
Computación y Sistemas Vol. 17 No. 1, 2013 pp.41-52
ISSN 1405-5546

Feature Selection using Associative Memory Paradigm
and Parallel Computing

Mario Aldape-Pérez
1,2

, Cornelio Yáñez-Márquez
1
, Oscar Camacho-Nieto

1
,

and Ángel Ferreira-Santiago
2

1
 Instituto Politécnico Nacional (CIC), Distrito Federal,

Mexico

2
 Instituto Politécnico Nacional (ESCOM), Distrito Federal,

Mexico

www.aldape.mx, cyanez, oscarc@cic.ipn.mx, www.cornelio.org.mx

Abstract. Performance of most pattern classifiers is

improved when redundant or irrelevant features are
removed. Nevertheless, this is mainly achieved by
highly demanding computational methods or
successive classifiers’ construction. This paper shows
how the associative memory paradigm and parallel
computing can be used to perform Feature Selection
tasks. This approach uses associative memories in
order to get a mask value which represents a subset of
features which clearly identifies irrelevant or redundant
information for classification purposes. The
performance of the proposed associative memory
algorithm is validated by comparing classification
accuracy of the suggested model against the
performance achieved by other well-known algorithms.
Experimental results show that associative memories
can be implemented in parallel computing
infrastructure, reducing the computational costs needed
to find an optimal subset of features which maximizes
classification performance.

Keywords. Feature selection, associative memory,

pattern classification.

Selección de características utilizando
el paradigma de memoria asociativa y

computación paralela

Resumen. El rendimiento en la mayoría de los

clasificadores de patrones se mejora cuando las
características redundantes o irrelevantes son
eliminadas. Sin embargo, esto se logra a través de la
construcción de clasificadores sucesivos o mediante
algoritmos iterativos que implican altos costos
computacionales. Este trabajo muestra la aplicación del
paradigma de memoria asociativa y la computación
paralela para realizar tareas de selección de

características. Este enfoque utiliza las memorias
asociativas para obtener el valor de una máscara que
identifica claramente la información irrelevante o
redundante para fines de clasificación. El desempeño
del algoritmo propuesto es validado a través de la
comparación de la precisión predictiva alcanzada por
este modelo contra el desempeño alcanzado por otros
algoritmos reconocidos en la literatura actual. Los
resultados experimentales muestran que las memorias
asociativas pueden ser implementadas en
infraestructura de cómputo paralelo, reduciendo los
costos computacionales necesarios para encontrar el
subconjunto óptimo de características de maximiza el
desempeño de clasificación.

Palabras clave. Selección de características,

memorias asociativas, clasificación de patrones.

1 Introduction

Pattern recognition has existed for many years in
a wide range of human activity. However, the
general pattern recognition problem can be stated
in the following form: given a collection of objects
belonging to a predefined set of classes and a set
of measurements on these objects, identify the
membership class of each object by an
appropriate analysis of the measurements
(features).

Although features are functions of
measurements performed on a class of objects, in
most cases the initial set of features consists of a
large number of potential attributes which
constitute an obstacle not only to the accuracy but
to the efficiency of algorithms.

http://www.cornelio.org.mx/

42 Mario Aldape-Pérez, Cornelio Yáñez-Márquez, Oscar Camacho-Nieto...

Computación y Sistemas Vol. 17 No. 1, 2013 pp. 41-52
ISSN 1405-5546

In countless situations, it is a complicated task
to find proper features for all patterns in a class;
therefore, many machine learning algorithms
have been used as tools to identify relevant
information for classification purposes.

Support vector machines (SVMs) select a
small number of critical boundary samples from
each class and build a linear discriminant function
which separates them as widely as possible. The
main reason whereby SVMs are not commonly
used for feature selection results from the fact
that SVMs can perform badly in a situation of
many irrelevant features [1].

Another approach is to apply different degrees
of relevance to information; feature weighting
schemes tend to be easier to implement when the
obtained subset of “most relevant” features is fed
into another algorithm capable of making additive
changes to all weights. The main disadvantage of
these schemes is that convergence in the
learning phase is not guaranteed; moreover,
weighting techniques may have difficulties when
irrelevant features are present [2]. In order to
overcome this limitation, multiclassifier approach
arises [3, 4]; nonetheless, these methodologies
lack criterions that help to ignore redundant
information.

Although there is a large number of algorithms
used to classify patterns, most of them cannot
obtain an optimal solution to maximize
classification accuracy, nor to reduce the
dimensionality of the dataset [5]. There are
algorithms capable to obtain an optimal subset of
features which maximizes classification accuracy.
They fulfill this task by evaluating classification
accuracy achieved by the algorithm with each of
the possible subsets of features. This accuracy
assessment involves prohibitive computational
costs for non-parallelizable algorithms.

Some remarkable things to mention about
Associative Memories (AM) is that they are
represented as matrices, and duration of the
learning phase depends only on the number of
patterns used to train the associative memory [6];
as a consequence, convergence in the learning
phase is guaranteed [7, 9].

After carrying out the learning phase, the
knowledge is stored in a numeric array which can
be distributed and handled in parallel on multiple
processing nodes.

Each of the available processing nodes in a
computing cluster can evaluate the classification
performance using different subsets of features.
Thereby, the task of finding the best subset of
features can be distributed among the available
processors on each processing node in the
computing cluster. As a result, the subset of
features which maximizes classification accuracy
can be found in a reasonable time.

In this paper, associative memories and
parallel computing are used to identify the
relevance of the information in some widely used
datasets. By removing irrelevant information,
dimensionality of the problem is reduced and
classification performance is improved.

The paper is organized as follows. In Section 2
a succinct description of Associative Memories
fundamentals is presented. Section 3 introduces
the topic of Feature Selection and presents the
procedure used to reduce the dimensionality of
the datasets. Section 4 outlines how to implement
in parallel the proposed algorithm. Section 5
describes how the experimental phase was
conducted. Section 6 presents classification
accuracy results achieved by each one of the
compared algorithms in six different pattern
classification problems. Finally, some conclusions
are discussed in Section 7.

2 Associative Memories

Early models of learning matrices appeared more
than four decades ago [6, 9], and since then
associative memories have attracted the attention
of major research groups worldwide. From a
connectionist model perspective, an associative
memory can be considered a special case of the
neural computing approach for pattern
recognition [10].

An associative memory M is a system that
relates input patterns and output patterns. Input
patterns are represented by a column vector,
denoted by x , while output patterns are

represented by a column vector, denoted by y .

Each input vector forms an association with its
corresponding output vector. For each positive

integer k , the corresponding association is

denoted as  ,k kx y .

Feature Selection using Associative Memory Paradigm and Parallel Computing 43

Computación y Sistemas Vol. 17 No. 1, 2013 pp. 41-52
ISSN 1405-5546

An associative memory M is represented by a

matrix whose ij -th component is ijm . Associative

memory M is generated from an a priori finite set
of known associations, called the fundamental set
of associations. The fundamental set is

represented as   , | 1,2,...,x y p    with p as

the set cardinality.
Let n and m be the dimensions of the input

patterns and output patterns, where nx A  ,
my A  with  0,1A  . The patterns that form the

fundamental set are called fundamental patterns.

If it holds that  1,2,...,x y p     , M is

autoassociative, otherwise it is heteroassociative;
in this case, it is possible to establish that

 1,2,..., p  for which x y  .

If we consider the fundamental set of

patterns   , | 1,2,...,x y p    , where n and m

are the dimensions of the input patterns and
output patterns, respectively, it is said that

nx A  and my A  , where  0,1A  , then the

j -th component of an input pattern nx A 

is jx A  .

Analogously, the i -th component of an output

pattern my A  is represented as iy A  .

Therefore, the fundamental input and output
patterns are represented as follows:

1

2 n

n

x

x
x A

x








 
 
  
 
  
 

1

2 m

m

y

y
y A

y








 
 
  
 
  
 

A distorted version of a pattern kx to be

recalled is denoted as kx . An unknown input

pattern to be recalled is denoted as x . If when an

unknown input pattern x with  1,2,..., ,...,k p

is fed to an associative memory M , it happens
that the output corresponds exactly to the

associated pattern y , it is said that recalling is

correct.

3 Application to Feature Selection

The task of classification occurs in a wide range
of human activity; however, satisfactory results
depend on the amount of relevant information
obtained when coherent features are selected.

Feature Selection is focused on finding a set of
characteristics that best describes a hypothesis.

The number of features delimits the size of the
hypothesis space containing all hypotheses that
can be learned from data [11]. A hypothesis is a
function that predicts classes based on given
data. The linear increase of the number of
features implies an exponential increase of the
hypothesis space [12].

This section is divided into three parts; each
one addresses one stage of the proposed
algorithm. The first procedure describes
associative memory training. The second
describes the steps involved in the classification
phase. The third explains the procedure of feature
selection.

3.1 Learning Phase

The task of this phase is to find adequate
operators and a way to generate an associative
memory M which will store the p associations of

the fundamental set.
An associative memory M is obtained by

performing the following two steps:

1. Consider each one of the p associations

 ,x y  , so an m by n matrix is obtained

according to the following expression:

 

1 1 1 1

1

1

j n

t

i i j i n

m m j m n

y x y x y x

y x y x y x y x

y x y x y x

     

       

     

 
 
 
  
 
 
 
 

 (1)

2. An associative memory M is obtained by
adding all the p matrices:

44 Mario Aldape-Pérez, Cornelio Yáñez-Márquez, Oscar Camacho-Nieto...

Computación y Sistemas Vol. 17 No. 1, 2013 pp. 41-52
ISSN 1405-5546

 
1

p
t

ij

mxn

M y x m 



      (2)

In this way the ij -th component of an

associative memory M is expressed as follows:

1

p

ij i jm y x 





(3)

3.2 Classification Phase

This phase consists of finding the class to which

an unknown input pattern nx A  belongs.

Finding the class means getting my A  which

corresponds to x .

Classification phase is done by operating an
associative memory M with an unknown input

pattern x , where  1,2,..., ,...,k p . M x is

operated as follows:

 
1

p
t

M x y x x   



 
    

 
 .

(4)

Let’s expand Expression 4 this way:

   
t t

M x y x x y x x      

 

         
       .

(5)

Expression 5 lets us know which restrictions
have to be observed, thus correct recalling is
achieved. This is expressed as:

 
1

0

t if
x x

if

 
 

 


  


.

(6)

If the condition in Expression 6 is met, then a
correct recalling is expected. Therefore,
Expression 5 is given as

M x y   .

(7)

Once it is already known under which
conditions it is possible to successfully recover a

pattern, it is likely to state the classification rule,
where  is the maximum operator:

1

1 1

1

0

n n
m

ij j h hj j

j ji

if m x m x
y

otherwise

 

 

 

  
     

   



 

(8)

Expression 8 allows obtaining each of the
components of the vector representing the class
label.

Performance of the classification phase is
measured in terms of error rate; so, classifier
accuracy represents the correct classification rate
when unseen patterns are presented.

3.3 Selection of Relevant Features

This section introduces the procedure that
implements an associative memory to identify and
preserve relevant features for classification
purposes.

Definition 3.1: the r -th masking vector.

Let  0,1A  , let f be the number of features

in the original set of data, and let r be a

positive integer such that  1,2,..., (2 1)fr  .

The r -th masking vector of size n is then

defined to be

1

2

r

r

r n

r

n

e

e
e A

e

 
 
  
 
  
 

 .

(9)

Definition 3.2: IntegerToVector operator. Let

 0,1A  , let n be the dimension of an input

pattern and let r be a positive integer. The
IntegerToVector operator, takes r as input

and returns a column vector re with r value

expressed in its binary representation. Note

that
1

re is the Most Significant Bit (MSB), while
r

ne is the Least Significant Bit (LSB).

Example 3.1. Let  0,1A  , let 4n  and let

11r  . The IntegerToVector operator is

Feature Selection using Associative Memory Paradigm and Parallel Computing 45

Computación y Sistemas Vol. 17 No. 1, 2013 pp. 41-52
ISSN 1405-5546

applied to obtain the r -th masking vector as
stated in Definition 3.2.

To convert an integer to its binary
representation, we divide r by two repeatedly,
until the final remainder is zero. If we take only
the remainder of each division, then 11r  can
be expressed as

3 2 1 011 (1x2) (0 x2) (1x2) (1x2)r      
 

If we apply the IntegerToVector operator on r ,

we obtain the r -th masking vector re .

1

0
()

1

1

re IntegerToVector r

 
 
  
 
 
 

In summary, the IntegerToVector operator,

helps us to obtain a column vector re with

r expressed in its binary representation.
Let’s take classification rule presented in

Expression 8 and incorporate the r -th masking
vector presented in Expression 9. The resulting
expression is as follows:

 
1

1

0

n
r

ij j

ji

if m x e
y

otherwise









  

 



 ,

(10)

where  represents the maximum threshold

value and  is the maximum operator.

 1

1

n
m r

h hj j

j

m x e 



 
    

 
 .

(11)

Expression 10 classifies an unknown input
pattern using the r -th masking vector. This
expression allows us to estimate classification
performance of the associative memory, using
different sets of features, without having to
perform the training phase repeatedly. By not
having to perform the training phase repeatedly,
the computational costs are reduced, and it is
possible to search for an optimal subset of
features that maximizes classification
performance.

3.3.1 Feature Selection Procedure

1. Let n be the dimension of each input pattern

in the fundamental set, grouped in m different

classes.

2. Each one of the input patterns belongs to a k

class,  1,2, ,k m , represented by a

column vector whose components are

assigned by 1ky  , so 0jy  for

1,2, , 1, 1, ,j k k m   .

3. Create a classifier using Expressions 1, 2
and 3.

4. Use the IntegerToVector operator to obtain
the r -th masking vector, as stated in
Definition 3.2.

5. The classification phase is carried out
according to Expression 10 so an r -th
classification accuracy parameter is obtained.

6. Store the r -th classification accuracy
parameter and the r -th masking vector.

7. Compare the r -th classification accuracy

parameter with the  1r  -th classification

accuracy parameter. The best classification
accuracy value is stored.

8. Finalize when classification performance has
been estimated using all possible masking
vectors.

3.3.2 Time Complexity Analysis

It is generally accepted that an algorithm provides
a satisfactory solution when it produces a correct
answer efficiently. The efficiency of an algorithm
can be estimated by measuring the time required
by the computer to solve a problem using a given
algorithm.

The worst-case time complexity of an
algorithm is defined as a function of the size of
the input. For a given input size, the worst-case
time complexity is the maximal number of
execution steps needed for executing the
program on arbitrary input of that size.

Operations used to measure time complexity
can be single-precision floating point comparison,
single-precision floating point addition, single-
precision floating point division, variable
assignation, logical comparison, or any other

46 Mario Aldape-Pérez, Cornelio Yáñez-Márquez, Oscar Camacho-Nieto...

Computación y Sistemas Vol. 17 No. 1, 2013 pp. 41-52
ISSN 1405-5546

elemental operation. Listing 1 shows the
implementation of the feature selection process.

In order to analyze the time complexity of the
feature selection process, the following is defined:

 EO: elemental operation.

 n: dimension of input patterns.

 p: cardinality of the fundamental set.

Table 1 shows the number of elemental
operations required to execute each of the lines of
code shown in Listing 1. The code segment that
represents the largest number of operations is in
line 7 and 8. Executing these two lines of code,
the class label is recovered. Line 7 retrieves the

first component of the class label
1y , while line 8

retrieves the second component 2y .

The total number of Elemental Operations is
as follows:

_ 1 3(1 (2)) (1 (2))

7(1 (2)) 6(1 (2))

n n

n n

Total EOs n

p np

       

    

By grouping some terms, we obtain the
formula:

_ 2 3(2) 7(1 (2))

(1 (2)) (1 6)

n n

n

Total EOs p

n p

      

  

If we factor some terms, we get the following:

1

_ 2 3(2) (2) 7

7(2) 6 3(2)

n n

n n

Total EOs n n p

p np np

      

 

Finally, the equation of the total number of
Elemental Operations can be written as

_ 2 7 (1 (2)) (1 6)

(2)(3 7)

n

n

Total EOs p n p

p

       



The growth of time and space complexity with
increasing input size n is a suitable measure of

the efficiency of the algorithm. To obtain an
estimate of the complexity of the algorithm when it
is applied to a known test set, we chose the

Listing 1. Feature Selection Procedure

1: r_max=(2^(n));

2: for r=1:r_max-1

3: class_hit=0;

4: class_miss=0;

5: e_r = IntegerToVector(r);

6: for i=1:p

7: y_mu_1=sum(x_mu(i) .* e_r .* M(1));

8: y_mu_2=sum(x_mu(i) .* e_r .* M(2));

9: if y_mu_1>y_mu_2

10: class_label=class_1;

11: else

12: class_label=class_2;

13: end

14: if class_label==x_mu(i,n)

15: class_hit=class_hit+1;

16: else

17: class_miss=class_miss+1;

18: end

19: end

20: end

Table 1. Time Complexity Analysis

1: 1 EO, assignation

2: max_iter EO, comparison

3: max_iter EO, assignation

4: max_iter EO, assignation

5: max_iter*n EO, comparison

6: max_iter*p EO, comparison

7a: max_iter*n*p EO, multiplication

7b: max_iter*n*p EO, multiplication

7c: max_iter*n*p EO, addition

7d: max_iter*p EO, assignation

8a: max_iter*n*p EO, multiplication

8b: max_iter*n*p EO, multiplication

8c: max_iter*n*p EO, addition

8d: max_iter*p EO, assignation

9: max_iter*p EO, comparison

10: max_iter*p EO, assignation

14: max_iter*p EO, comparison

15: max_iter*p EO, assignation

Feature Selection using Associative Memory Paradigm and Parallel Computing 47

Computación y Sistemas Vol. 17 No. 1, 2013 pp. 41-52
ISSN 1405-5546

dataset with the largest number of features, which
is the Hepatitis disease dataset. As it is shown in
Table 2, each of the 155 instances has 19
features and a class label. The number of
fundamental input patterns is 155p  .

The growth of functions is usually described
using the big-O notation [13].

Definition 3.3. Let f and g be functions from

the integers or the real numbers to the real

numbers. We say that  f n is   O g n if

there are constants C and k such that

() ()f n C g n whenever n k .

The total number of Elemental Operations can
be computed as

_ 1 1088(1 (2)) 931(1 (2))n nTotal EOs n       .

A function  g n and constants C and k must

be found, such that the inequality holds. We

propose the following  g n :

1(2) 1088(2) 1088(2) 931 (2) 931 (2)n n n n nn n   

Then, if   2 , 20000ng n C  and 1k  , we

have that () 20000 ()f n g n whenever 1n  .

Therefore,  f n is  2nO .

4 Parallel Implementation

Once we know the procedure that must be carried
out to find an optimal subset of features, we can
reduce computational costs by distributing this
procedure in parallel computing infrastructure.

To accomplish this, we need to assign each
node a search range and a copy of the
associative memory which results from the
learning phase. After completing a search range,
each node delivers the masking vector with which
the associative memory achieved the best
classification rate in such search range. After all
nodes have completed the search task, the
master node retains the masking vector which
maximizes classification accuracy. In the event
that several masking vectors produce the best
classification performance, the masking vector
that represents the smallest subset is retained.

5 Experimental Phase

Throughout the experimental phase, six datasets
were used as the test set to estimate
classification performance of each one of the
compared algorithms. These datasets were taken
from the UCI machine learning repository from
which full documentation for all datasets can be
obtained. The main characteristics of these
datasets are shown in Table 2.

The performance of the proposed algorithm
was compared against the performance achieved
by the twenty best-performing algorithms of the
seventy six algorithms available in WEKA 3 Data
Mining Software in Java [14]. WEKA is an open
source software issued under the GNU General
Public License: Further information on each of the
algorithms used during the experimental phase
can be found in [15]. In order to carry out such a
comparison, we applied the same conditions and
validation schemes for each experiment.
Classification accuracy of each one of the
compared algorithms was calculated using 10-fold
cross-validation. The proposed algorithm was
parallelized using an MPI implementation for the
Java programming language [16] and tested on
an 8-machine cluster. Each machine has a dual-
core Intel Xeon CPU running at 2 GHz.

Table 2. Characteristics of datasets

Dataset Instances Attributes

1. Haberman 306 3

2. Liver 345 6

3. Inflammation 120 6

4. Breast 699 9

5. Heart 270 13

6. Hepatitis 155 19

6 Results and Discussion

Figures 1-6 show the running time of the feature
selection process using 10-fold cross-validation.
The proposed algorithm was tested in
configurations ranging from two to eight
simultaneous processors.

48 Mario Aldape-Pérez, Cornelio Yáñez-Márquez, Oscar Camacho-Nieto...

Computación y Sistemas Vol. 17 No. 1, 2013 pp. 41-52
ISSN 1405-5546

It can be seen in Figure 1 that when the
search process is distributed over a larger
number of processors, the execution time
increases. This result is contrary to the expected,
since if the search task is distributed among a
larger number of processors, the execution time is
expected to decrease. This unwanted behavior
occurs because the number of features of the
Haberman dataset is too small to be explored by
eight processors simultaneously. The increase in
running time (108.63 milliseconds) is due to
redundant message passing between the master
node and the computing nodes.

Figures 2-6 show the running time of the
feature selection process for the remaining
datasets. It can be seen that if the search task is
distributed among a larger number of processors,
the execution time decreases. Table 3 shows the
running time performance of the proposed
algorithm using all data sets. The running time
performance observed in Table 3 corresponds to
the expected behavior. The larger the number of
processors involved in the feature selection
process is, the shorter is the time to find the
optimal subset of features.

Table 4 shows classification accuracy results
achieved by each one of the compared algorithms
in six different pattern classification problems,
using 10-fold cross-validation.

Although WEKA 3 Data Mining Software in
Java [15] has more than seventy well known
algorithms implemented, only the twenty best-
performing algorithms were considered for
comparison purposes. According to the type of
learning scheme, each of these can be grouped in
one of the following types of classifiers:

Fig. 3. Running time using 10-fold cross-validation

Fig. 1. Running time using 10-fold cross-validation

Fig. 2. Running time using 10-fold cross-validation

Feature Selection using Associative Memory Paradigm and Parallel Computing 49

Computación y Sistemas Vol. 17 No. 1, 2013 pp. 41-52
ISSN 1405-5546

Table 3. Running time of the proposed algorithm using 10-fold cross-validation

Number of

processors

Haberman

(milliseconds)

Liver

(milliseconds)

Inflammation

(milliseconds)

Breast

(seconds)

Heart

(seconds)

Hepatitis

(minutes)

2 2530.59 16730.27 16395.66 1184.71 1773.29 404.20

3 2526.19 9654.51 9461.41 590.66 907.27 205.86

4 2556.62 6763.20 6627.93 412.13 631.25 145.73

5 2541.72 5736.41 5621.68 324.29 510.61 115.70

8 2634.82 4965.90 4866.58 237.26 393.05 92.79

Table 4. Classification accuracy using 10-fold cross-validation

Algorithm Haberman Liver Inflammation Breast Heart Hepatitis

1. AdaBoostM1 73.20 66.66 100.00 95.60 82.22 67.09

2. Bagging 73.20 73.04 100.00 96.19 83.70 69.67

3. BayesNet 72.54 56.81 100.00 97.21 82.22 69.03

4. Dagging 73.52 57.97 100.00 96.77 82.22 66.45

5. DecisionTable 72.54 57.97 100.00 95.75 83.33 72.25

6. DTNB 72.54 57.97 100.00 97.51 82.59 68.38

7. FT 72.87 70.43 100.00 96.92 82.22 69.03

8. LMT 73.85 69.85 100.00 96.48 82.22 67.09

9. Logistic 74.50 68.69 100.00 96.63 83.70 68.38

10. MultiClassClassifier 74.50 68.69 100.00 96.63 83.70 68.38

11. NaiveBayes 74.50 54.20 95.83 96.19 83.33 71.61

12. NaiveBayesSimple 73.85 55.07 95.83 96.33 82.96 70.96

13. NveBayesUpdateable 74.50 54.20 95.83 96.19 83.33 71.61

14. RandomCommittee 64.37 68.11 100.00 96.48 82.22 63.22

15. RandomForest 67.97 70.72 100.00 97.07 83.70 65.16

16. RandomSubSpace 72.22 64.05 100.00 95.54 82.22 67.74

17. RBFNetwork 72.87 66.08 100.00 95.90 84.07 69.67

18. RotationForest 73.20 73.04 100.00 97.21 82.59 66.45

19. SimpleLogistic 73.85 71.01 100.00 96.63 82.22 66.45

20. SMO 73.52 57.97 100.00 96.92 83.33 72.25

* Our proposal 76.33 65.50 100.00 97.80 83.70 85.16

50 Mario Aldape-Pérez, Cornelio Yáñez-Márquez, Oscar Camacho-Nieto...

Computación y Sistemas Vol. 17 No. 1, 2013 pp. 41-52
ISSN 1405-5546

Bayesian classifiers, Function-based
classifiers, Meta classifiers, Rule-based classifiers
and Decision Tree classifiers. The twenty best-
performing algorithms are as follows:

− Four algorithms based on the Bayesian
approach (BayesNet, NaiveBayes,
NaiveBayesSimple and Naive-
BayesUpdateable).

– Four function-based classifiers (Logistic,
RBFNetwork, SimpleLogistic and SMO).

– Seven metaclassifiers (AdaBoostM1,
Bagging, Dagging, MultiClassClassifier,
RandomCommittee, RandomSubSpace,
RotationForest).

– Two rule-based classifiers (DecisionTable
and DTNB).

– Three decision tree classifiers (FT, LMT,
Random-Forest).

Classification results are as follows: two of the
seven metaclassifiers (Bagging and
RotationForest]) achieved the best performance
in two of the six pattern classification problems.
Three decision trees classifiers (FT, LMT and
Random-Forest) achieved the best performance
in one of the six datasets. Likewise, one of the
four algorithms based on the Bayesian approach
(BayesNet) achieved the best performance in one
of the six datasets. Two rule-based classifiers
(DecisionTable and DTNB) achieved the best
performance in one of the six datasets. Similarly,
one of the four function-based classifiers
(RBFNetwork) achieved the best performance in
two of the six datasets.

It is worth noting that our proposal achieved
the best performance in four of the six pattern
classification problems. As it is shown in Table 4,
there is no particular method which surpasses all
the other algorithms in all sorts of problems. This
should not be surprising since Wolpert and
Macready [17] demonstrated that what an
algorithm gains in performance on one class of
problems is necessarily offset by its performance
on the remaining problems.

Table 5 shows the classification performance
achieved by the associative memory using the full
set of features against the classification
performance achieved by the associative memory
using the optimal subset of features.

Fig. 4. Running time using 10-fold cross-validation

Fig. 5. Running time using 10-fold cross-validation

Fig. 6. Running time using 10-fold cross-validation

Feature Selection using Associative Memory Paradigm and Parallel Computing 51

Computación y Sistemas Vol. 17 No. 1, 2013 pp. 41-52
ISSN 1405-5546

In all data sets, the feature selection procedure
found an optimal subset of features which
increases classification performance of the
associative memory.

7 Conclusions

In this paper, a novel approach to perform
Feature Selection tasks using Associative
Memory Paradigm and Parallel Computing is
presented. Throughout the experimental phase,
six datasets were used as test set to estimate
classification performance of each one of the
compared algorithms. Experimental results show
that associative memories can be implemented in
parallel computing infrastructure, reducing the
computational costs needed to find an optimal
subset of features which maximizes classification
performance.

As a result of analyzing the execution times
used by the proposed algorithm to find an optimal
subset of features, we conclude that the feature
selection procedure in an associative memory is
fully parallelizable. Consequently, this permits to
perform feature selection tasks in larger datasets
using the proposed algorithm.

Acknowledgements

The authors wish to thank the following
institutions for their support to develop the present

work: Science and Technology National Council
of Mexico (CONACyT), National System of
Researchers of Mexico (SNI), National
Polytechnic Institute of Mexico (IPN, Project No.
SIP-IPN 20121556) and the Institute of Science
and Technology of the Federal District (ICyT DF,
Project No. PIUTE10-77).

References

1. Maldonado, S., Weber, R., & Basak, J. (2011).

Simultaneous feature selection and classification
using kernel-penalized support vector machines.
Information Sciences: An International Journal,
181(1), 115–128.

2. Youn, E., Koenig, L., Jeong, M.K., & Baek, S.H.
(2010). Support vector-based feature selection

using Fisher’s linear discriminant and Support
Vector Machine. Expert Systems with Applications:
An International Journal, 37(9), 6148–6156.

3. Lan, Y., Soh, Y.C., & Huang, G.B. (2009).

Ensemble of online sequential extreme learning
machine. Neurocomputing, 72(13-15), 3391–3395.

4. Kittler, J., Hatef, M., Duin, R.P.W., & Matas, J.
(1998). On combining classifiers. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 20(3), 226–239.

5. Ozcift, A. & Gulten, A. (2011). Classifier

ensemble construction with rotation forest to
improve medical diagnosis performance of
machine learning algorithms. Computer Methods
and Programs in Biomedicine, 104(3), 443–451.

6. Steinbuch, K. (1961). Die lernmatrix. Kybernetik,
1(1), 36–45.

7. Steinbuch, K. (1964). Adaptive networks using
learning matrices. Kybernetik, 2(4), 148–152.

8. Kohonen, T. (1972). Correlation Matrix Memories.
IEEE Transactions on Computers, C-21(4), 353–
359.

9. Acevedo-Mosqueda, M.E., Yáñez-Márquez, C.,
& López-Yáñez, I. (2007). Alpha-beta bidirectional

associative memories: theory and applications.
Neural Processing Letters, 26(1), 1–40.

10. Sacramento, J. & Wichert, A. (2011). Tree-like
hierarchical associative memory structures. Neural
Networks, 24(2), 143–147.

11. Kohavi, R. & John, G. H. (1997). Wrappers for
Feature Subset Selection. Artificial Intelligence -
Special issue on relevance, 97(1-2), 273–324.

12. Dornaika, F., Lazkano, E., & Sierra, B. (2011).

Improving dynamic facial expression recognition

Table 5. Classification accuracy using the full set

of features and the Feature Selection procedure

Dataset Full Set
Feature

Selection

1. Haberman 66.34 76.33

2. Liver 55.36 65.50

3. Inflammation 97.50 100.00

4. Breast 97.51 97.80

5. Heart 64.07 83.70

6. Hepatitis 66.45 85.16

52 Mario Aldape-Pérez, Cornelio Yáñez-Márquez, Oscar Camacho-Nieto...

Computación y Sistemas Vol. 17 No. 1, 2013 pp. 41-52
ISSN 1405-5546

with feature subset selection. Pattern Recognition
Letters, 32(5), 740–748.

13. Rosen, K. H. (2007). Discrete Mathematics and Its
Applications (6

th
 ed.), Boston: McGraw-Hill Higher

Education.

14. Hall, M., Frank, E., Holmes, G., Pfahringer, B.,
Reutemann, P., & Witten, I.H. (2009). The WEKA
data mining software: an update. ACM SIGKDD
Explorations Newsletter, 11(1), 10–18.

15. Witten, I.H. & Frank, E. (2005). Data Mining:

Practical Machine Learning Tools and Techniques
(2

nd
 ed.), Amsterdam; Boston, MA: Morgan

Kaufmann.

16. Shafi, A., Carpenter, B., & Baker, M. (2009).

Nested parallelism for multi-core HPC systems
using Java. Journal of Parallel and Distributed
Computing, 69(6), 532–545.

17. Wolpert, D.H. & Macready, W.G. (1997). No free
lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1),
67–82.

Mario Aldape-Pérez received
his Ph.D. in Computer Science
from the National Polytechnic
Institute of Mexico, in 2011. He
is a Professor of Computer
Architecture at the Superior
School of Computing of the

National Polytechnic Institute of Mexico. His
current research interests include Associative
Memories, Soft Computing and FPGA
Implementation of High Performance Pattern
Classification algorithms. Dr. Aldape-Pérez is a
member of the IEEE Computer Society and the
ACM. He is currently the President of the
Academy of Digital Systems at the School of
Computing of the National Polytechnic Institute of
Mexico.

Cornelio Yáñez-Márquez received
his Ph.D. degree in Computer
Science from the National
Polytechnic Institute of Mexico in
2002. Since then, he has been with
the Center for Computing

Research (CIC-IPN), Mexico, where he is
currently the Head of the Laboratory of
Unconventional Computing and Neural Networks.

His research interests cover Neural Networks
and Unconventional Computing, Associative
Memory, Pattern Recognition, Mathematical
Morphology and Soft Computing, with over 100
technical publications. Dr. Yáñez-Márquez is the
leader and founder of Alpha-Beta Research.

Oscar Camacho-Nieto received
the M.Sc. degree in Computer
Engineering and the Ph.D.
degree in Computer Science from
the National Polytechnic Institute
of Mexico, in 1995 and 2003,
respectively. He had been a

Senior Lecturer at the Center for Computing
Research (CIC-IPN), Mexico, for several years.
He is currently the Director of the Center for
Innovation and Technology Development in
Computing (CIDETEC-IPN), Mexico.

Angel Ferreira-Santiago is a
Computer Systems Engineer
from the National Polytechnic
Institute. Since 2012 he has been
working in the parallel
implementation of supervised
learning algorithms. His research

interests cover Associative Memories, Feature
Selection and Space-Time Analysis of Video.

Article received on 12/10/2012; accepted on 18/12/2012.

