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Abstract. Random sequences play an important role in 

all aspects of Cryptography. All cryptographic systems 
and protocols are based on secrets and can only be as 
strong as the random sequence generators they use to 
generate those secrets. The best cryptographic scheme 
becomes insecure once its secrets can be predicted or 
determined. In modern cryptography random 
sequences are used (1) to generate session keys and 
initialization vectors for symmetric block ciphers, (2) to 
generate random values for various digital signature 
schemes such as DSA and (3) to produce seeds which 
are used in math routines to get values such as large 
prime numbers for RSA and also in security protocols. 
This paper presents the design of RAMG, a pseudo-
random seed generator, using a secure symmetric 
block cipher algorithm. We describe the design 
principles used for the development of the generator as 
well as its principal components. We also discuss the 
idea of using it as a pseudo-random bit generator 
(DRBG). 
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Un nuevo procedimiento de 
generación seudo aleatoria 

de semillas  

Resumen. Las sucesiones aleatorias juegan un papel 

importante en todos los aspectos de la criptografía. 
Todos los sistemas y protocolos criptográficos se 
basan en el secreto y solo pueden ser tan fuertes como 
lo sean los generadores aleatorios de sucesiones 
empleados para generar esos secretos. El mejor 
esquema criptográfico deviene inseguro una vez se 
puedan determinar o predecir sus secretos. En la 
criptografía moderna se emplean las sucesiones 
aleatorias para: generar llaves de sesión e inicializar 
vectores para esquemas simétricos de cifrado en 
bloques; generar valores aleatorios para diversos 
esquemas de firma digital tales como DSA y ECDSA; 
generar semillas que se empleen en rutinas 
matemáticas para obtener valores tales como números 
primos grandes para esquemas como RSA y ElGamal, 

entre otras aplicaciones. En este trabajo se describe el 
diseño de RAMG, un generador seudo-aleatorio de 
semillas (GSSA) empleando un algoritmo simétrico 
seguro de cifrado en bloques. Se describen los 
principios de diseño utilizados para su desarrollo así 
como sus componentes principales y se analiza la idea 
de emplearlo como un generador de sucesiones de bits 
seudo-aleatorios (GBSA). 

Palabras clave. Semilla, cifrado simétrico en bloques. 

1 Introduction 

The generation of truly random sequences, 
despite being a widely studied topic in 
cryptography, is a complex issue, particularly 
because computers in which generation 
algorithms are implemented are designed to be 
deterministic. Therefore, a general procedure is to 
use pseudo-random numbers, which are numbers 
generated from truly random values and are very 
difficult to distinguish from the latter. 

A pseudo-random bit generator (DRBG) is a 
deterministic mechanism that processes truly 
random unpredictable inputs, commonly called 
seeds, and generates pseudo-random outputs. 
DRBGs are currently used in many cryptographic 
applications; some of them have already identified 
vulnerabilities [5]. 

A DRBG can be defined as a deterministic 
function as follows: 

   nk
F 1,01,0: 

,
 (1) 

where F  is a one-way function that maps a 
small input to a much greater length output, and

kn  . 

If input x  is selected uniformly at random, 

then no efficient algorithm can distinguish 
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between )(xF  and a truly random sequence of 

the same length. This implies that the output is 
uniformly distributed and unpredictable without 

the knowledge of x . The first k  bits of the output 

are used as input for the next iteration, while the 

remaining kn   bits are the output. Designating 

the first entry of  F  as the initial state and each 
following entry as the next state, one creates a 
state machine with the transition function F, and 
then successive application results in a DRBG. 

The security of this construction is to keep the 

internal state secret. The requirement that F  is a 
one-way function ensures that an attacker cannot 
retrieve the internal state from the outputs. 

For the initial state to be secret to a potential 
attacker, it must be initialized with uniformly 
distributed secret values (seeds). Also, most 
DRBGs periodically reset the internal state for two 

main reasons: to prevent the function F  to fall in 
short cycles and to increase the entropy of the 
internal state.  

DRBGs must fulfill certain requirements [1]. to 
be considered cryptographically secure. The two 
fundamental requirements are as follows. 

1.  Forward security or Progressive resistance. 
An attacker who can compute the internal 
state of the generator cannot retrieve 
previous outputs. This is achieved by 
ensuring that the transition function is a one-
way function. 

2.  Backward security or Prediction resistance. 
An attacker who can compute the internal 
state of the generator cannot predict future 
outputs. This can be provided if the internal 
state is periodically reset with data of 
sufficient entropy. 

So, why do we need to design a seed 
generator? The most common reason for failure 
of DRBGs in real-world applications is that they 
overestimate the amount of entropy in the seeds. 
For example, if a generator have seeds of 128 
bits which seem random, but in fact have only 56 
bits of entropy, then an attacker can feasibly 
perform an exhaustive search of the starting point 
of the DRBG [4]. This is perhaps the most difficult 
problem to solve in the design of a DRBG. 

To generate seeds, one commonly uses some 
values as entropy inputs; these values are usually 
obtained from actions taken by a human operator, 
and also relating to system inputs such as time 
values and process tables. However, these 
values usually are poor sources of entropy [3].   

An improved variant to obtain suitable inputs is 
to employ entropy sources associated to 
unpredictable physical or electronic processes 
such as thermal noise sources and noise of 
diodes. However, this implies an additional cost in 
hardware due to the use of appropriate and 
specific devices which may not be feasible in 
different scenarios. 

For these reasons we decided to design and 
implement a software-based pseudo-random 
seed generator PRSG, named RamG, with good 
statistical properties to provide the quantity of 
entropy required for DRBGs. 

2 RamG Components 

2.1 Entropy Source 

According to [9], the source of the entropy input 
shall be either 

– a non-deterministic random bit generator 
(NRBG), 

– a DRBG, thus forming a chain of at least two 
DRBGs; the highest-level DRBG in the chain 
shall be seeded by an NRBG or an entropy 
source, or 

– an appropriate entropy source. 

In the implementation of RamG we used the 
function randomize as an entropy source. This 
function is part of the BigInt class, developed and 
implemented by the authors for working with large 
integers and multi-precision arithmetic. This 
function was adequate for specific purposes from 
various functions of the Open Source Library Lidia 
[6]. It was proved that the randomize function 
generates random sequences with good 
cryptographic properties for lengths of 256, 384, 
512 and 768 bits. Note further that this function 
can be replaced by any other function to generate 
pseudo-random sequences of 768 bits. 
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2.2 Symmetric Algorithm GOST 28147-89 

The symmetric block cipher scheme GOST 
28147-89 [11] is considered an algorithm with 
good cryptographic properties. To date, there are 
no known effective general or specific purpose 
attacks. This algorithm is originally from the 
former Union of Soviet Socialist Republics 
(USSR), and it functions today with certain 
specifications and employment restrictions 
according to the symmetric standard of 
Russia [2]. 

The algorithm was implemented in the Output 
Feedback mode (Fig. 1) leading to the function 
rGOST. Its components are: 

–  70 ,, KK  : 32 bit registers for storing the 

symmetric key of 256 bits. 

–  81 ,, SS  : 8 S-boxes, each of size 64 bits. 

–  4321 ,,, RRRR : 32 bit registers. 

–  65 , RR : 32 bit registers which contain two 

constants 1C  and 2C . 

–  13 ,CMCM : 32 bit adders modulo
322 . 

–  2CM : a Bitwise Exclusive Or adder for 32 

bit registers. 

–  4CM : a 32 bit adder modulo 1232  . 

–  5CM : a Bitwise Exclusive or adder without 

restrictions of the number of bits. 

–  SS -mode: a Simple Substitution Mode. 

2.3 Statistical Tests 

To check the quality of the sequences generated 
by RamG, we used the NIST package of 
statistical tests proposed in [10] with good results. 

Besides, as part of the generation process, we 
decided to incorporate only 4 of these statistical 
tests for efficiency reasons, to measure the 
quality in terms of randomness of the generated 
sequences. In the following we describe these 4 
tests. 

2.3.1 Frequency Test (Monobit Test) 

Compute the confidence interval: 

npqtnpI 
,
 (2) 

Where n  is the number of elements of the 

sequence, 2/1p  is the probability of the 

output bit to be equal to 0 or 1, and

2/11  pq . 

The sequence is accepted as random if the 
number of 0’s and 1’s are both within the 
computed confidence interval. 

2.3.2 Serial Test (Two-Bit Test) 

Compute the number of occurrences of (00, 01, 
10 y 11) and compute the statistic 
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(3) 

Where 00n , 01n , 10n  and 11n  are the number 

of 00’s, 01’s, 10’s and 11’s  in the generated 
sequence, respectively; n  is the number of 

elements of the sequence; 4/1ijp  is the 

probability of occurrence of the two-bit i, j = 0,1. 
 

Fig. 1. [7]. GOST algorithm in OFB mode 
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The computed value b  is then compared 

with the theoretical value 
2

1    with  21m  

degrees of freedom, ( 2m ). The hypothesis of 

randomness is rejected if the value of the statistic 
is greater than the theoretical value. 

2.3.3 Run Test 

Compute the number of runs (of either zeros or 
ones) of various length of the sequence using 

22

3

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in
e

.

 (4) 

Let k  be the largest integer i  with 5ie , and 

then compute the statistic 
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Where iB  is the number of runs of 1’s of 

length i , with ki 1 , and iG  is the number of 

runs of 0’s of length i , with ki 1 . 

The computed statistic is then compared with 

the theoretical value 
2

1    with  22 k  degrees 

of freedom. The hypothesis of randomness is 
rejected if the value of the statistic is greater than 
the theoretical value. 

2.3.4 Autocorrelation Test 

Select d with 

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 (6) 

Where )(dA  is the number of bits in the 

sequence not equal to their d -shifts; is is the i  

element in the sequence with 1,...,1,0  ni  ; 

and   denotes the XOR operator. Then compute 

the statistic: 

dn
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(7) 

The computed statistic is then compared with 

the theoretical value )1,0(1 N . The hypothesis of 

randomness is rejected if the value of the statistic 
is greater than the theoretical value. 

These four tests conform the function 
testRandom used to validate the randomness of 
the generated sequences. Both the initialization 
sequences and the outputs sequences must pass 
these tests to be considered random. 

2.4 RamG Functional Scheme 

The algorithm to generate 64 bit pseudo-random 
seeds is as follows. 

Algorithm RamG 

Input: symmetric key key  of 256 bits. 

Output: seed sequence 64Suc  of 64 bits. 

do{ 
do{ 

  ()12,0 768

768 randomizeSuc R   

}while (no )( 768SuctestRandom ) 

 keySucrGOSTSuc ,76864   

}while (no )( 64SuctestRandom ) 

In Section 1.1.1, a pseudo-random sequence 
of 768 bits is generated using the function 
randomize. This step is repeated while the 

generated sequence 768Suc  does not pass the 

four statistical tests. In Section 1.3, a pseudo-

random sequence 64Suc  of 64 bits is generated 

using rGOST, considering 768Suc  as the 

message and key  as the symmetric key. This 
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process is repeated while the sequence 64Suc  

does not pass the four statistical tests. 

3 Additional Elements of Randomness 

3.1 RamG Reset Process 

As shown in Section 2.2, RamG is reset each 
time required for generating a pseudo-random 
sequence (seed), i.e., each time it generates a 
64-bit seed; it also generates a new 768-bit 
sequence using the function randomize. In other 
words, the generator is reinitialized with new 
entropy input in each generation. This mechanism 
has a disadvantage that if the used entropy 
source fails from one point without being 
detected, then a new initialization using this 
entropy source perhaps cannot provide enough 
entropy to the generator to operate safely. 
Therefore, the selection of the entropy source 
must be correct and the output sequences must 
be controlled. 

Another reset mechanism is to regularly 
change the key used by the symmetric algorithm 
GOST 28147-89. This approach is not necessary 
in practice because the period of the GOST 

28147-89 algorithm is approximately 
642 , which is 

undoubtedly sufficiently large. 

3.2 S-Box Conformation 

A second approach is to construct dynamically 
and symmetrically key-dependent the 8 S-boxes 
used by the GOST 28147-89 algorithm. The idea 
is to conform 8 new and independent S-boxes for 

each generation process from a set P  of 256 
permutations of 16 bits. The permutations must 
be previously generated in a random way and 
fulfill the necessary security requirements for the 
S-boxes. The selection process of the 8 
permutations or S-boxes among the set of 256 
ones implemented in RamG receives as input the 
sequence of bits of the symmetric key and 
outputs 8 integers values within 1 and 256 
determining the positions of the permutations. 

Thus, we have 








8

256
 possible manners of 

conforming S-boxes. 

4 RamG as a DRBG 

In this section we present the idea of using RamG 
as a specific DRBG (SDRBG) for the generation 
of pseudo-random values to be employed as 
symmetric keys. 

As SDRBG, we set a DRBG with the following 
properties: 

– It does not respond to a construction based 
on a machine of states with a transition 
function, so there is no relation between the 
initial values of different iterations; 

– It uses a one-way function (symmetric 
encryption block scheme). 

Note that this proposal indeed does not 
respond to the standard definition of DRBGs. 

RamG algorithm as a SDRBG is as follows: 

Algorithm RamG  

Input: symmetric key key  of 256 bits,  n  number 

of bits to generate. 

Output: seed nSuc  of n  bits. 

for 0i  to  64/n {  

do{ 
do{ 

     

  ()12,0 768

768 randomizeSuc R   

}while (no )( 768SuctestRandom ) 

 keySucrGOSTSucn ,|| 768  

}while (no )( nSuctestRandom )} . 

For example, if we want to generate symmetric 
keys of 256 bits for GOST 28147-89 algorithm, 

we have 4n  and the output sequence nSuc  

can be interpreted as the result of implementing 
the function rGOST in the Electronic Code Book 
mode (ECB) [8]. 

It is easy to see that this proposal meets the 
attributes of progressive resistance and 
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predictions resistance. The first attribute is 
achieved by the use of a one-way function: the 
symmetric encryption algorithm GOST 28147-89. 

The achievement of the second one is due to 
the constant reset of the generator. Moreover, the 
internal states of the generator are not related to 
each other, i.e., they are independent, so the 
compromise of a state does not provide any 
information to determine or predict an earlier or 
later state. 

5 Conclusions 

This paper describes the design of RamG, a 
pseudo-random seeds generator, using the 
secure symmetric encryption algorithm GOST 
28147-89 as a one-way function. We obtained 
very good results applying the NIST package of 
statistical tests and proposed two new 
approaches to provide more entropy to the 
generation process. Besides, we presented a 
strategy to employ RamG as a DRBG with 
specific characteristics to generate symmetric 
keys, in particular, for the symmetric encryption 
algorithm GOST 28147-89. 
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