (3) searching the 
solution. 

In order to specify the system, it is necessary 
to define its granularity and an initial 
implementation [3, 5, 14, 15, 16]. The granularity 
[15] is the size of a system function block 
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(instructions, basic blocks, control blocks, 
functions or procedures) to be considered; this 
should be taken into account during partitioning. 

In addition, the system can be initially 
implemented in software or hardware. If the 
system is implemented in software (or hardware) 
the partitioning strategy is to migrate the 
functional blocks to the hardware (or software) 
repeatedly to find the solution which meets the 
design metrics imposed. The description of the 
initial implementation can be done by using 
different languages, preferably a high level 
language (C, SystemC and VHDL/Verilog), to 
specify the functions which the system must have. 

The model defines how the system will be 
represented before and during the partitioning 
process, so at the beginning it is necessary to 
define a computational model [17] to represent 
the system. 

The most widely used models are control flow 
graphs, data flow graphs, and call graphs. Many 
of these computer models are conditioned by the 
chosen granularity. For example, if a granularity 
at the function level or at procedure level is 
selected, the model could be a call graph in which 
nodes represent system functions and arcs 
represent calls which one function makes to 
another. The conclusion reached by the authors 
in [17] is that the selection of a model depends on 
a system type. After modeling the system it is 
necessary to assign for each of the functional 
blocks the estimated values of the metrics which 
have been defined. In [5] it is possible to 
appreciate the diversity of models that can be 
used in partitioning process. 

Finally, to find an optimal solution, or one close 
to this, it is necessary to define the cost function, 
constraints, and the algorithm which will solve the 
optimization problem. In the first two tasks, the 
design metrics are involved, which are derived 
from the requirements of the embedded system. 
There are different metrics to consider for an 
embedded system designing (runtime, power 
consumption, size, etc.) [1]; most of the 
contributions use these metrics in the functions or 
restrictions depending of the proposed model. In 
[11] the author makes an abstraction of these 
metrics considering only three groups: (1) 
hardware cost, (2) software cost and (3) 
communication costs between hardware and 

software blocks. Several proposals use such 
metrics as hardware area and execution time [6, 
8, 18, 19]. In other works the authors combine 
these metrics or use others like bus utilization and 
processor [18], execution count of basic blocks 
[20], the speedup resulting of moving a node from 
software to hardware, power consumption [21], 
communication cost [7, 8, 19], and proximity 
between functions [19]. 

In relation to the algorithmic aspects, most of 
the contributions use general-purpose heuristic 
algorithms. In [14, 22] the authors propose 
approaches based on the greedy strategy 
algorithm. 

Also, there have been several proposals 
based on Tabu and Random search algorithms 
[7, 22, 23, 24], while other solutions are based on 
Simulated annealing [5, 20, 22, 23, 24], Genetic 
algorithms [7, 23, 25] and particle swarm 
optimization (PSO) [9, 10]. López-Vallejo and 
López [5] and F. Vahid [22] use the Kernighan/Lin 
algorithm. Several authors [5, 19, 22] use the 
hierarchical clustering algorithm and Gupta and 
De Micheli [18] use group migration. 

Other studies employ specific-purpose 
heuristics, such as the proposal of Jigang and 
Srikanthan [7, 21], while still others use 
algorithms based on dynamic [21] and linear 
programming [6, 8, 26]. 

There are papers that apply fuzzy logic to 
model the uncertainty of variables; among them 
there is the proposal of López-Vallejo and López 
[5], and López et al. [27], where the authors 
suggest an expert system based on fuzzy logic. In 
this paper, a model defining fuzzy variable sets 
associated with the characteristics of each node 
of the application is used. Next, a classification 
module may obtain a valid solution to the 
problem. Huang and Kim [28] use a Hybrid Neural 
Fuzzy System for applying fuzzy logic and neural 
networks in combination. Zhang et al. [29] apply 
Soft Computing technics, an Evolutionary 
Negative Selection Algorithm inspired from 
Artificial Immune System. 

On the other hand, there are studies in which 
the authors compare their proposals with other 
research, such as the case of Vahid´s work [22] 
which compares an extension to the Min-Cut 
algorithm or Kernighan/Lin heuristic with Random 
Search, Simulated Annealing, Greedy 



28 Humberto Díaz Pando, Sergio Cuenca Asensi, Roberto Sepúlveda Lima… 

Computación y Sistemas Vol. 17 No.1, 2013 pp. 25-39 
ISSN 1405-5546 

Improvement, Hierarchical Clustering and 
clustering followed by a greedy improvement; 
good results are obtained with the first of these. 

López-Vallejo and López [5] compared 
Kernighan/Lin heuristics with Simulated 
Annealing, Hierarchical Clustering and an expert 
system. In [6, 8] the authors modify the algorithm 
proposed by Madsen et al. [26] based on linear 
programming, then a comparison between both 
algorithms is done. Jigang et al. [7] compare a 
heuristic algorithm with Simulated Annealing, 
Tabu Search and Genetic Algorithm. In the work 
of Wiangtong et al. [23] good results are achieved 
with Tabu Search over Genetic Algorithm and 
Simulated Annealing. 

In summary, most of the contributions are 
aimed at partitioning models and algorithmic 
aspects. In the first case we conclude that there is 
a wide variety of models which apply various 
metrics, e.g., area occupied and system response 
time; these metrics are the most frequently used 
as the objective function and constraints for 
modeling the problem. 

From the point of view of the algorithmic 
aspect, Table 1 is a summary of the methods 
used in the works listed above. As it can be seen, 

in most of the contributions general-purpose 
heuristic algorithms are used, but there are some 
that have not yet been evaluated for the HSP 
problem. Such is the case of Hill Climbing and 
Evolutionary Strategy which in similar problems 
have offered good results [30, 31]. Finally, it 
should be noted that it is difficult to compare 
algorithms because each author models the 
problem differently and uses different 
benchmarks. Thus, it is necessary to perform a 
unique formulation of the problem in order to 
compare several algorithms. 

3 Hardware/Software Partitioning 
Model 

The HSP model defined in this section considers 
the following characteristics: granularity, metrics 
associated with the functional blocks, 
computational model, representation of the 
solution, domain of the variables and the cost 
function.  

Let P be the set of functions that make up the 
program to be partitioned, defined as P = 
{p1,p2,...,pn} where pi is a function or program 

Table 1. Summary of the contributions to the HSP 

Algorithms 

Year 

1993 1997 2003 2004 2006 2007 2008 2010 

Random search  [22]       

Tabu search  [24]     [7]  

Greedy  [22]  [14]   [7]  

Simulated annealing  [22, 24] [5]      

Genetic algorithm [20]      [7]  

PSO      [10] [9]  

Specific heuristics     [21]  [7]  

KL  [22] [5]      

Group Migration [18]        

Hierarchical clustering [22]  [5]     [19] 

Dynamic Programming     [21]    

Linear Programming  [26]   [6]  [8]  

Soft Computing Technique   [5]   [28,29]   

Comparison  [22] [5]    [7]  
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method (coarse granularity). Let G = {V, E} be the 
computational model, a call graph, which 
represents the set of functions or methods that 
belongs to the program P. In this graph, each 
vertex vi belongs to the set V = {v1,v2,…,vn}, and 
it is matched with an element of the set P. The set 
E = {e1,e2,...,en} represents dependencies 
between vertices. 

Once the system is represented under this 
model, values for the metrics are associated to 
each node. The following metrics are used: 
software execution time (sti), occupied hardware 
area (hai), and the hardware execution time (hti). 
Figure 1 shows an example of the process 
described previously. 

In this model, a solution to the partitioning is 
expressed as a set of binary elements X = 
{x1,x2,...,xn}, where the i

th
 element represents the 

type of implementation assigned to the function pi; 
if xi = 1, it means deployment and implementation 
on Hw, or implementation on Sw otherwise. Given 
the above stated, it is possible to calculate the 
hardware area used for designing (A) as: 

 



n

i

ii ArchCosthaxA
1  

(1) 

ArchCost represents a basic architecture cost. 
Any solution, even pure software implementation, 
needs a minimal hardware infrastructure 

(peripherals, memory, processor, etc) which is 
expressed by ArchCost. 

The system execution time (T) is defined by 

  



n

i

iiii htxstxT
1

1

 

(2) 

To take advantage of fuzzy logic, these 
metrics are modeled as fuzzy sets of the same 
name as 

 )(, aaA   
 )(, ttT   (3) 

Each one of the elements a or t of the sets will 
be modeled as a linguistic variable in terms of 
{large} area or {large} time. This implies that the 
pertinence values µ(a) and µ(t) of each variable 
can be obtained applying the Gamma function 
(see Figure 2). 

In Figure 2a, the upper limit of the area 
variable is defined as Amax/βA, where Amax denotes 
the area required in the case when all blocks are 
assigned to hardware. The lower limit is defined 
as a function of the upper limit by Amax/(βAαA). 
Similarly, the upper and lower limits for the time 
variable are defined as in Figure 2b; the upper 
limit of time is defined as Tmax/βT, whereas the 
lower limit is defined as Tmax/(βTαA). Tmax denotes 
the time consumed by the design in the case 
when all blocks are assigned to software. 

   

a) b) c) 

Fig. 1. Example of set-up process prior to finding solution process 
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The use of fuzzy logic makes it possible to 
have a flexible model in terms of the solution 
space to be explored, because by varying the 
lower and upper limits according to the system 
requirements it is possible to accept quite good 
solutions or reject other ones which do not seem 
quite good. In this way the model is more flexible 
than the classical variant where the upper limits 
are equal to the lower limits. It is implied that only 
good solutions are accepted. 

Once the initial parameters are established, it 
is necessary to define the metrics and the 
objective function which will guide the searching 
process. In this work the metric is the 
Performance factor (Pf) proposed in [12], which 
unifies the hardware area (A) and execution time 
(T) of the system. It is calculated as Pf = A*T. The 
goal of using this metric is to obtain a solution that 
meets both metrics. It is similar to the embedded 
system designer who executes this task in 
practice. In this work, the metrics A and T are 

modeled as fuzzy sets, and Pf is calculated using 
the pertinence functions defined previously and 
the function x*y as T-Norm operation. Taking into 
account the previous elements, the objective 
function is defined as. 

)(*)( taPf 
 (2) 

4 Experiments and Results 

As it was discussed above, there is no evidence 
of a well-defined benchmark that allows an 
effective comparison between algorithms [7, 11]. 
To overcome this difficulty, many authors [4, 20, 
23, 28] use in their experiments an experimental 
approach based on graph simulations. In this 
paper we adopted this approach to conduct the 
experiments and validate the model. 

Our experiments were executed on four 
systems or problems represented by graphs 

  
a) Linguistic variable Area b) Linguistic variable Time 

Fig. 2. Gamma functions 

Table 2. Characteristics of the generated problems 

Count of 
nodes 

Minimum 
Area 

Lower 
limit 

Upper 
limit 

Maximum 
Area 

Minimum 

Time 

Lower 
limit 

Upper 
limit 

Maximum 

Time 

50 10 468 1562 2232 189 282 705 784 

100 10 1168 3894 5564 440 618 1547 1719 

150 10 1480 4933 7048 648 857 2144 2383 

200 10 2258 7529 10757 865 1107 2769 3077 
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composed by 50, 100, 150 and 200 nodes. The 
values of software execution time (sti), hardware 
area occupied (hai) and hardware execution time 
(hti) were generated randomly, as in [4, 20, 23, 
28].For the case of software execution time (sti), 
values were generated randomly in the range [1, 
30]; while for the hardware area (hai) values were 
generated in the range [1,100]. Since the 
execution time for one node implemented in 
software is generally greater than in a hardware 
implementation, the execution time of the node in 
hardware (hti) was generated randomly in the 
range [1,1/2 * sti]. 

For these simulated data, each algorithm was 
executed 30 times, and in each execution, 
evaluations of the objective function were made, 
i.e., for each of the 30 executions, 50000 
solutions for each problem were generated. Table 
2 summarizes the main features of the problems 
used in our experiments. As it can be seen, the 
same ArchCost (Minimum area) for all problems 
was established, and the lower and upper limits 
were established according to possible user 
requirements. 

In our experiments, we applied Metaheuristics 
algorithms based on a point (Tabu Search, Hill 
Climbing, Simulated Annealing), algorithms based 
on population (Genetic Algorithm, Evolutionary 
Strategy), and for the aim of comparison we also 
used the Random Search algorithm. 

The algorithms were implemented using the 
Biciam library [32], which employs a unified model 
of metaheuristics algorithms. In the case of 
Simulated Annealing, the parameters used were 
as follows: initial temperature = 15, final 
temperature = 0, and α = 0.93. For Genetic 
Algorithm the parameters were as follows: initial 
population of 50 individuals, the truncation factor 
is 30% of the initial population, while the 
probability of mutation and crossover was 0.9 for 
both cases. 

Finally, for the Evolutionary Strategy, the count 
of individuals of the initial population and the 
truncation factor applied were similar to the 
Genetic Algorithm, using a mutation probability of 
1. It is important to note that we analyzed different 
values of the parameters of the algorithms, and 
those that offered best results were chosen. 

To assess the quality of the solutions offered 
by each algorithm, an average of the values of Pf 
obtained in each of the 30 runs is calculated. The 
use of this measure is intended to provide an idea 
of how the algorithm finds the best solution. 
Besides, for each algorithm, the average number 
of iterations to converge to the best solution was 
taken. 

Figure 3 shows the behavior of the algorithms 
from the average of the results obtained in the 
evaluation of the goal function for each of the 
problems discussed; the first 10000 iterations are 
showed. Notice that the Best know value is the 
best solution obtained by the algorithms, and it is 
used as a reference for comparing the algorithm's 
behavior. 

As it can be seen in four cases, Tabu Search 
(TS) and Simulated Annealing (SA) algorithms 
never reached the results of the other algorithms, 
although they tended to minimize the objective 
function. In this way we can see that the Hill 
Climbing (HC), Genetic Algorithm (GA) and 
Evolutionary Strategies converge more quickly in 
most of the problems. 

Moreover, as it can be appreciated in the 
graphs of Figures 3a, 3b y 3d, the Random 
Search (RS) algorithm tends to reach the 
minimum value. Taking into account this 
observation, Figure 4 shows the behavior of the 
RS algorithm in the last iterations, where it can be 
seen that this algorithm achieves a better value 
than the HC (Figure 4a), GA, ES and HC (Figure 
4b), HC and GA (Figure 4d). 

Table 3 presents a summary of the results for 
each algorithm, showing the iterations average 
that reached the minimum value for each of the 
discussed problems. As one can see, the HC is 
the algorithm that converges in less iterations 
than the others for all problems and stands in this 
value during the rest of iterations, but the quality 
of its solutions is below the others. This behavior 
may mean that it reaches a local optimum, which 
could justify the application of the Restart Hill 
Climbing (RHC) variant to make use of all the 
iterations and thus it would reach a better value. 

Once the corresponding experiments are 
fulfilled, we check if the RHC reaches better 
quality values than the HC and other algorithms 
(Figure 4). 
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a) 50 nodes 
 

 
b) 100 nodes 

  
 

c) 150 nodes 
 

 
c )    200 nodes 

Fig. 3. Average Objective Function per iteration 
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a) 
 

b) 

 
 

c)  d) 

Fig. 4. Behavior of the algorithms over final iterations 
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Table 3 shows the better value reached by 
each algorithm with respect to the Performance 
factor average. In this sense it is important to note 
that RHC (50 nodes), RS (100 nodes), GA (150 
nodes) and ES (150 and 200 nodes) are the 
algorithms that achieve more quality solutions for 
each problem. Results similar to these have not 
been previously reported in related papers, 
highlighting the fact that the RHC and ES 
algorithms were not used in any of the 
approaches mentioned in Section 2. 

In some scenarios the embedded system 
designer could expect that the HSP model returns 

a list of valid solutions instead of a single solution. 
Taking into account the last idea and that in 

the proposed model there are two conflicting 
goals in the objective function, we conducted an 
analysis of the results from the multi-objective 
point of view over 150 node problem. In this 
analysis, we calculated the optimal Pareto front 
[33, 34] for each algorithm, i.e., the non-
dominated solutions generated by each of the 
algorithms. 

Moreover, a Unified Pareto Front was 
generated from the non-dominated solutions 
obtained above. Finally, we calculated how many 

Table 3. Performance factor and Minimum iterations average to converge to minimum value for each algorithm 

Count of 
nodes 

Random search Tabu Search Hill Climbing 

Performance 
factor 

Iteration Performance 
factor 

Iteration Performance 
factor 

Iteration 

50 0.00000649 46.799 0.00506470 49.309 0.00000656 725 

100 0.00000665 48.087 0.13337911 49.253 0.00000856 12.676 

150 0.13078550 49.152 0.16722894 49.059 0.00000770 1.428 

200 0.00000686 47.225 0.20198062 49.523 0.00000779 2.277 

Count of 
nodes 

Restart hill climbing Simulated annealing Genetic algorithm 

Performance 
factor 

Iteration Performance 
factor 

Iteration Performance 
factor 

Iteration 

50 0.00000451 49.916 0.00353864 49.336 0.00000477 47.388 

100 0.00000672 47.638 0.12973347 38.494 0.00000681 42.503 

150 0.00000623 49.278 0.16834289 49.992 0.00000619 43.023 

200 0.00000689 43.818 0.19724766 48.675 0.00000696 36.316 

Count of 
nodes 

Evolutionary strategy 

Performance 
factor 

Iteration 

50 0.00000458 21.544 

100 0.00000693 22.662 

150 0.00000619 32.869 

200 0.00000677 44.206 
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solutions were provided to the unified front by the 
algorithms. 

Figure 5 shows the Pareto front of each 
algorithm for 150 node problem. As it can be 
seen, the RHC algorithm obtained a wider front 
with a good distribution of the solutions over the 
entire front. The HC y GA algorithms achieved 
solutions in a wider front, but in some portions of 
the front the solutions were sparser. The RS, TS 
and SA algorithms, despite of achieving solutions 
well distributed throughout its optimal front, were 
more compact and distant from the rest of the 
algorithms. 

Table 4 shows a summary of the analysis of 
non-dominated solutions generated for each 

algorithm with respect to the total of unique 
solutions. In general, the percentage of non-
dominated solutions for all algorithms is very low 
with respect to the total amount of distinct 
solutions generated. As one can see, RS, TS and 
SA are the algorithms which generate more 
unique solutions but only a few of these are non-
dominated and none of these are present in the 
unified front. In the particular case of the RS 
algorithm, it generates solutions with acceptable 
quality in almost all the problems and also 
generates a lot of unique solutions, but its 
contribution to the unified front is null. The HC 
algorithm generates a fewer amount of unique 
solutions, but achieves the major percentage of 

 
 

a) RS, TS, SA. b) HC, ES, GA, RHC. 

Fig. 5. Pareto Front for each algorithm 

Table 4. Non-dominated solutions for each algorithm and its contribution to Unified Pareto front 

Algorithm 
Total of 
generated 
solutions 

Total of non-
dominated 
solutions 

Percentage of 
non-
dominated 
solutions 

Solutions in 
the Unified 
front 

Percentage of  
solutions in the 
Unified front 

Random search 367.945 38 0,01 0 0 

Tabu search 284.707 70 0,02 0 0 

Hill climbing 10.089 108 1,0 2 1,8 

Restart hill climbing  237.908 119 0,05 93 83,7 

Simulated annealing 284.368 83 0,03 0 0 

Genetic algorithm 17.011 90 0,53 10 9 

Evolutionary strategy 17.193 35 0,2 6 5,4 
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non-dominated solutions, followed by GA and ES. 
Moreover, these three algorithms contribute with 
a little percentage of non-dominated solutions to 
the unified front. It is important to note that HCR 
was the algorithm that generated more non-
dominated solutions, and most of these were 
present in the unified front. 

Figure 6 shows the Unified Pareto Front 
considering the contributions of each algorithm. 
As it can be appreciated, the solutions presented 
in the front are provided by the RHC, GA, ES and 
HC algorithms. Moreover, the results show three 
trends: a first group of solutions dominated by 
area (ES), a second group of solutions dominated 
by time (GA), a third group covering the center of 
the front (RHC), including the solutions of the HC 
algorithm. In other words, the ES algorithm 
generates solutions with low cost in terms of area 
occupied by the design but a high impact on 
execution time, GA operates in the opposite way, 
and RHC generates solutions more balanced in 
area and time. The contribution of each algorithm 
to the Unified Pareto Optimal Front is showed in 
the last two columns of Table 4. As it can be 
appreciated, of 111 non-dominated solutions 
which make up the Unified Front, the highest 
percentage is provided by the RHC algorithm with 
83% of the solutions, with GA, ES and HC 
providing the rest. 

5 Conclusions 

This study shows that the RHC algorithm 
outperforms the GA, ES, HC, RS, SA and TS 
algorithms over the HSP problem, from the fuzzy 
logic point of view. To assess the quality of the 
solutions given by the algorithms, the 
performance factor metric and a fuzzy approach 
are introduced which allow to establish thresholds 
to consider when a good or a bad solution is 
obtained. The comparison of several 
metaheuristic algorithms under fuzzy approach for 
the HSP problem is not present in the related 
works consulted. 

The superiority of the RHC algorithm is given 
by the quality of the solutions, the amount of non-
dominated solutions, and the percentage of these 
presented in the Pareto front. It is important to 
highlight that the HCR solutions cover the center 
of the front, while the solutions of ES and GA are 
in the end of the front. These algorithms also 
achieve good quality solutions in many of the 
problems, like the RS algorithm, but the latter 
does not give solutions in the Pareto front. 
Besides, the SA and TS algorithms were the 
worse, with no solutions in the Pareto front and 
with discreet values of quality in the generated 
solutions. 

In view of these results, it can be concluded 
that the algorithm determines the type of solutions 
obtained (dominated by area or time). This 
analysis facilitates decision making in selecting 
the most appropriate algorithm depending on the 
application constraints.  

The comparison was made for different 
problems with sizes of 50, 100, 150 and 200 
nodes. For all instances, values of software 
runtime (sti), hardware area (hai) and hardware 
runtime (hti) for each node were simulated as in 
the related work.  
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