
Computación y Sistemas Vol. 17 No. 1, 2013 pp. 25-39
ISSN 1405-5546

An Application of Fuzzy Logic for Hardware/Software Partitioning
in Embedded Systems

Humberto Díaz Pando
1
, Sergio Cuenca Asensi

2
, Roberto Sepúlveda Lima

1
,

Jenny Fajardo Calderín
1
 and Alejandro Rosete Suárez

1

1
 School of Informatics Engineering, CUJAE, Havana

Cuba

2
 University of Alicante,

Spain

{hdiazp, sepul, rosete}@ceis.cujae.edu.cu, sergio@dtic.ua.es

Abstract. Hardware/Software partitioning (HSP) is a

key task for embedded system co-design. The main
goal of this task is to decide which components of an
application are to be executed in a general purpose
processor (software) and which ones, on a specific
hardware, taking into account a set of restrictions
expressed by metrics. In last years, several approaches
have been proposed for solving the HSP problem,
directed by metaheuristic algorithms. However, due to
diversity of models and metrics used, the choice of the
best suited algorithm is an open problem yet. This
article presents the results of applying a fuzzy approach
to the HSP problem. This approach is more flexible
than many others due to the fact that it is possible to
accept quite good solutions or to reject other ones
which do not seem good. In this work we compare six
metaheuristic algorithms: Random Search, Tabu
Search, Simulated Annealing, Hill Climbing, Genetic
Algorithm and Evolutionary Strategy. The presented
model is aimed to simultaneously minimize the
hardware area and the execution time. The obtained
results show that Restart Hill Climbing is the best
performing algorithm in most cases.

Keywords. Hardware/software co-design,

hardware/software partitioning, metaheuristic
algorithms.

Aplicación de lógica difusa para el
particionado hardware/software en

sistemas embebidos

Resumen. El Particionado Hardware/Software (PHS)

es una etapa fundamental en el co-diseño de sistemas
embebidos. El objetivo principal de esta etapa es
decidir qué componentes de la aplicación serían
ejecutados en un procesador de propósito general

(software) y cuáles en un hardware específico,
teniendo en cuenta las restricciones. En los últimos
años, se han propuesto diferentes estrategias para
resolver el problema PHS, las cuales utilizan en su
mayoría algoritmos metaheurísticos. Sin embargo,
debido a la diversidad de modelos y métricas
utilizadas, decidir qué algoritmo es mejor que otro es
un problema abierto. Este artículo presenta los
resultados de aplicar lógica difusa en el problema PHS.
Esta estrategia es más flexible que muchas de las
otras propuestas, ya que es posible aceptar soluciones
bastante buenas o rechazar otras que no parezcan
buenas. Además en este trabajo se comparan seis
algoritmos metaheurísticos: Búsqueda aleatoria,
Búsqueda tabú, Recocido simulado, Escalador de
colinas, Algoritmo genético y Estrategia evolutiva. El
modelo que se presenta está dirigido a minimizar de
forma simultánea el área de hardware y el tiempo de
ejecución del sistema. Los resultados muestran que el
escalador de colinas es el algoritmo que obtiene
mejores resultados en la mayoría de los casos.

Palabras clave. Co-diseño hardware/software,

particionado hardware/software, algoritmos
metaheurísticos.

1 Introduction

Nowadays there are many scenarios where you
can find devices that include Embedded Systems
(ES) to manage their operation. These systems
have three main characteristics [1]: they are (1)
single-functioned, (2) tightly constrained and (3)
reactive and real-time. The second feature means
that the design of an ES is guided by several
design metrics. There are many metrics which

26 Humberto Díaz Pando, Sergio Cuenca Asensi, Roberto Sepúlveda Lima…

Computación y Sistemas Vol. 17 No.1, 2013 pp. 25-39
ISSN 1405-5546

can be used to guide the design, e.g., size,
performance, cost per unit, flexibility, power
consumption, among others; given often the case
that for designing a system more than one metric
is involved. This implies that the design process
itself is complex, since it is necessary to reach a
compromise among different metrics.

ES design is fairly complex in most cases; the
development of a system requires implementing it
on a microprocessor (software component or Sw)
and partly on hardware (hardware component or
Hw). Traditionally, the design of Hw and the
design of Sw are developed separately and in
early stages of the design process. This
procedure does not ensure compliance with the
requirements and generate iterations which
increase costs for refining the design. The current
trend is to use a unified approach, namely, co-
design [2], for the hardware and software
components to allow, in addition, verifying the
correctness of design, exploring for various
possibilities of partitioning without having to go
through the costly phase of implementation.

One of the most important stages in the co-
design process is the Hardware/Software
Partitioning (HSP) [2, 3]. At this stage, the final
configuration which the system will adopt must be
defined, i.e., a decision about the functional
blocks to be implemented in software or in
hardware is taken. Usually, this decision is based
on the experience of the designer and/or making
a brief exploration of the design space. This
procedure, in addition to not complying with any
methodology, does not ensure an optimal result,
since for obtaining the best configuration it is
necessary to solve an optimization problem which
in most of its formulations is NP-hard [4].

To replace these ad-hoc methods, several
models [5, 6, 7, 8, 9, 10, 11] have been proposed
to reach a solution. These models vary in the
applied metrics and in the strategies or algorithms
used to solve the optimization problem. In most
cases, these models are driven by optimization of
a single design metric (area of hardware,
execution time or power consumption) and by
establishing restrictions over other metrics in
order to obtain a desirable solution according to
the defined model and to the system interests.

On the other hand, some of these models use
exact algorithms to obtain an exact solution to the

problem, but the search time increases
proportionally to the problem size. Taking into
account that in some cases a near optimal
solution is considered as good enough, many
models use metaheuristics algorithms (Simulated
Annealing, Tabu Search, Genetic Algorithms,
etc.), which allow to explore the design space to
find a good solution achieving an acceptable time
for searching a solution. The diversity of used
algorithms together with the lack of benchmarks
prevents the correct selection of an algorithm that
best suits to solve the HSP problem. There are
approaches that use other strategies like expert
systems combined with the use of fuzzy logic [5]
to model the reasoning of the designer and the
implicit subjectivity in how this designer solves the
problem in practice, modeling variables as fuzzy
linguistic variables.

This article presents three contributions. The
first contribution involves the proposal of a new
HSP model based on the use of the Performance
factor metric [12] which is used for finding
partitions that take into account two conflicting
objectives such as hardware cost (area) and
runtime. This approach use fuzzy logic to model
the behavior of variables involved in the decision
criteria. The second contribution is the application
of metaheuristic algorithms with no evidences of
prior use for the HSP problem and its comparison
with other metaheuristics that have been used
actually, yielding interesting results. The third
contribution is our study of the feasibility of
combining fuzzy logic with metaheuristic
algorithms, i.e., applying Soft Computing [13] for
solving the HSP problem.

2 Related Work

In recent decades there have been several works
that have proposed solutions to HSP. Usually, all
the proposals introduce variations in one or more
of three basic elements that make up this
problem: (1) initial system specification, (2)
modeling of the system and (3) searching the
solution.

In order to specify the system, it is necessary
to define its granularity and an initial
implementation [3, 5, 14, 15, 16]. The granularity
[15] is the size of a system function block

An Application of Fuzzy Logic for Hardware/Software Partitioning in Embedded Systems 27

Computación y Sistemas Vol. 17 No.1, 2013 pp. 25-39
ISSN 1405-5546

(instructions, basic blocks, control blocks,
functions or procedures) to be considered; this
should be taken into account during partitioning.

In addition, the system can be initially
implemented in software or hardware. If the
system is implemented in software (or hardware)
the partitioning strategy is to migrate the
functional blocks to the hardware (or software)
repeatedly to find the solution which meets the
design metrics imposed. The description of the
initial implementation can be done by using
different languages, preferably a high level
language (C, SystemC and VHDL/Verilog), to
specify the functions which the system must have.

The model defines how the system will be
represented before and during the partitioning
process, so at the beginning it is necessary to
define a computational model [17] to represent
the system.

The most widely used models are control flow
graphs, data flow graphs, and call graphs. Many
of these computer models are conditioned by the
chosen granularity. For example, if a granularity
at the function level or at procedure level is
selected, the model could be a call graph in which
nodes represent system functions and arcs
represent calls which one function makes to
another. The conclusion reached by the authors
in [17] is that the selection of a model depends on
a system type. After modeling the system it is
necessary to assign for each of the functional
blocks the estimated values of the metrics which
have been defined. In [5] it is possible to
appreciate the diversity of models that can be
used in partitioning process.

Finally, to find an optimal solution, or one close
to this, it is necessary to define the cost function,
constraints, and the algorithm which will solve the
optimization problem. In the first two tasks, the
design metrics are involved, which are derived
from the requirements of the embedded system.
There are different metrics to consider for an
embedded system designing (runtime, power
consumption, size, etc.) [1]; most of the
contributions use these metrics in the functions or
restrictions depending of the proposed model. In
[11] the author makes an abstraction of these
metrics considering only three groups: (1)
hardware cost, (2) software cost and (3)
communication costs between hardware and

software blocks. Several proposals use such
metrics as hardware area and execution time [6,
8, 18, 19]. In other works the authors combine
these metrics or use others like bus utilization and
processor [18], execution count of basic blocks
[20], the speedup resulting of moving a node from
software to hardware, power consumption [21],
communication cost [7, 8, 19], and proximity
between functions [19].

In relation to the algorithmic aspects, most of
the contributions use general-purpose heuristic
algorithms. In [14, 22] the authors propose
approaches based on the greedy strategy
algorithm.

Also, there have been several proposals
based on Tabu and Random search algorithms
[7, 22, 23, 24], while other solutions are based on
Simulated annealing [5, 20, 22, 23, 24], Genetic
algorithms [7, 23, 25] and particle swarm
optimization (PSO) [9, 10]. López-Vallejo and
López [5] and F. Vahid [22] use the Kernighan/Lin
algorithm. Several authors [5, 19, 22] use the
hierarchical clustering algorithm and Gupta and
De Micheli [18] use group migration.

Other studies employ specific-purpose
heuristics, such as the proposal of Jigang and
Srikanthan [7, 21], while still others use
algorithms based on dynamic [21] and linear
programming [6, 8, 26].

There are papers that apply fuzzy logic to
model the uncertainty of variables; among them
there is the proposal of López-Vallejo and López
[5], and López et al. [27], where the authors
suggest an expert system based on fuzzy logic. In
this paper, a model defining fuzzy variable sets
associated with the characteristics of each node
of the application is used. Next, a classification
module may obtain a valid solution to the
problem. Huang and Kim [28] use a Hybrid Neural
Fuzzy System for applying fuzzy logic and neural
networks in combination. Zhang et al. [29] apply
Soft Computing technics, an Evolutionary
Negative Selection Algorithm inspired from
Artificial Immune System.

On the other hand, there are studies in which
the authors compare their proposals with other
research, such as the case of Vahid´s work [22]
which compares an extension to the Min-Cut
algorithm or Kernighan/Lin heuristic with Random
Search, Simulated Annealing, Greedy

28 Humberto Díaz Pando, Sergio Cuenca Asensi, Roberto Sepúlveda Lima…

Computación y Sistemas Vol. 17 No.1, 2013 pp. 25-39
ISSN 1405-5546

Improvement, Hierarchical Clustering and
clustering followed by a greedy improvement;
good results are obtained with the first of these.

López-Vallejo and López [5] compared
Kernighan/Lin heuristics with Simulated
Annealing, Hierarchical Clustering and an expert
system. In [6, 8] the authors modify the algorithm
proposed by Madsen et al. [26] based on linear
programming, then a comparison between both
algorithms is done. Jigang et al. [7] compare a
heuristic algorithm with Simulated Annealing,
Tabu Search and Genetic Algorithm. In the work
of Wiangtong et al. [23] good results are achieved
with Tabu Search over Genetic Algorithm and
Simulated Annealing.

In summary, most of the contributions are
aimed at partitioning models and algorithmic
aspects. In the first case we conclude that there is
a wide variety of models which apply various
metrics, e.g., area occupied and system response
time; these metrics are the most frequently used
as the objective function and constraints for
modeling the problem.

From the point of view of the algorithmic
aspect, Table 1 is a summary of the methods
used in the works listed above. As it can be seen,

in most of the contributions general-purpose
heuristic algorithms are used, but there are some
that have not yet been evaluated for the HSP
problem. Such is the case of Hill Climbing and
Evolutionary Strategy which in similar problems
have offered good results [30, 31]. Finally, it
should be noted that it is difficult to compare
algorithms because each author models the
problem differently and uses different
benchmarks. Thus, it is necessary to perform a
unique formulation of the problem in order to
compare several algorithms.

3 Hardware/Software Partitioning
Model

The HSP model defined in this section considers
the following characteristics: granularity, metrics
associated with the functional blocks,
computational model, representation of the
solution, domain of the variables and the cost
function.

Let P be the set of functions that make up the
program to be partitioned, defined as P =
{p1,p2,...,pn} where pi is a function or program

Table 1. Summary of the contributions to the HSP

Algorithms

Year

1993 1997 2003 2004 2006 2007 2008 2010

Random search [22]

Tabu search [24] [7]

Greedy [22] [14] [7]

Simulated annealing [22, 24] [5]

Genetic algorithm [20] [7]

PSO [10] [9]

Specific heuristics [21] [7]

KL [22] [5]

Group Migration [18]

Hierarchical clustering [22] [5] [19]

Dynamic Programming [21]

Linear Programming [26] [6] [8]

Soft Computing Technique [5] [28,29]

Comparison [22] [5] [7]

An Application of Fuzzy Logic for Hardware/Software Partitioning in Embedded Systems 29

Computación y Sistemas Vol. 17 No.1, 2013 pp. 25-39
ISSN 1405-5546

method (coarse granularity). Let G = {V, E} be the
computational model, a call graph, which
represents the set of functions or methods that
belongs to the program P. In this graph, each
vertex vi belongs to the set V = {v1,v2,…,vn}, and
it is matched with an element of the set P. The set
E = {e1,e2,...,en} represents dependencies
between vertices.

Once the system is represented under this
model, values for the metrics are associated to
each node. The following metrics are used:
software execution time (sti), occupied hardware
area (hai), and the hardware execution time (hti).
Figure 1 shows an example of the process
described previously.

In this model, a solution to the partitioning is
expressed as a set of binary elements X =
{x1,x2,...,xn}, where the i

th
 element represents the

type of implementation assigned to the function pi;
if xi = 1, it means deployment and implementation
on Hw, or implementation on Sw otherwise. Given
the above stated, it is possible to calculate the
hardware area used for designing (A) as:

 



n

i

ii ArchCosthaxA
1

(1)

ArchCost represents a basic architecture cost.
Any solution, even pure software implementation,
needs a minimal hardware infrastructure

(peripherals, memory, processor, etc) which is
expressed by ArchCost.

The system execution time (T) is defined by

  



n

i

iiii htxstxT
1

1

(2)

To take advantage of fuzzy logic, these
metrics are modeled as fuzzy sets of the same
name as

 )(, aaA 
 )(, ttT  (3)

Each one of the elements a or t of the sets will
be modeled as a linguistic variable in terms of
{large} area or {large} time. This implies that the
pertinence values µ(a) and µ(t) of each variable
can be obtained applying the Gamma function
(see Figure 2).

In Figure 2a, the upper limit of the area
variable is defined as Amax/βA, where Amax denotes
the area required in the case when all blocks are
assigned to hardware. The lower limit is defined
as a function of the upper limit by Amax/(βAαA).
Similarly, the upper and lower limits for the time
variable are defined as in Figure 2b; the upper
limit of time is defined as Tmax/βT, whereas the
lower limit is defined as Tmax/(βTαA). Tmax denotes
the time consumed by the design in the case
when all blocks are assigned to software.

a) b) c)

Fig. 1. Example of set-up process prior to finding solution process

30 Humberto Díaz Pando, Sergio Cuenca Asensi, Roberto Sepúlveda Lima…

Computación y Sistemas Vol. 17 No.1, 2013 pp. 25-39
ISSN 1405-5546

The use of fuzzy logic makes it possible to
have a flexible model in terms of the solution
space to be explored, because by varying the
lower and upper limits according to the system
requirements it is possible to accept quite good
solutions or reject other ones which do not seem
quite good. In this way the model is more flexible
than the classical variant where the upper limits
are equal to the lower limits. It is implied that only
good solutions are accepted.

Once the initial parameters are established, it
is necessary to define the metrics and the
objective function which will guide the searching
process. In this work the metric is the
Performance factor (Pf) proposed in [12], which
unifies the hardware area (A) and execution time
(T) of the system. It is calculated as Pf = A*T. The
goal of using this metric is to obtain a solution that
meets both metrics. It is similar to the embedded
system designer who executes this task in
practice. In this work, the metrics A and T are

modeled as fuzzy sets, and Pf is calculated using
the pertinence functions defined previously and
the function x*y as T-Norm operation. Taking into
account the previous elements, the objective
function is defined as.

)(*)(taPf 
 (2)

4 Experiments and Results

As it was discussed above, there is no evidence
of a well-defined benchmark that allows an
effective comparison between algorithms [7, 11].
To overcome this difficulty, many authors [4, 20,
23, 28] use in their experiments an experimental
approach based on graph simulations. In this
paper we adopted this approach to conduct the
experiments and validate the model.

Our experiments were executed on four
systems or problems represented by graphs

a) Linguistic variable Area b) Linguistic variable Time

Fig. 2. Gamma functions

Table 2. Characteristics of the generated problems

Count of
nodes

Minimum
Area

Lower
limit

Upper
limit

Maximum
Area

Minimum

Time

Lower
limit

Upper
limit

Maximum

Time

50 10 468 1562 2232 189 282 705 784

100 10 1168 3894 5564 440 618 1547 1719

150 10 1480 4933 7048 648 857 2144 2383

200 10 2258 7529 10757 865 1107 2769 3077

An Application of Fuzzy Logic for Hardware/Software Partitioning in Embedded Systems 31

Computación y Sistemas Vol. 17 No.1, 2013 pp. 25-39
ISSN 1405-5546

composed by 50, 100, 150 and 200 nodes. The
values of software execution time (sti), hardware
area occupied (hai) and hardware execution time
(hti) were generated randomly, as in [4, 20, 23,
28].For the case of software execution time (sti),
values were generated randomly in the range [1,
30]; while for the hardware area (hai) values were
generated in the range [1,100]. Since the
execution time for one node implemented in
software is generally greater than in a hardware
implementation, the execution time of the node in
hardware (hti) was generated randomly in the
range [1,1/2 * sti].

For these simulated data, each algorithm was
executed 30 times, and in each execution,
evaluations of the objective function were made,
i.e., for each of the 30 executions, 50000
solutions for each problem were generated. Table
2 summarizes the main features of the problems
used in our experiments. As it can be seen, the
same ArchCost (Minimum area) for all problems
was established, and the lower and upper limits
were established according to possible user
requirements.

In our experiments, we applied Metaheuristics
algorithms based on a point (Tabu Search, Hill
Climbing, Simulated Annealing), algorithms based
on population (Genetic Algorithm, Evolutionary
Strategy), and for the aim of comparison we also
used the Random Search algorithm.

The algorithms were implemented using the
Biciam library [32], which employs a unified model
of metaheuristics algorithms. In the case of
Simulated Annealing, the parameters used were
as follows: initial temperature = 15, final
temperature = 0, and α = 0.93. For Genetic
Algorithm the parameters were as follows: initial
population of 50 individuals, the truncation factor
is 30% of the initial population, while the
probability of mutation and crossover was 0.9 for
both cases.

Finally, for the Evolutionary Strategy, the count
of individuals of the initial population and the
truncation factor applied were similar to the
Genetic Algorithm, using a mutation probability of
1. It is important to note that we analyzed different
values of the parameters of the algorithms, and
those that offered best results were chosen.

To assess the quality of the solutions offered
by each algorithm, an average of the values of Pf
obtained in each of the 30 runs is calculated. The
use of this measure is intended to provide an idea
of how the algorithm finds the best solution.
Besides, for each algorithm, the average number
of iterations to converge to the best solution was
taken.

Figure 3 shows the behavior of the algorithms
from the average of the results obtained in the
evaluation of the goal function for each of the
problems discussed; the first 10000 iterations are
showed. Notice that the Best know value is the
best solution obtained by the algorithms, and it is
used as a reference for comparing the algorithm's
behavior.

As it can be seen in four cases, Tabu Search
(TS) and Simulated Annealing (SA) algorithms
never reached the results of the other algorithms,
although they tended to minimize the objective
function. In this way we can see that the Hill
Climbing (HC), Genetic Algorithm (GA) and
Evolutionary Strategies converge more quickly in
most of the problems.

Moreover, as it can be appreciated in the
graphs of Figures 3a, 3b y 3d, the Random
Search (RS) algorithm tends to reach the
minimum value. Taking into account this
observation, Figure 4 shows the behavior of the
RS algorithm in the last iterations, where it can be
seen that this algorithm achieves a better value
than the HC (Figure 4a), GA, ES and HC (Figure
4b), HC and GA (Figure 4d).

Table 3 presents a summary of the results for
each algorithm, showing the iterations average
that reached the minimum value for each of the
discussed problems. As one can see, the HC is
the algorithm that converges in less iterations
than the others for all problems and stands in this
value during the rest of iterations, but the quality
of its solutions is below the others. This behavior
may mean that it reaches a local optimum, which
could justify the application of the Restart Hill
Climbing (RHC) variant to make use of all the
iterations and thus it would reach a better value.

Once the corresponding experiments are
fulfilled, we check if the RHC reaches better
quality values than the HC and other algorithms
(Figure 4).

32 Humberto Díaz Pando, Sergio Cuenca Asensi, Roberto Sepúlveda Lima…

Computación y Sistemas Vol. 17 No.1, 2013 pp. 25-39
ISSN 1405-5546

a) 50 nodes

b) 100 nodes

c) 150 nodes

c) 200 nodes

Fig. 3. Average Objective Function per iteration

An Application of Fuzzy Logic for Hardware/Software Partitioning in Embedded Systems 33

Computación y Sistemas Vol. 17 No.1, 2013 pp. 25-39
ISSN 1405-5546

a)

b)

c) d)

Fig. 4. Behavior of the algorithms over final iterations

34 Humberto Díaz Pando, Sergio Cuenca Asensi, Roberto Sepúlveda Lima…

Computación y Sistemas Vol. 17 No.1, 2013 pp. 25-39
ISSN 1405-5546

Table 3 shows the better value reached by
each algorithm with respect to the Performance
factor average. In this sense it is important to note
that RHC (50 nodes), RS (100 nodes), GA (150
nodes) and ES (150 and 200 nodes) are the
algorithms that achieve more quality solutions for
each problem. Results similar to these have not
been previously reported in related papers,
highlighting the fact that the RHC and ES
algorithms were not used in any of the
approaches mentioned in Section 2.

In some scenarios the embedded system
designer could expect that the HSP model returns

a list of valid solutions instead of a single solution.
Taking into account the last idea and that in

the proposed model there are two conflicting
goals in the objective function, we conducted an
analysis of the results from the multi-objective
point of view over 150 node problem. In this
analysis, we calculated the optimal Pareto front
[33, 34] for each algorithm, i.e., the non-
dominated solutions generated by each of the
algorithms.

Moreover, a Unified Pareto Front was
generated from the non-dominated solutions
obtained above. Finally, we calculated how many

Table 3. Performance factor and Minimum iterations average to converge to minimum value for each algorithm

Count of
nodes

Random search Tabu Search Hill Climbing

Performance
factor

Iteration Performance
factor

Iteration Performance
factor

Iteration

50 0.00000649 46.799 0.00506470 49.309 0.00000656 725

100 0.00000665 48.087 0.13337911 49.253 0.00000856 12.676

150 0.13078550 49.152 0.16722894 49.059 0.00000770 1.428

200 0.00000686 47.225 0.20198062 49.523 0.00000779 2.277

Count of
nodes

Restart hill climbing Simulated annealing Genetic algorithm

Performance
factor

Iteration Performance
factor

Iteration Performance
factor

Iteration

50 0.00000451 49.916 0.00353864 49.336 0.00000477 47.388

100 0.00000672 47.638 0.12973347 38.494 0.00000681 42.503

150 0.00000623 49.278 0.16834289 49.992 0.00000619 43.023

200 0.00000689 43.818 0.19724766 48.675 0.00000696 36.316

Count of
nodes

Evolutionary strategy

Performance
factor

Iteration

50 0.00000458 21.544

100 0.00000693 22.662

150 0.00000619 32.869

200 0.00000677 44.206

An Application of Fuzzy Logic for Hardware/Software Partitioning in Embedded Systems 35

Computación y Sistemas Vol. 17 No.1, 2013 pp. 25-39
ISSN 1405-5546

solutions were provided to the unified front by the
algorithms.

Figure 5 shows the Pareto front of each
algorithm for 150 node problem. As it can be
seen, the RHC algorithm obtained a wider front
with a good distribution of the solutions over the
entire front. The HC y GA algorithms achieved
solutions in a wider front, but in some portions of
the front the solutions were sparser. The RS, TS
and SA algorithms, despite of achieving solutions
well distributed throughout its optimal front, were
more compact and distant from the rest of the
algorithms.

Table 4 shows a summary of the analysis of
non-dominated solutions generated for each

algorithm with respect to the total of unique
solutions. In general, the percentage of non-
dominated solutions for all algorithms is very low
with respect to the total amount of distinct
solutions generated. As one can see, RS, TS and
SA are the algorithms which generate more
unique solutions but only a few of these are non-
dominated and none of these are present in the
unified front. In the particular case of the RS
algorithm, it generates solutions with acceptable
quality in almost all the problems and also
generates a lot of unique solutions, but its
contribution to the unified front is null. The HC
algorithm generates a fewer amount of unique
solutions, but achieves the major percentage of

a) RS, TS, SA. b) HC, ES, GA, RHC.

Fig. 5. Pareto Front for each algorithm

Table 4. Non-dominated solutions for each algorithm and its contribution to Unified Pareto front

Algorithm
Total of
generated
solutions

Total of non-
dominated
solutions

Percentage of
non-
dominated
solutions

Solutions in
the Unified
front

Percentage of
solutions in the
Unified front

Random search 367.945 38 0,01 0 0

Tabu search 284.707 70 0,02 0 0

Hill climbing 10.089 108 1,0 2 1,8

Restart hill climbing 237.908 119 0,05 93 83,7

Simulated annealing 284.368 83 0,03 0 0

Genetic algorithm 17.011 90 0,53 10 9

Evolutionary strategy 17.193 35 0,2 6 5,4

36 Humberto Díaz Pando, Sergio Cuenca Asensi, Roberto Sepúlveda Lima…

Computación y Sistemas Vol. 17 No.1, 2013 pp. 25-39
ISSN 1405-5546

non-dominated solutions, followed by GA and ES.
Moreover, these three algorithms contribute with
a little percentage of non-dominated solutions to
the unified front. It is important to note that HCR
was the algorithm that generated more non-
dominated solutions, and most of these were
present in the unified front.

Figure 6 shows the Unified Pareto Front
considering the contributions of each algorithm.
As it can be appreciated, the solutions presented
in the front are provided by the RHC, GA, ES and
HC algorithms. Moreover, the results show three
trends: a first group of solutions dominated by
area (ES), a second group of solutions dominated
by time (GA), a third group covering the center of
the front (RHC), including the solutions of the HC
algorithm. In other words, the ES algorithm
generates solutions with low cost in terms of area
occupied by the design but a high impact on
execution time, GA operates in the opposite way,
and RHC generates solutions more balanced in
area and time. The contribution of each algorithm
to the Unified Pareto Optimal Front is showed in
the last two columns of Table 4. As it can be
appreciated, of 111 non-dominated solutions
which make up the Unified Front, the highest
percentage is provided by the RHC algorithm with
83% of the solutions, with GA, ES and HC
providing the rest.

5 Conclusions

This study shows that the RHC algorithm
outperforms the GA, ES, HC, RS, SA and TS
algorithms over the HSP problem, from the fuzzy
logic point of view. To assess the quality of the
solutions given by the algorithms, the
performance factor metric and a fuzzy approach
are introduced which allow to establish thresholds
to consider when a good or a bad solution is
obtained. The comparison of several
metaheuristic algorithms under fuzzy approach for
the HSP problem is not present in the related
works consulted.

The superiority of the RHC algorithm is given
by the quality of the solutions, the amount of non-
dominated solutions, and the percentage of these
presented in the Pareto front. It is important to
highlight that the HCR solutions cover the center
of the front, while the solutions of ES and GA are
in the end of the front. These algorithms also
achieve good quality solutions in many of the
problems, like the RS algorithm, but the latter
does not give solutions in the Pareto front.
Besides, the SA and TS algorithms were the
worse, with no solutions in the Pareto front and
with discreet values of quality in the generated
solutions.

In view of these results, it can be concluded
that the algorithm determines the type of solutions
obtained (dominated by area or time). This
analysis facilitates decision making in selecting
the most appropriate algorithm depending on the
application constraints.

The comparison was made for different
problems with sizes of 50, 100, 150 and 200
nodes. For all instances, values of software
runtime (sti), hardware area (hai) and hardware
runtime (hti) for each node were simulated as in
the related work.

References

1. Vahid, F. & Givargis, T. (2002). Embedded

System Design: A Unified Hardware/Software
Introduction. New York: Wiley.

2. De Micheli, G. & Gupta, R.K. (2002). Hardware-

software co-design. In G. De Micheli, R. Ernst, &
W. Wolf, (Eds.), Readings in hardware/software

Fig. 6. Unified Pareto Optimal Front

An Application of Fuzzy Logic for Hardware/Software Partitioning in Embedded Systems 37

Computación y Sistemas Vol. 17 No.1, 2013 pp. 25-39
ISSN 1405-5546

co-design (30–44). San Francisco: Morgan
Kaufmann Publishers.

3. Wolf, W. (2003). A decade of hardware/software
codesign. Computer, 36(4), 38–43.

4. Arató, P., Mann, Z.A., & Orbán, A. (2005).

Algorithmic aspects of hardware/software
partitioning. ACM Transactions on Design
Automation of Electronic Systems (TODAES),
10(1), 136–156.

5. López-Vallejo, M. & López, J.C. (2003). On the

hardware-software partitioning problem: System
modeling and partitioning techniques. ACM
Transactions on Desing Automation of Electronic
Systems (TODAES), 8(3), 269–297.

6. Wu, J. & Srikanthan, T. (2006). Low-complex

dynamic programming algorithm for
hardware/software partitioning. Information
Processing Letters, 98(2), 41–46.

7. Jigang, W., Srikanthan, T., & Jiao, T. (2008).

Algorithmic aspects for functional partitioning and
scheduling in hardware/software co-design.
Design Automation for Embedded Systems, 12(4),
345–375.

8. Wu, J.G., Srikanthan, T., & Zou, G.W. (2008).

New model and algorithm for hardware/software
partitioning. Journal of Computer Science and
Technology, 23(4), 644–651.

9. Bhattacharya, A., Konar, A., Das, S., Grosan,
C., & Abraham, A. (2008). Hardware software

partitioning problem in embedded system design
using particle swarm optimization algorithm. 2

nd

International Conference on Complex, Intelligent
and Software Intensive Systems, Catalonia, Spain,
171–176.

10. Farmahini-Farahani, A., Kamal, M., Fakhraie,
S.M., & Safari, S. (2007). HW/SW partitioning
using discrete particle swarm. 17th ACM Great
Lakes symposium on VLSI (GLSVLSI '07), Stresa-
Lago Maggiore, Italy, 359–364.

11. Mann, Z.Á. (2005). Partitioning algorithms for
hardware/software co-design. Ph.D. dissertation,
Budapest Univerity of Technology and Economics,
Budapest, Hungary.

12. Mourelle, L.M. & Nedjah, N. (2004). Efficient

cryptographic hardware using the co-design
methodology. International Conference on
Information Technology: Coding and Computing
(ITCC 2004), Las Vegas, Nevada, USA, 2, 508–
512.

13. Verdegay, J.L., Yager, R.R., & Bonissone, P.P.
(2008). On heuristics as a fundamental constituent
of soft computing. Fuzzy Sets Systems, 159(7),
846–855.

14. Adhipathi, P. (2004). Model based approach to
hardware/software partitioning of SOC designs.

Master’s thesis, Faculty of the Virginia Polytechnic
Institute and State University, Blacksburg, Virginia,
USA.

15. Henkel, J. & Ernst, R. (2001). An approach to

automated hardware/software partitioning using a
flexible granularity that is driven by high-level
estimation techniques. IEEE Transactions on Very
Large Scale Integration Systems, 9(2), 273–289.

16. Shaout, A., El-Mousa, A.H., & Mattar, K. (2010).

Models of computation for heterogeneous
embedded systems in Electronic Engineering and
Computing Technology. Electronic Engineering
and Computing Technology. Lecture Notes in
Electrical Engineering, 60, 201–213.

17. Cortés, L.A., Eles, P., & Peng, Z. (1999). A
survey on hardware/software codesign
representation models. Linköping, Sweden:
Linköping University.

18. Gupta, R.K. & De Micheli, G. (1993). Hardware-
software cosynthesis for digital systems. IEEE
Design & Test of Computers, 10(3), 29–41.

19. Göhringer, D., Hübner, M., Benz, M., & Becker,
J. (2010). A design methodology for application

partitioning and architecture development of
reconfigurable multiprocessor systems-on-chip.
18th IEEE Annual International Symposium on
Field-Programmable Custom Computing Machines
(FCCM), Charlotte, NC, USA, 259–262.

20. Ernst, R., Henkel, J., & Benner, T. (1993).

Hardware-software cosynthesis for
microcontrollers. IEEE Design & Test of
computers, 10(4), 64–75.

21. Jigang, W. & Srikanthan, T. (2006). Algorithmic

aspects of area-efficient hardware/software
partitioning. The Journal of Supercomputing,
38(3), 223–235.

22. Vahid, F. (1997). Modifying min-cut for hardware
and software functional partitioning. 5

th

International Workshop on Hardware/Software Co-
Design (CODES/CASHE’97), Braunschweig,
Germany, 43–48

23. Wiangtong, T., Cheung, P.Y.K., & Luk,
W. (2002). Comparing three heuristic search

methods for functional partitioning in hardware-
software codesign. Design Automation for
Embedded Systems, 6(4), 425–449.

24. Eles, P., Peng, Z., Kuchcinski, K., & Doboli,
A. (1997). System level hardware/software

partitioning based on simulated annealing and
tabu search. Design Automation for Embedded
Systems, 2(1), 5–32.

38 Humberto Díaz Pando, Sergio Cuenca Asensi, Roberto Sepúlveda Lima…

Computación y Sistemas Vol. 17 No.1, 2013 pp. 25-39
ISSN 1405-5546

25. Purnaprajna, M., Reformat, M., & Pedrycz, W.
(2007). Genetic algorithms for hardware-software

partitioning and optimal resource allocation.
Journal of Systems Architecture: the
EUROMICRO Journal, 53(7), 339–354.

26. Madsen, J., Grode, J., Knudsen, P.V., Petersen,
M.E., & Haxthausen, A. (1997). LYCOS: the
lyngby co-synthesis system. Design Automation
for Embedded Systems, 2(2), 195–235.

27. López, M.L., Iglesias, C.A., & López, J.C. (1998).

A knowledge-based system for hardware-software
partitioning. Design, automation & test in Europe,
Paris, France, 914–915.

28. Huang, Y. & Kim, Y.S. (2007). Boltzmann

Machine Incorporated Hybrid Neural Fuzzy
System for Hardware/Software Partitioning in
Embedded System Design. 4

th
 International

Conference on Modeling Decisions for Artificial
Intelligence (MDAI '07), Kitakyushu, Japan, 307–
317.

29. Zhang, Y., Luo, W., Zhang, Z., Li, B., & Wang,
X. (2008). A hardware/software partitioning

algorithm based on artificial immune principles.
Applied Soft Computing, 8(1), 383–391

30. Rosete-Suárez, A., Nogueira-Keeling,
A., Ochoa-Rodríguez, A., & Sebag, M. (1999).

Hacia un enfoque general del trazado de grafos.
Revista Iberoamericana de Inteligencia Artificial,
3(8), 18–26.

31. Rosete-Suarez, A., Ochoa-Rodriguez, A., &
Sebag, M. (1999). Automatic graph drawing and

stochastic hill climbing. Genetic and Evolutionary
Computation Conference, Orlando, Florida,
USA, 2, 1699–1706.

32. J. Fajardo & A. Rosete. (2011). Algoritmo

multigenerador de soluciones para la competencia
y colaboración de generadores metaheurísticos.
Revista Internacional de Investigación de
Operaciones (RIIO), 1.

33. Loranca, M.B.B. & Galván, C.G. (2012).

Búsqueda de entorno variable multiobjetivo para
resolver el problema de particionamiento de datos
espaciales con características poblacionales.
Computación y Sistemas, 16(3), 335–347.

34. Gómez, J.C. & Terashima-Marín, H. (2012).

Building general hyper-heuristics for multi-
objective cutting stock problems. Computación y
Sistemas, 16(3), 321–334.

Humberto Díaz Pando is Ph.D.
student at Alicante University. He
received his Master degree in
Applied Informatics at the Faculty of
Informatics Engineering, ISPJAE,
La Habana, Cuba. His research
interests are Hardware-Software

Co-design and Partitioning and Embedded
Systems for Security.

Sergio A. Cuenca Asensi is
associate professor in the
Computer Architecture and
Technology Department at the
University of Alicante,
Spain. He received the PhD
degree in computer engineering
from the University Miguel

Herández of Elche, Spain, in 2002. His current
research interests include reconfigurable
computing, hardware/software codesign and
security and dependability in embedded systems.

Roberto Sepúlveda Lima
received his M.Sc. and Ph.D.
degree at Higher Polytechnic
Institute José Antonio Echeverría
(CUJAE), Havana, Cuba. His
research areas are Artificial
Intelligence and Cryptographic
Engineering.

Jenny Fajardo Calderín
received his M.Sc. degree in
Applied Informatics from Higher
Polytechnic Institute José
Antonio Echeverría (CUJAE),
Havana, Cuba. She is Ph.D.
student at Granada University.

The main subjects of research are associated
with basic academic courses and academic
activities related to the themes custom Artificial
Intelligence.

An Application of Fuzzy Logic for Hardware/Software Partitioning in Embedded Systems 39

Computación y Sistemas Vol. 17 No.1, 2013 pp. 25-39
ISSN 1405-5546

Alejandro Rosete Suárez
received his M.Sc. and Ph.D.
degree in informatics from
Higher Polytechnic Institute José
Antonio Echeverría (CUJAE),
Havana (Cuba) in 1995 and
2000, respectively. He joined the

Department of Informatics, CUJAE in 1993. Since
2010 is the Head of the Department of Artificial
Intelligence and Infrastructure of Informatic
Systems (DIAISI). His current research interests
include optimization, metaheuristics, soft
computing, agent technology and data mining.

Article received on 07/10/2012; accepted on 18/12/2012.

