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Abstract. Performance of most pattern classifiers is 

improved when redundant or irrelevant features are 
removed. Nevertheless, this is mainly achieved by 
highly demanding computational methods or 
successive classifiers’ construction. This paper shows 
how the associative memory paradigm and parallel 
computing can be used to perform Feature Selection 
tasks. This approach uses associative memories in 
order to get a mask value which represents a subset of 
features which clearly identifies irrelevant or redundant 
information for classification purposes. The 
performance of the proposed associative memory 
algorithm is validated by comparing classification 
accuracy of the suggested model against the 
performance achieved by other well-known algorithms. 
Experimental results show that associative memories 
can be implemented in parallel computing 
infrastructure, reducing the computational costs needed 
to find an optimal subset of features which maximizes 
classification performance. 

Keywords. Feature selection, associative memory, 

pattern classification. 

Selección de características utilizando 
el paradigma de memoria asociativa y 

computación paralela 

Resumen. El rendimiento en la mayoría de los 

clasificadores de patrones se mejora cuando las 
características redundantes o irrelevantes son 
eliminadas. Sin embargo, esto se logra a través de la 
construcción de clasificadores sucesivos o mediante 
algoritmos iterativos que implican altos costos 
computacionales. Este trabajo muestra la aplicación del 
paradigma de memoria asociativa y la computación 
paralela para realizar tareas de selección de 

características. Este enfoque utiliza las memorias 
asociativas para obtener el valor de una máscara que 
identifica claramente la información irrelevante o 
redundante para fines de clasificación. El desempeño 
del algoritmo propuesto es validado a través de la 
comparación de la precisión predictiva alcanzada por 
este modelo contra el desempeño alcanzado por otros 
algoritmos reconocidos en la literatura actual. Los 
resultados experimentales muestran que las memorias 
asociativas pueden ser implementadas en 
infraestructura de cómputo paralelo, reduciendo los 
costos computacionales necesarios para encontrar el 
subconjunto óptimo de características de maximiza el 
desempeño de clasificación. 

Palabras clave. Selección de características, 

memorias asociativas, clasificación de patrones. 

1 Introduction 

Pattern recognition has existed for many years in 
a wide range of human activity. However, the 
general pattern recognition problem can be stated 
in the following form: given a collection of objects 
belonging to a predefined set of classes and a set 
of measurements on these objects, identify the 
membership class of each object by an 
appropriate analysis of the measurements 
(features). 

Although features are functions of 
measurements performed on a class of objects, in 
most cases the initial set of features consists of a 
large number of potential attributes which 
constitute an obstacle not only to the accuracy but 
to the efficiency of algorithms. 

http://www.cornelio.org.mx/
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In countless situations, it is a complicated task 
to find proper features for all patterns in a class; 
therefore, many machine learning algorithms 
have been used as tools to identify relevant 
information for classification purposes. 

Support vector machines (SVMs) select a 
small number of critical boundary samples from 
each class and build a linear discriminant function 
which separates them as widely as possible. The 
main reason whereby SVMs are not commonly 
used for feature selection results from the fact 
that SVMs can perform badly in a situation of 
many irrelevant features [1]. 

Another approach is to apply different degrees 
of relevance to information; feature weighting 
schemes tend to be easier to implement when the 
obtained subset of “most relevant” features is fed 
into another algorithm capable of making additive 
changes to all weights. The main disadvantage of 
these schemes is that convergence in the 
learning phase is not guaranteed; moreover, 
weighting techniques may have difficulties when 
irrelevant features are present [2]. In order to 
overcome this limitation, multiclassifier approach 
arises [3, 4]; nonetheless, these methodologies 
lack criterions that help to ignore redundant 
information. 

Although there is a large number of algorithms 
used to classify patterns, most of them cannot 
obtain an optimal solution to maximize 
classification accuracy, nor to reduce the 
dimensionality of the dataset [5]. There are 
algorithms capable to obtain an optimal subset of 
features which maximizes classification accuracy. 
They fulfill this task by evaluating classification 
accuracy achieved by the algorithm with each of 
the possible subsets of features. This accuracy 
assessment involves prohibitive computational 
costs for non-parallelizable algorithms. 

Some remarkable things to mention about 
Associative Memories (AM) is that they are 
represented as matrices, and duration of the 
learning phase depends only on the number of 
patterns used to train the associative memory [6]; 
as a consequence, convergence in the learning 
phase is guaranteed [7, 9].  

After carrying out the learning phase, the 
knowledge is stored in a numeric array which can 
be distributed and handled in parallel on multiple 
processing nodes. 

Each of the available processing nodes in a 
computing cluster can evaluate the classification 
performance using different subsets of features. 
Thereby, the task of finding the best subset of 
features can be distributed among the available 
processors on each processing node in the 
computing cluster. As a result, the subset of 
features which maximizes classification accuracy 
can be found in a reasonable time. 

In this paper, associative memories and 
parallel computing are used to identify the 
relevance of the information in some widely used 
datasets. By removing irrelevant information, 
dimensionality of the problem is reduced and 
classification performance is improved. 

The paper is organized as follows. In Section 2 
a succinct description of Associative Memories 
fundamentals is presented. Section 3 introduces 
the topic of Feature Selection and presents the 
procedure used to reduce the dimensionality of 
the datasets. Section 4 outlines how to implement 
in parallel the proposed algorithm. Section 5 
describes how the experimental phase was 
conducted. Section 6 presents classification 
accuracy results achieved by each one of the 
compared algorithms in six different pattern 
classification problems. Finally, some conclusions 
are discussed in Section 7. 

2 Associative Memories 

Early models of learning matrices appeared more 
than four decades ago [6, 9], and since then 
associative memories have attracted the attention 
of major research groups worldwide. From a 
connectionist model perspective, an associative 
memory can be considered a special case of the 
neural computing approach for pattern 
recognition [10]. 

An associative memory M  is a system that 
relates input patterns and output patterns. Input 
patterns are represented by a column vector, 
denoted by x , while output patterns are 

represented by a column vector, denoted by y . 

Each input vector forms an association with its 
corresponding output vector. For each positive 

integer k , the corresponding association is 

denoted as  ,k kx y . 
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An associative memory M  is represented by a 

matrix whose ij -th component is ijm . Associative 

memory M  is generated from an a priori finite set 
of known associations, called the fundamental set 
of associations. The fundamental set is 

represented as   , | 1,2,...,x y p     with p  as 

the set cardinality. 
Let n  and m  be the dimensions of the input 

patterns and output patterns, where nx A  , 
my A   with  0,1A  . The patterns that form the 

fundamental set are called fundamental patterns. 

If it holds that  1,2,...,x y p      , M  is 

autoassociative, otherwise it is heteroassociative; 
in this case, it is possible to establish that 

 1,2,..., p   for which x y  .  

If we consider the fundamental set of 

patterns   , | 1,2,...,x y p     , where n  and m
 

are the dimensions of the input patterns and 
output patterns, respectively, it is said that 

nx A   and my A   , where  0,1A  , then the 

j -th component of an input pattern nx A   

is jx A  . 

Analogously, the i -th component of an output 

pattern my A   is represented as iy A  . 

Therefore, the fundamental input and output 
patterns are represented as follows: 
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A distorted version of a pattern kx  to be 

recalled is denoted as kx . An unknown input 

pattern to be recalled is denoted as x . If when an 

unknown input pattern x  with  1,2,..., ,...,k p  

is fed to an associative memory M , it happens 
that the output corresponds exactly to the 

associated pattern y , it is said that recalling is 

correct. 

3 Application to Feature Selection 

The task of classification occurs in a wide range 
of human activity; however, satisfactory results 
depend on the amount of relevant information 
obtained when coherent features are selected. 

Feature Selection is focused on finding a set of 
characteristics that best describes a hypothesis. 

The number of features delimits the size of the 
hypothesis space containing all hypotheses that 
can be learned from data [11]. A hypothesis is a 
function that predicts classes based on given 
data. The linear increase of the number of 
features implies an exponential increase of the 
hypothesis space [12]. 

This section is divided into three parts; each 
one addresses one stage of the proposed 
algorithm. The first procedure describes 
associative memory training. The second 
describes the steps involved in the classification 
phase. The third explains the procedure of feature 
selection. 

3.1 Learning Phase 

The task of this phase is to find adequate 
operators and a way to generate an associative 
memory M  which will store the p  associations of 

the fundamental set. 
An associative memory M  is obtained by 

performing the following two steps: 

1. Consider each one of the p  associations 

 ,x y   , so an m  by n  matrix is obtained 

according to the following expression: 
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 (1) 

2. An associative memory M  is obtained by 
adding all the p  matrices: 



44 Mario Aldape-Pérez, Cornelio Yáñez-Márquez, Oscar Camacho-Nieto... 

Computación y Sistemas Vol. 17 No. 1, 2013 pp. 41-52 
ISSN 1405-5546 

 
1

p
t

ij

mxn

M y x m 



       (2) 

In this way the ij -th component of an 

associative memory M  is expressed as follows: 

1

p

ij i jm y x 




 

(3) 

3.2 Classification Phase 

This phase consists of finding the class to which 

an unknown input pattern nx A   belongs. 

Finding the class means getting my A   which 

corresponds to x . 

Classification phase is done by operating an 
associative memory M  with an unknown input 

pattern x , where  1,2,..., ,...,k p . M x  is 

operated as follows: 

 
1

p
t

M x y x x   



 
    

 
   .

 

(4) 

Let’s expand Expression 4 this way: 
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(5) 

Expression 5 lets us know which restrictions 
have to be observed, thus correct recalling is 
achieved. This is expressed as: 
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If the condition in Expression 6 is met, then a 
correct recalling is expected. Therefore, 
Expression 5 is given as 

M x y   .

 

(7) 

Once it is already known under which 
conditions it is possible to successfully recover a 

pattern, it is likely to state the classification rule, 
where   is the maximum operator: 
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(8) 

Expression 8 allows obtaining each of the 
components of the vector representing the class 
label. 

Performance of the classification phase is 
measured in terms of error rate; so, classifier 
accuracy represents the correct classification rate 
when unseen patterns are presented. 

3.3 Selection of Relevant Features 

This section introduces the procedure that 
implements an associative memory to identify and 
preserve relevant features for classification 
purposes. 

Definition 3.1: the r -th masking vector. 

Let  0,1A  , let f  be the number of features 

in the original set of data, and let r  be a 

positive integer such that  1,2,..., (2 1)fr  . 

The r -th masking vector of size n  is then 

defined to be 
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(9) 

Definition 3.2: IntegerToVector operator. Let 

 0,1A  , let n  be the dimension of an input 

pattern and let r  be a positive integer. The 
IntegerToVector operator, takes r  as input 

and returns a column vector re  with r  value 

expressed in its binary representation. Note 

that 
1

re  is the Most Significant Bit (MSB), while 
r

ne  is the Least Significant Bit (LSB). 

Example 3.1. Let  0,1A  , let 4n   and let 

11r  . The IntegerToVector operator is 
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applied to obtain the r -th masking vector as 
stated in Definition 3.2. 

To convert an integer to its binary 
representation, we divide r  by two repeatedly, 
until the final remainder is zero. If we take only 
the remainder of each division, then 11r   can 
be expressed as 

3 2 1 011 (1x2 ) ( 0 x2 ) (1x2 ) (1x2 )r      
 

 

If we apply the IntegerToVector operator on r , 

we obtain the r -th masking vector re . 

1

0
( )

1

1

re IntegerToVector r
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 
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 
 
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In summary, the IntegerToVector operator, 

helps us to obtain a column vector re  with 

r expressed in its binary representation. 
Let’s take classification rule presented in 

Expression 8 and incorporate the r -th masking 
vector presented in Expression 9. The resulting 
expression is as follows: 
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(10) 

where   represents the maximum threshold 

value and   is the maximum operator. 
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(11) 

Expression 10 classifies an unknown input 
pattern using the r -th masking vector. This 
expression allows us to estimate classification 
performance of the associative memory, using 
different sets of features, without having to 
perform the training phase repeatedly. By not 
having to perform the training phase repeatedly, 
the computational costs are reduced, and it is 
possible to search for an optimal subset of 
features that maximizes classification 
performance. 

3.3.1 Feature Selection Procedure 

1. Let n  be the dimension of each input pattern 

in the fundamental set, grouped in m  different 

classes. 

2. Each one of the input patterns belongs to a k  

class,  1,2, ,k m , represented by a 

column vector whose components are 

assigned by 1ky  , so 0jy   for 

1,2, , 1, 1, ,j k k m   . 

3. Create a classifier using Expressions 1, 2 
and  3. 

4. Use the IntegerToVector operator to obtain 
the r -th masking vector, as stated in 
Definition 3.2. 

5. The classification phase is carried out 
according to Expression 10 so an r -th 
classification accuracy parameter is obtained. 

6. Store the r -th classification accuracy 
parameter and the r -th masking vector. 

7. Compare the r -th classification accuracy 

parameter with the  1r  -th classification 

accuracy parameter. The best classification 
accuracy value is stored. 

8. Finalize when classification performance has 
been estimated using all possible masking 
vectors. 

3.3.2 Time Complexity Analysis 

It is generally accepted that an algorithm provides 
a satisfactory solution when it produces a correct 
answer efficiently. The efficiency of an algorithm 
can be estimated by measuring the time required 
by the computer to solve a problem using a given 
algorithm. 

The worst-case time complexity of an 
algorithm is defined as a function of the size of 
the input. For a given input size, the worst-case 
time complexity is the maximal number of 
execution steps needed for executing the 
program on arbitrary input of that size. 

Operations used to measure time complexity 
can be single-precision floating point comparison, 
single-precision floating point addition, single-
precision floating point division, variable 
assignation, logical comparison, or any other 
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elemental operation. Listing 1 shows the 
implementation of the feature selection process. 

In order to analyze the time complexity of the 
feature selection process, the following is defined: 

 EO: elemental operation. 

 n: dimension of input patterns. 

 p: cardinality of the fundamental set. 

Table 1 shows the number of elemental 
operations required to execute each of the lines of 
code shown in Listing 1. The code segment that 
represents the largest number of operations is in 
line 7 and 8. Executing these two lines of code, 
the class label is recovered. Line 7 retrieves the 

first component of the class label 
1y , while line 8 

retrieves the second component 2y . 

The total number of Elemental Operations is 
as follows: 

_ 1 3( 1 (2 )) ( 1 (2 ))

7( 1 (2 )) 6( 1 (2 ))

n n

n n

Total EOs n

p np

       

    
 

By grouping some terms, we obtain the 
formula: 

_ 2 3(2 ) 7( 1 (2 ))

( 1 (2 )) (1 6 )

n n

n

Total EOs p

n p

      

  
 

If we factor some terms, we get the following: 

1

_ 2 3(2 ) (2 ) 7

7(2 ) 6 3(2 )

n n

n n

Total EOs n n p

p np np

      

 
 

Finally, the equation of the total number of 
Elemental Operations can be written as 

_ 2 7 ( 1 (2 )) (1 6 )

(2 )(3 7 )

n

n

Total EOs p n p

p

       


 

The growth of time and space complexity with 
increasing input size n  is a suitable measure of 

the efficiency of the algorithm. To obtain an 
estimate of the complexity of the algorithm when it 
is applied to a known test set, we chose the 

Listing 1. Feature Selection Procedure 

1:  r_max=(2^(n)); 

2:  for r=1:r_max-1 

3:   class_hit=0; 

4:   class_miss=0; 

5:   e_r = IntegerToVector(r); 

6:   for i=1:p 

7:    y_mu_1=sum(x_mu(i) .* e_r .* M(1)); 

8:    y_mu_2=sum(x_mu(i) .* e_r .* M(2)); 

9:    if y_mu_1>y_mu_2 

10:       class_label=class_1; 

11:   else 

12:       class_label=class_2; 

13:   end 

14:   if class_label==x_mu(i,n) 

15:       class_hit=class_hit+1; 

16:   else 

17:       class_miss=class_miss+1; 

18:   end 

19:   end 

20:   end 

 

Table 1. Time Complexity Analysis 

1:  1 EO, assignation 

2:  max_iter EO, comparison 

3:  max_iter EO, assignation 

4:  max_iter EO, assignation 

5:  max_iter*n EO, comparison 

6:  max_iter*p EO, comparison 

7a: max_iter*n*p EO, multiplication 

7b: max_iter*n*p EO, multiplication 

7c: max_iter*n*p EO, addition 

7d: max_iter*p EO, assignation 

8a: max_iter*n*p EO, multiplication 

8b: max_iter*n*p EO, multiplication 

8c: max_iter*n*p EO, addition 

8d: max_iter*p EO, assignation 

9:  max_iter*p EO, comparison 

10: max_iter*p EO, assignation 

14: max_iter*p EO, comparison 

15: max_iter*p EO, assignation 
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dataset with the largest number of features, which 
is the Hepatitis disease dataset. As it is shown in 
Table 2, each of the 155 instances has 19 
features and a class label. The number of 
fundamental input patterns is 155p  .  

The growth of functions is usually described 
using the big-O notation [13]. 

Definition 3.3. Let f  and g  be functions from 

the integers or the real numbers to the real 

numbers. We say that  f n  is   O g n  if 

there are constants C  and k  such that 

( ) ( )f n C g n  whenever n k . 

The total number of Elemental Operations can 
be computed as 

_ 1 1088( 1 (2 )) 931( 1 (2 ))n nTotal EOs n       . 

A function  g n  and constants C  and k  must 

be found, such that the inequality holds. We 

propose the following  g n : 

1(2 ) 1088(2 ) 1088(2 ) 931 (2 ) 931 (2 )n n n n nn n     

Then, if   2 , 20000ng n C   and 1k  , we 

have that ( ) 20000 ( )f n g n  whenever 1n  . 

Therefore,  f n  is  2nO . 

4 Parallel Implementation 

Once we know the procedure that must be carried 
out to find an optimal subset of features, we can 
reduce computational costs by distributing this 
procedure in parallel computing infrastructure. 

To accomplish this, we need to assign each 
node a search range and a copy of the 
associative memory which results from the 
learning phase. After completing a search range, 
each node delivers the masking vector with which 
the associative memory achieved the best 
classification rate in such search range. After all 
nodes have completed the search task, the 
master node retains the masking vector which 
maximizes classification accuracy. In the event 
that several masking vectors produce the best 
classification performance, the masking vector 
that represents the smallest subset is retained. 

5 Experimental Phase 

Throughout the experimental phase, six datasets 
were used as the test set to estimate 
classification performance of each one of the 
compared algorithms. These datasets were taken 
from the UCI machine learning repository from 
which full documentation for all datasets can be 
obtained. The main characteristics of these 
datasets are shown in Table 2. 

The performance of the proposed algorithm 
was compared against the performance achieved 
by the twenty best-performing algorithms of the 
seventy six algorithms available in WEKA 3 Data 
Mining Software in Java [14]. WEKA is an open 
source software issued under the GNU General 
Public License: Further information on each of the 
algorithms used during the experimental phase 
can be found in [15]. In order to carry out such a 
comparison, we applied the same conditions and 
validation schemes for each experiment. 
Classification accuracy of each one of the 
compared algorithms was calculated using 10-fold 
cross-validation. The proposed algorithm was 
parallelized using an MPI implementation for the 
Java programming language [16] and tested on 
an 8-machine cluster. Each machine has a dual-
core Intel Xeon CPU running at 2 GHz. 

Table 2. Characteristics of datasets 

Dataset Instances Attributes 

1. Haberman 306 3 

2. Liver 345 6 

3. Inflammation 120 6 

4. Breast 699 9 

5. Heart 270 13 

6. Hepatitis 155 19 

6 Results and Discussion 

Figures 1-6 show the running time of the feature 
selection process using 10-fold cross-validation. 
The proposed algorithm was tested in 
configurations ranging from two to eight 
simultaneous processors. 
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It can be seen in Figure 1 that when the 
search process is distributed over a larger 
number of processors, the execution time 
increases. This result is contrary to the expected, 
since if the search task is distributed among a 
larger number of processors, the execution time is 
expected to decrease. This unwanted behavior 
occurs because the number of features of the 
Haberman dataset is too small to be explored by 
eight processors simultaneously. The increase in 
running time (108.63 milliseconds) is due to 
redundant message passing between the master 
node and the computing nodes. 

Figures 2-6 show the running time of the 
feature selection process for the remaining 
datasets. It can be seen that if the search task is 
distributed among a larger number of processors, 
the execution time decreases. Table 3 shows the 
running time performance of the proposed 
algorithm using all data sets. The running time 
performance observed in Table 3 corresponds to 
the expected behavior. The larger the number of 
processors involved in the feature selection 
process is, the shorter is the time to find the 
optimal subset of features. 

Table 4 shows classification accuracy results 
achieved by each one of the compared algorithms 
in six different pattern classification problems, 
using 10-fold cross-validation. 

Although WEKA 3 Data Mining Software in 
Java [15] has more than seventy well known 
algorithms implemented, only the twenty best-
performing algorithms were considered for 
comparison purposes. According to the type of 
learning scheme, each of these can be grouped in 
one of the following types of classifiers:  

 

Fig. 3. Running time using 10-fold cross-validation 

 

Fig. 1. Running time using 10-fold cross-validation 

 

Fig. 2. Running time using 10-fold cross-validation 



Feature Selection using Associative Memory Paradigm and Parallel Computing 49 

Computación y Sistemas Vol. 17 No. 1, 2013 pp. 41-52 
ISSN 1405-5546 

Table 3. Running time of the proposed algorithm using 10-fold cross-validation 

Number of 

processors 

Haberman 

(milliseconds) 

Liver 

(milliseconds) 

Inflammation 

(milliseconds) 

Breast 

(seconds) 

Heart 

(seconds) 

Hepatitis 

(minutes) 

2 2530.59 16730.27 16395.66 1184.71 1773.29 404.20 

3 2526.19 9654.51 9461.41 590.66 907.27 205.86 

4 2556.62 6763.20 6627.93 412.13 631.25 145.73 

5 2541.72 5736.41 5621.68 324.29 510.61 115.70 

8 2634.82 4965.90 4866.58 237.26 393.05 92.79 

Table 4. Classification accuracy using 10-fold cross-validation 

Algorithm Haberman Liver Inflammation Breast Heart Hepatitis 

1. AdaBoostM1 73.20 66.66 100.00 95.60 82.22 67.09 

2. Bagging 73.20 73.04 100.00 96.19 83.70 69.67 

3. BayesNet 72.54 56.81 100.00 97.21 82.22 69.03 

4. Dagging 73.52 57.97 100.00 96.77 82.22 66.45 

5. DecisionTable 72.54 57.97 100.00 95.75 83.33 72.25 

6. DTNB 72.54 57.97 100.00 97.51 82.59 68.38 

7. FT 72.87 70.43 100.00 96.92 82.22 69.03 

8. LMT 73.85 69.85 100.00 96.48 82.22 67.09 

9. Logistic 74.50 68.69 100.00 96.63 83.70 68.38 

10. MultiClassClassifier 74.50 68.69 100.00 96.63 83.70 68.38 

11. NaiveBayes 74.50 54.20 95.83 96.19 83.33 71.61 

12. NaiveBayesSimple 73.85 55.07 95.83 96.33 82.96 70.96 

13. NveBayesUpdateable 74.50 54.20 95.83 96.19 83.33 71.61 

14. RandomCommittee 64.37 68.11 100.00 96.48 82.22 63.22 

15. RandomForest 67.97 70.72 100.00 97.07 83.70 65.16 

16. RandomSubSpace 72.22 64.05 100.00 95.54 82.22 67.74 

17. RBFNetwork 72.87 66.08 100.00 95.90 84.07 69.67 

18. RotationForest 73.20 73.04 100.00 97.21 82.59 66.45 

19. SimpleLogistic 73.85 71.01 100.00 96.63 82.22 66.45 

20. SMO 73.52 57.97 100.00 96.92 83.33 72.25 

* Our proposal 76.33 65.50 100.00 97.80 83.70 85.16 
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Bayesian classifiers, Function-based 
classifiers, Meta classifiers, Rule-based classifiers 
and Decision Tree classifiers. The twenty best-
performing algorithms are as follows: 

− Four algorithms based on the Bayesian 
approach (BayesNet, NaiveBayes, 
NaiveBayesSimple and Naive-
BayesUpdateable). 

– Four function-based classifiers (Logistic, 
RBFNetwork, SimpleLogistic and SMO).  

– Seven metaclassifiers (AdaBoostM1, 
Bagging, Dagging, MultiClassClassifier, 
RandomCommittee, RandomSubSpace, 
RotationForest). 

– Two rule-based classifiers (DecisionTable 
and DTNB). 

– Three decision tree classifiers (FT, LMT, 
Random-Forest). 

Classification results are as follows: two of the 
seven metaclassifiers (Bagging and 
RotationForest]) achieved the best performance 
in two of the six pattern classification problems. 
Three decision trees classifiers (FT, LMT and 
Random-Forest) achieved the best performance 
in one of the six datasets. Likewise, one of the 
four algorithms based on the Bayesian approach 
(BayesNet) achieved the best performance in one 
of the six datasets. Two rule-based classifiers 
(DecisionTable and DTNB) achieved the best 
performance in one of the six datasets. Similarly, 
one of the four function-based classifiers 
(RBFNetwork) achieved the best performance in 
two of the six datasets. 

It is worth noting that our proposal achieved 
the best performance in four of the six pattern 
classification problems. As it is shown in Table 4, 
there is no particular method which surpasses all 
the other algorithms in all sorts of problems. This 
should not be surprising since Wolpert and 
Macready [17] demonstrated that what an 
algorithm gains in performance on one class of 
problems is necessarily offset by its performance 
on the remaining problems. 

Table 5 shows the classification performance 
achieved by the associative memory using the full 
set of features against the classification 
performance achieved by the associative memory 
using the optimal subset of features. 

 

Fig. 4. Running time using 10-fold cross-validation 

 

Fig. 5. Running time using 10-fold cross-validation 

 

Fig. 6. Running time using 10-fold cross-validation 
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In all data sets, the feature selection procedure 
found an optimal subset of features which 
increases classification performance of the 
associative memory. 

7 Conclusions 

In this paper, a novel approach to perform 
Feature Selection tasks using Associative 
Memory Paradigm and Parallel Computing is 
presented. Throughout the experimental phase, 
six datasets were used as test set to estimate 
classification performance of each one of the 
compared algorithms. Experimental results show 
that associative memories can be implemented in 
parallel computing infrastructure, reducing the 
computational costs needed to find an optimal 
subset of features which maximizes classification 
performance. 

As a result of analyzing the execution times 
used by the proposed algorithm to find an optimal 
subset of features, we conclude that the feature 
selection procedure in an associative memory is 
fully parallelizable. Consequently, this permits to 
perform feature selection tasks in larger datasets 
using the proposed algorithm. 
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