

Computación y Sistemas Vol. 17 No.1, 2013 pp.63-68
ISSN 1405-5546

A Novel Approach for Pseudo-Random Seed Generation

Sacha Pelaiz and Renier Tejera

Complejo de Investigaciones Tecnológicas Integradas CITI, La Habana,
Cuba

{spelaiz, rtejera}@udio.cujae.edu.cu

Abstract. Random sequences play an important role in

all aspects of Cryptography. All cryptographic systems
and protocols are based on secrets and can only be as
strong as the random sequence generators they use to
generate those secrets. The best cryptographic scheme
becomes insecure once its secrets can be predicted or
determined. In modern cryptography random
sequences are used (1) to generate session keys and
initialization vectors for symmetric block ciphers, (2) to
generate random values for various digital signature
schemes such as DSA and (3) to produce seeds which
are used in math routines to get values such as large
prime numbers for RSA and also in security protocols.
This paper presents the design of RAMG, a pseudo-
random seed generator, using a secure symmetric
block cipher algorithm. We describe the design
principles used for the development of the generator as
well as its principal components. We also discuss the
idea of using it as a pseudo-random bit generator
(DRBG).

Keywords. DRGB, seed, symmetric encryption cipher.

Un nuevo procedimiento de
generación seudo aleatoria

de semillas

Resumen. Las sucesiones aleatorias juegan un papel

importante en todos los aspectos de la criptografía.
Todos los sistemas y protocolos criptográficos se
basan en el secreto y solo pueden ser tan fuertes como
lo sean los generadores aleatorios de sucesiones
empleados para generar esos secretos. El mejor
esquema criptográfico deviene inseguro una vez se
puedan determinar o predecir sus secretos. En la
criptografía moderna se emplean las sucesiones
aleatorias para: generar llaves de sesión e inicializar
vectores para esquemas simétricos de cifrado en
bloques; generar valores aleatorios para diversos
esquemas de firma digital tales como DSA y ECDSA;
generar semillas que se empleen en rutinas
matemáticas para obtener valores tales como números
primos grandes para esquemas como RSA y ElGamal,

entre otras aplicaciones. En este trabajo se describe el
diseño de RAMG, un generador seudo-aleatorio de
semillas (GSSA) empleando un algoritmo simétrico
seguro de cifrado en bloques. Se describen los
principios de diseño utilizados para su desarrollo así
como sus componentes principales y se analiza la idea
de emplearlo como un generador de sucesiones de bits
seudo-aleatorios (GBSA).

Palabras clave. Semilla, cifrado simétrico en bloques.

1 Introduction

The generation of truly random sequences,
despite being a widely studied topic in
cryptography, is a complex issue, particularly
because computers in which generation
algorithms are implemented are designed to be
deterministic. Therefore, a general procedure is to
use pseudo-random numbers, which are numbers
generated from truly random values and are very
difficult to distinguish from the latter.

A pseudo-random bit generator (DRBG) is a
deterministic mechanism that processes truly
random unpredictable inputs, commonly called
seeds, and generates pseudo-random outputs.
DRBGs are currently used in many cryptographic
applications; some of them have already identified
vulnerabilities [5].

A DRBG can be defined as a deterministic
function as follows:

   nk
F 1,01,0: 

,
 (1)

where F is a one-way function that maps a
small input to a much greater length output, and

kn  .

If input x is selected uniformly at random,

then no efficient algorithm can distinguish

mailto:spelaiz,%20rtejera%20%7d@udio.cujae.edu.cu

64 Sacha Pelaiz and Renier Tejera

Computación y Sistemas Vol. 17 No.1, 2013 pp.63-68
ISSN 1405-5546

between)(xF and a truly random sequence of

the same length. This implies that the output is
uniformly distributed and unpredictable without

the knowledge of x . The first k bits of the output

are used as input for the next iteration, while the

remaining kn  bits are the output. Designating

the first entry of F as the initial state and each
following entry as the next state, one creates a
state machine with the transition function F, and
then successive application results in a DRBG.

The security of this construction is to keep the

internal state secret. The requirement that F is a
one-way function ensures that an attacker cannot
retrieve the internal state from the outputs.

For the initial state to be secret to a potential
attacker, it must be initialized with uniformly
distributed secret values (seeds). Also, most
DRBGs periodically reset the internal state for two

main reasons: to prevent the function F to fall in
short cycles and to increase the entropy of the
internal state.

DRBGs must fulfill certain requirements [1]. to
be considered cryptographically secure. The two
fundamental requirements are as follows.

1. Forward security or Progressive resistance.
An attacker who can compute the internal
state of the generator cannot retrieve
previous outputs. This is achieved by
ensuring that the transition function is a one-
way function.

2. Backward security or Prediction resistance.
An attacker who can compute the internal
state of the generator cannot predict future
outputs. This can be provided if the internal
state is periodically reset with data of
sufficient entropy.

So, why do we need to design a seed
generator? The most common reason for failure
of DRBGs in real-world applications is that they
overestimate the amount of entropy in the seeds.
For example, if a generator have seeds of 128
bits which seem random, but in fact have only 56
bits of entropy, then an attacker can feasibly
perform an exhaustive search of the starting point
of the DRBG [4]. This is perhaps the most difficult
problem to solve in the design of a DRBG.

To generate seeds, one commonly uses some
values as entropy inputs; these values are usually
obtained from actions taken by a human operator,
and also relating to system inputs such as time
values and process tables. However, these
values usually are poor sources of entropy [3].

An improved variant to obtain suitable inputs is
to employ entropy sources associated to
unpredictable physical or electronic processes
such as thermal noise sources and noise of
diodes. However, this implies an additional cost in
hardware due to the use of appropriate and
specific devices which may not be feasible in
different scenarios.

For these reasons we decided to design and
implement a software-based pseudo-random
seed generator PRSG, named RamG, with good
statistical properties to provide the quantity of
entropy required for DRBGs.

2 RamG Components

2.1 Entropy Source

According to [9], the source of the entropy input
shall be either

– a non-deterministic random bit generator
(NRBG),

– a DRBG, thus forming a chain of at least two
DRBGs; the highest-level DRBG in the chain
shall be seeded by an NRBG or an entropy
source, or

– an appropriate entropy source.

In the implementation of RamG we used the
function randomize as an entropy source. This
function is part of the BigInt class, developed and
implemented by the authors for working with large
integers and multi-precision arithmetic. This
function was adequate for specific purposes from
various functions of the Open Source Library Lidia
[6]. It was proved that the randomize function
generates random sequences with good
cryptographic properties for lengths of 256, 384,
512 and 768 bits. Note further that this function
can be replaced by any other function to generate
pseudo-random sequences of 768 bits.

A Novel Approach for Pseudo-Random Seed Generation 65

Computación y Sistemas Vol. 17 No.1, 2013 pp. 63-68
ISSN 1405-5546

2.2 Symmetric Algorithm GOST 28147-89

The symmetric block cipher scheme GOST
28147-89 [11] is considered an algorithm with
good cryptographic properties. To date, there are
no known effective general or specific purpose
attacks. This algorithm is originally from the
former Union of Soviet Socialist Republics
(USSR), and it functions today with certain
specifications and employment restrictions
according to the symmetric standard of
Russia [2].

The algorithm was implemented in the Output
Feedback mode (Fig. 1) leading to the function
rGOST. Its components are:

–  70 ,, KK  : 32 bit registers for storing the

symmetric key of 256 bits.

–  81 ,, SS  : 8 S-boxes, each of size 64 bits.

–  4321 ,,, RRRR : 32 bit registers.

–  65 , RR : 32 bit registers which contain two

constants 1C and 2C .

–  13 ,CMCM : 32 bit adders modulo
322 .

–  2CM : a Bitwise Exclusive Or adder for 32

bit registers.

–  4CM : a 32 bit adder modulo 1232  .

–  5CM : a Bitwise Exclusive or adder without

restrictions of the number of bits.

–  SS -mode: a Simple Substitution Mode.

2.3 Statistical Tests

To check the quality of the sequences generated
by RamG, we used the NIST package of
statistical tests proposed in [10] with good results.

Besides, as part of the generation process, we
decided to incorporate only 4 of these statistical
tests for efficiency reasons, to measure the
quality in terms of randomness of the generated
sequences. In the following we describe these 4
tests.

2.3.1 Frequency Test (Monobit Test)

Compute the confidence interval:

npqtnpI 
,
 (2)

Where n is the number of elements of the

sequence, 2/1p is the probability of the

output bit to be equal to 0 or 1, and

2/11  pq .

The sequence is accepted as random if the
number of 0’s and 1’s are both within the
computed confidence interval.

2.3.2 Serial Test (Two-Bit Test)

Compute the number of occurrences of (00, 01,
10 y 11) and compute the statistic

       

ij

ij

ij

ij

ij

ij

ij

ij

b
np

npn

np

npn

np

npn

np

npn
2

11

2

10

2

01

2

00 











,

(3)

Where 00n , 01n , 10n and 11n are the number

of 00’s, 01’s, 10’s and 11’s in the generated
sequence, respectively; n is the number of

elements of the sequence; 4/1ijp is the

probability of occurrence of the two-bit i, j = 0,1.

Fig. 1. [7]. GOST algorithm in OFB mode

66 Sacha Pelaiz and Renier Tejera

Computación y Sistemas Vol. 17 No.1, 2013 pp.63-68
ISSN 1405-5546

The computed value b is then compared

with the theoretical value
2

1   with  21m

degrees of freedom, (2m). The hypothesis of

randomness is rejected if the value of the statistic
is greater than the theoretical value.

2.3.3 Run Test

Compute the number of runs (of either zeros or
ones) of various length of the sequence using

22

3





ii

in
e

.

 (4)

Let k be the largest integer i with 5ie , and

then compute the statistic

   









k

i i

ii
k

i i

ii
r

e

eG

e

eB

1

2

1

2



,

 (5)

Where iB is the number of runs of 1’s of

length i , with ki 1 , and iG is the number of

runs of 0’s of length i , with ki 1 .

The computed statistic is then compared with

the theoretical value
2

1   with  22 k degrees

of freedom. The hypothesis of randomness is
rejected if the value of the statistic is greater than
the theoretical value.

2.3.4 Autocorrelation Test

Select d with 









2
1

n
d and compute







1

0

)(
dn

i

dii ssdA

,

 (6)

Where)(dA is the number of bits in the

sequence not equal to their d -shifts; is is the i

element in the sequence with 1,...,1,0  ni ;

and  denotes the XOR operator. Then compute

the statistic:

dn

dndA






)(2


.

(7)

The computed statistic is then compared with

the theoretical value)1,0(1 N . The hypothesis of

randomness is rejected if the value of the statistic
is greater than the theoretical value.

These four tests conform the function
testRandom used to validate the randomness of
the generated sequences. Both the initialization
sequences and the outputs sequences must pass
these tests to be considered random.

2.4 RamG Functional Scheme

The algorithm to generate 64 bit pseudo-random
seeds is as follows.

Algorithm RamG

Input: symmetric key key of 256 bits.

Output: seed sequence 64Suc of 64 bits.

do{
do{

  ()12,0 768

768 randomizeSuc R 

}while (no)(768SuctestRandom)

 keySucrGOSTSuc ,76864 

}while (no)(64SuctestRandom)

In Section 1.1.1, a pseudo-random sequence
of 768 bits is generated using the function
randomize. This step is repeated while the

generated sequence 768Suc does not pass the

four statistical tests. In Section 1.3, a pseudo-

random sequence 64Suc of 64 bits is generated

using rGOST, considering 768Suc as the

message and key as the symmetric key. This

A Novel Approach for Pseudo-Random Seed Generation 67

Computación y Sistemas Vol. 17 No.1, 2013 pp. 63-68
ISSN 1405-5546

process is repeated while the sequence 64Suc

does not pass the four statistical tests.

3 Additional Elements of Randomness

3.1 RamG Reset Process

As shown in Section 2.2, RamG is reset each
time required for generating a pseudo-random
sequence (seed), i.e., each time it generates a
64-bit seed; it also generates a new 768-bit
sequence using the function randomize. In other
words, the generator is reinitialized with new
entropy input in each generation. This mechanism
has a disadvantage that if the used entropy
source fails from one point without being
detected, then a new initialization using this
entropy source perhaps cannot provide enough
entropy to the generator to operate safely.
Therefore, the selection of the entropy source
must be correct and the output sequences must
be controlled.

Another reset mechanism is to regularly
change the key used by the symmetric algorithm
GOST 28147-89. This approach is not necessary
in practice because the period of the GOST

28147-89 algorithm is approximately
642 , which is

undoubtedly sufficiently large.

3.2 S-Box Conformation

A second approach is to construct dynamically
and symmetrically key-dependent the 8 S-boxes
used by the GOST 28147-89 algorithm. The idea
is to conform 8 new and independent S-boxes for

each generation process from a set P of 256
permutations of 16 bits. The permutations must
be previously generated in a random way and
fulfill the necessary security requirements for the
S-boxes. The selection process of the 8
permutations or S-boxes among the set of 256
ones implemented in RamG receives as input the
sequence of bits of the symmetric key and
outputs 8 integers values within 1 and 256
determining the positions of the permutations.

Thus, we have 








8

256
 possible manners of

conforming S-boxes.

4 RamG as a DRBG

In this section we present the idea of using RamG
as a specific DRBG (SDRBG) for the generation
of pseudo-random values to be employed as
symmetric keys.

As SDRBG, we set a DRBG with the following
properties:

– It does not respond to a construction based
on a machine of states with a transition
function, so there is no relation between the
initial values of different iterations;

– It uses a one-way function (symmetric
encryption block scheme).

Note that this proposal indeed does not
respond to the standard definition of DRBGs.

RamG algorithm as a SDRBG is as follows:

Algorithm RamG

Input: symmetric key key of 256 bits, n number

of bits to generate.

Output: seed nSuc of n bits.

for 0i to  64/n {

do{
do{

  ()12,0 768

768 randomizeSuc R 

}while (no)(768SuctestRandom)

 keySucrGOSTSucn ,|| 768

}while (no)(nSuctestRandom)} .

For example, if we want to generate symmetric
keys of 256 bits for GOST 28147-89 algorithm,

we have 4n and the output sequence nSuc

can be interpreted as the result of implementing
the function rGOST in the Electronic Code Book
mode (ECB) [8].

It is easy to see that this proposal meets the
attributes of progressive resistance and

68 Sacha Pelaiz and Renier Tejera

Computación y Sistemas Vol. 17 No.1, 2013 pp.63-68
ISSN 1405-5546

predictions resistance. The first attribute is
achieved by the use of a one-way function: the
symmetric encryption algorithm GOST 28147-89.

The achievement of the second one is due to
the constant reset of the generator. Moreover, the
internal states of the generator are not related to
each other, i.e., they are independent, so the
compromise of a state does not provide any
information to determine or predict an earlier or
later state.

5 Conclusions

This paper describes the design of RamG, a
pseudo-random seeds generator, using the
secure symmetric encryption algorithm GOST
28147-89 as a one-way function. We obtained
very good results applying the NIST package of
statistical tests and proposed two new
approaches to provide more entropy to the
generation process. Besides, we presented a
strategy to employ RamG as a DRBG with
specific characteristics to generate symmetric
keys, in particular, for the symmetric encryption
algorithm GOST 28147-89.

References

1. Barak, B. and S. Halevi (2005). A model and

architecture for pseudo-random generation with
applications to /dev/random." CCS´05 Proceedings
of the 12th ACM conference on Computer and
communications security: 203-212

2. GOST28147-89 (1989). National Soviet Bureau of

Standards. Information Processing Systems.
Cryptographic Protection. Cryptographic Algorithm.

3. Gutmann, P. Software Generation of Practically
Strong Random Numbers. 7th USENIX Security
Symposium, San Antonio, Texas, USA

4. Kelsey, J., B. Schneier, et al. (1999). Yarrow 160

Notes on the Design and Analysis of the Yarrow
Cryptographic Pseudorandom Number Generator.
LNCS 1758: 13-33

5. Kelsey, J., B. Schneier, et al. (1998).
"Cryptanalytic Attacks on Pseudorandom number
generators." FSE 1372(Springer): 168-188

6. LiDIA. A library for computational number theory.,
Available from http://www.informatik.tu-
darmstadt.de/TI/LiDIA/Welcome.html

7. López, J. C. and R. Monroy (2008). Formal

Support to Security Protocol Development: A
Survey. Computación y Sistemas 12

8. Menezes, A., P. v. Oorschot, et al. (2001).

Handbook of Applied Cryptography, CRC Press
New York

9. NIST (2007). Recommendation for random number

generation using deterministic random bit
generators. NIST Special Publication 800-90A.

10. NIST (2010). A Statistical Test Suite for Random

and Pseudorandom Number Generators for
Cryptographic Applications (Revised). NIST Special
Publication 800-22.

11. Pieprzyk, J. and L. Tombak (1994). Soviet
Encryption Algorithm.

Sacha Pelaiz received his
M.Sc. at Havana University
in 2006 and graduated in
Mathematics in 2001.

Renier Tejera received his
M.Sc. at Instituto Superior
Politécnico José Antonio
Echeverría, Havana, Cuba in
2011 and graduated in
Computer Sciences in 2005
at Havana University.

Article received on 11/10/2012; accepted on 09/01/2013.

http://www.informatik.tu-darmstadt.de/TI/LiDIA/Welcome.html
http://www.informatik.tu-darmstadt.de/TI/LiDIA/Welcome.html

