
Computación y Sistemas Vol. 17 No.1, 2013 pp. 95-102
ISSN 1405-5546

Decision Tree based Classifiers for Large Datasets

Anilu Franco-Arcega
1,2

, Jesús Ariel Carrasco-Ochoa
2
, Guillermo Sánchez-Díaz

3
,

and José Francisco Martínez-Trinidad
2

1
Universidad Autónoma del Estado de Hidalgo, Hidalgo,

Mexico

2
 Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla,

Mexico

3
 Universidad Autónoma de San Luis Potosí, San Luis Potosí,

Mexico

afranco@uaeh.edu.mx, anifranco6, ariel, fmartine@inaoep.mx,
guillermo.sanchez@uaslp.mx

Abstract. In this paper, several algorithms have been

developed for building decision trees from large
datasets. These algorithms overcome some restrictions
of the most recent algorithms in the state of the art.
Three of these algorithms have been designed to
process datasets described exclusively by numeric
attributes, and the fourth one, for processing mixed
datasets. The proposed algorithms process all the
training instances without storing the whole dataset in
the main memory. Besides, the developed algorithms
are faster than the most recent algorithms for building
decision trees from large datasets, and reach
competitive accuracy rates.

Keywords. Decision trees, supervised classification,

large datasets.

Clasificadores basados en arboles de
decisión para grandes conjuntos

de datos1

Resumen. En este artículo se desarrollaron varios

algoritmos de generación de árboles de decisión a
partir de grandes conjuntos de datos, los cuales
resuelven algunas de las limitaciones de los algoritmos
más recientes del estado del arte. Tres de estos
algoritmos permiten procesar conjuntos de datos
descritos exclusivamente por atributos numéricos; y
otro puede procesar conjuntos de datos mezclados.
Los algoritmos propuestos procesan todos los objetos

1
 Extended abstract of PhD thesis. Graduated: Anilu Franco-

Arcega. Advisors Jesús Ariel Carrasco Ochoa, Guillermo
Sánchez-Díaz, and José Francisco Martínez-Trinidad.
Graduation date: 14/07/2010.

del conjunto de entrenamiento sin necesidad de
almacenarlo completo en memoria. Además, los
algoritmos desarrollados son más rápidos que los
algoritmos más recientes para la generación de árboles
de decisión para grandes conjuntos de datos,
obteniendo resultados de clasificación competitivos.

Palabras clave. Árboles de decisión, clasificación

supervisada, grandes conjuntos de datos.

1 Introduction

Decision Trees [12] are among the most used
algorithms for solving supervised classification
problems. A decision tree (DT) is a structure
consisting of internal nodes, edges and leaves.
An internal node has one or more test attributes
associated with it and two or more edges which
lead to other nodes. A leaf includes a class label
which is assigned to new instances arriving to the
leaf.

Currently, it is a very common task in
computation to operate datasets with a big
amount of instances [3]. Nevertheless, building
DTs from large datasets requires long time for
processing all the training instances and,
moreover, the available memory may be not
sufficient for storing the whole training set.
Therefore, implementation of conventional
algorithms for building DTs becomes very time
and space consuming, and in some cases not
applicable. For this reason in the literature, a
number of authors have proposed algorithms for

mailto:afranco@uaeh.edu.mx
mailto:anifranco6,%20ariel,%20fmartine%20@inaoep.mx
mailto:guillermo.sanchez@uaslp.mx

96 Anilu Franco-Arcega, Jesús Ariel Carrasco-Ochoa, Guillermo Sánchez-Díaz…

Computación y Sistemas Vol.17 No.1, 2013 pp. 95-102
ISSN 1405-5546

building DTs from large datasets (See Section 2).
However, these algorithms have some
drawbacks. Therefore, in this PhD thesis we
introduced DT induction algorithms which
overcome some of these drawbacks. The main
characteristics of our algorithms are as follows.
Firstly, they process the whole training set for
building a DT without storing the set in the main
memory, and secondly, they are faster than the
most recent algorithms for building DTs from large
datasets, maintaining a competitive accuracy rate.

The rest of the paper is organized as follows.
Section 2 describes the related work. Section 3
introduces the proposed algorithms. Section 4
shows some experimental results. Finally, Section
5 presents our conclusions and future work.

2 Related Work

Many algorithms have been developed for
building decision trees such as ID3 [10], C4.5
[13], ID5R [18], ITI [19], CART [2], ModelTrees
[16], CTC [11], UFFT [5], FDT [8], etc. However,
all these algorithms have to keep in memory the
whole training set for building a DT. Therefore,
they cannot be applied to large training sets.

Other algorithms have been developed for
building DTs from large training sets, for example,
SLIQ [9], SPRINT [15], CLOUDS [1], RainForest
[7] and BOAI [20]; however, all of them use lists
for keeping a dataset in the main memory. For
each attribute in the dataset, these algorithms
assign a list. The problem is that some of these
lists require more space than the one required to
store the whole training set. Other algorithms, like
BOAT [6], ICE [21] and VFDT [4], are incremental
algorithms. Both BOAT and ICE use a subset of
training instances for building a DT; but for large
datasets, to search this subset of instances may
be too expensive. In VFDT, the user needs to
define values for three parameters before building
a DT, which could be very difficult in practice.

The algorithms proposed here solve some of
the restrictions highlighted above. Our algorithms
process the whole training set without storing it in
memory and their parameters can be easily
defined by the user. Besides, our algorithms are
faster than the most recent algorithms reported in
the literature for building DTs from large datasets.

3 Proposed Algorithms

This section introduces the main features of the
proposed algorithms for building DTs from large
training sets. In order to reduce memory
requirements and handle large training sets, our
algorithms process the training instances one by
one in an incremental way, updating the DT with
each instance. For expanding a node, our
algorithms employ only a small amount of
instances, so the expansion of the nodes is faster
than the common expansion process used in
previous algorithms reported in the literature.
Besides, in our algorithms, the instances used for
expanding a node will be deleted once the
expansion is done, in order to avoid storing the
whole training set in memory.

The structure of a DT built by our algorithms is
similar to the structure of a conventional DT. A DT
has a root node, internal nodes and leaves. Each
internal node has one or more test attributes
associated with it (according to the algorithm) and
each leaf includes a class label used for
classifying new instances.

In all the algorithms developed in this PhD
thesis, the building step starts with creating an
empty root node. Then, each training instance
traverses the DT beginning in the root node and
descending through internal nodes, until it
reaches the leaf in which the instance is stored.
When a leaf has s instances (s is a parameter of
our algorithms), it is expanded or updated, using
only the s instances stored in the leaf.

Depending on the type of s instances stored in
a node, the node is expanded or updated. If these
instances belong to two or more classes, the
node is expanded. For expanding a node, one or
more test attributes are obtained and for each
class, using instances belonging to that class, a
test value for each test attribute is computed thus
creating a set of test values for each class. Each
one of these sets is assigned to the
corresponding edge (one edge per class); this
process is presented graphically in Figure 1. The
way of obtaining test attributes and sets of test
values depends on a particular algorithm (see
Section 3.1).

On the other hand, if a node has instances
only of a single class, this node is updated. For
updating a node, a set of test values is obtained

Decision Tree based Classifiers for Large Datasets 97

Computación y Sistemas Vol. 15 No. 2, 2011 pp. 95-102
ISSN 1405-5546

from s instances stored in the node, and this set
is combined with the set of test values assigned
to the input edge of the node. The new set of test
values replaces the set assigned to the input
edge of the node; Figure 2 shows the scheme of
this process.

Once a node is expanded or updated, the s
instances stored in it are deleted.
Finally, once all training instances have been
processed, a class label is assigned to each leaf
in the DT (the majority class of the instances
stored in the leaf or the class associated to the
input edge if the leaf is empty), and the DT
induction finishes.

Since at the beginning the DT has only the
root node (a leaf), the first s instances are stored
in that node. In order to avoid having instances
from only one class in the root node, we propose
to reorganize the training set before starting to
build a DT. This reorganization consists in
alternating instances from each class. The first
instance will be from class 1, the second instance
from class 2, and so on. If there are c classes, the

(c+1)
th
 instance will be from class 1, the (c+2)

th

instance will be from class 2, and so on.
The classification step using the generated DT

is similar to the one used in traditional algorithms.
A new instance traverses the DT starting at the
root node and descends through internal nodes,
until it arrives to the leaf with the relevant class
label. This label is assigned to the new instance.

3.1 Expansion Process

We have defined three ways to expand a node for
our algorithms designed to process numeric
datasets; each one defines a different algorithm
as follows:

1. Using all the attributes as test attributes in the
node (IIMDT algorithm). For each attribute and
each class, a test value is computed in order to
form the set of test values corresponding to each
of the output edges of the node. Therefore, the
number of output edges is the same as the
number of classes.
2. Using n attributes (n is another parameter) as
test attributes (IIMDTS algorithm). This algorithm
expands a node in a similar way as in the IIMDTS
algorithm, with the difference that IIMDTS uses
only n test attributes for computing the sets of test
values for the output edges.
3. Using only one attribute as test attribute (DTFS
algorithm), computing only the test value for this
attribute, one for each class.

These options are used when a training set is
described exclusively by numeric attributes, since
the test values for each attribute are computed as
the mean of the values of the corresponding
attributes in the instances belonging to the
corresponding class.

The way to expand a node when we have
mixed training sets is as follows:

4. Using a single test attribute (DTLT algorithm).

The rule for expanding a node using a numeric

attribute is X  V (creating two output edges) as in
the C4.5 algorithm [13]. Applying a categorical
attribute, the number of edges will be the same as
the number of possible values in the attribute.

In all cases, once a node has been expanded,
the s instances stored in the node are deleted, in
order to save memory space.

Fig. 1. Expansion process for proposed algorithms

Fig. 2. Updating process for proposed algorithms

98 Anilu Franco-Arcega, Jesús Ariel Carrasco-Ochoa, Guillermo Sánchez-Díaz…

Computación y Sistemas Vol.17 No.1, 2013 pp. 95-102
ISSN 1405-5546

4 Experimental Results

To demonstrate the behavior of our algorithms,
we evaluated the processing time and the
accuracy rate. We compared the obtained results
of the proposed algorithms with ICE, VFDT and
BOAI algorithms. For all experiments, we
employed 10-fold cross validation, showing in the
graphs the 95% confidence intervals. Our
experiments were performed on a Pentium 4
processor at 3.06 GHz, with 2 GB of RAM,
running Linux Kubuntu 7.10.

Based on experimental analysis, we used
s=100 for all algorithms and n=1,2,5 for IIMDTS,
since these values were the best for our
algorithms. Such values assure the best trade-off
between processing time and accuracy rate.
Several real and synthetic datasets were used for
evaluating our algorithms. However, in this paper
we give results only from one dataset for each
algorithm.

First, we present the results of IIMDT, IIMDTS
and DTFS using the GalStar dataset [14]. This is
a real-world dataset with 2 classes, 30 numeric
attributes and 4,000,000 instances. In this
experiment, several training sets from 500,000 to
4,000,000 instances were created from GalStar.

Figures 3 and 4 show the processing time and
accuracy rates obtained for this dataset,
respectively. BOAI was not included in this
experiment because it is not able to process
training sets bigger than 200,000 instances. As
one can observe, our algorithms are the best,
since they are faster than ICE and VFDT,
obtaining competitive accuracy rates.

We utilize the KDD dataset [17] for showing
the behavior of DTLT for a mixed dataset. This is
a real-world dataset with 2 classes, 41 mixed
attributes and 4,800,000 instances. We also
created several training sets from this dataset,
from 500,000 to 4,500,000 instances. BOAI
cannot process any of these training sets;
therefore it was not included in this experiment. It
can be observed in Figures 5 and 6 that DTLT is
faster than ICE and VFDT, being better than ICE
and similar to VFDT in accuracy.

We also included some experiments for
showing the behavior of our algorithms when the
number of attributes is increased. A synthetic
dataset with two classes and 4,000,000 instances

Fig. 3. Processing time for the GalStar dataset

Fig. 4. Accuracy rate for the GalStar dataset

Decision Tree based Classifiers for Large Datasets 99

Computación y Sistemas Vol. 15 No. 2, 2011 pp. 95-102
ISSN 1405-5546

was created with different number of attributes.
Several training sets were created, from 5 to 40
attributes, with increments of 5. The datasets
were randomly generated following the normal
distribution with different mean and standard
deviation for each class and each attribute.

Figure 7 shows the processing time obtained
from these experiments; in this figure it can be
observed that the processing time used by our

algorithms increases slightly, while ICE and VFDT
processing time increases quickly.

Additionally, we analyzed the amount of
memory which the algorithms use for building a
DT. Figures 8 and 9 show the results using
GalStar (numeric dataset) and KDD (mixed
dataset). As one can observe, for the GalStar
dataset, IIMDT and ICE use a similar amount of
memory which is less than for IIMDTS and DTLT,
which in their turn use even less memory than

Fig. 7. Processing time when the number of attributes

is increased

Fig. 8. Amount of memory used for the GalStar dataset

Fig. 5. Processing time for the KDD dataset

Fig. 6. Accuracy rate for the KDD dataset

100 Anilu Franco-Arcega, Jesús Ariel Carrasco-Ochoa, Guillermo Sánchez-Díaz…

Computación y Sistemas Vol.17 No.1, 2013 pp. 95-102
ISSN 1405-5546

VFDT. However, it is important to highlight that
ICE uses only a subset of instances for building a
DT. For the KDD dataset, our algorithm DTLT
uses less memory than ICE and VFDT. The BOAI
algorithm does not appear in these figures,
because it cannot not process training sets bigger
than 200,000 instances, otherwise it produces
memory failures.

5 Conclusions and Future Work

In this PhD thesis we have proposed new
algorithms for building decision trees from large
training sets. These algorithms solve some
restrictions of previous algorithms reported in the
state of the art. Our algorithms process the whole
training set in an incremental way without storing
it in memory. Besides, the algorithms use only a
small amount of instances for expanding a node
which allows them to fulfill a fast selection of test
attributes. Taking advantage of this characteristic,
the proposed algorithms are able to process large
training sets.

The obtained experimental results show that
our algorithms IIMDT, IIMDTS, DTFS and DTLT
display good behavior when the number of
instances increases. Besides, they are faster than
the most recent algorithms for building DTs from
large datasets (ICE, VFDT and BOAI),
maintaining competitive accuracy rates. Also, a

fast selection of the test attributes makes our
algorithms stable in terms of processing time,
when the number of attributes increases.

As future work, we will propose methods for
automatic selection of values for the parameters
in our algorithms.

Acknowledgements

Authors wish to thank CONACyT for its support
with the grant 165151 given to the first author of
this paper, and the project grants CB2008-106443
and CB2008-106366.

References

1. Alsabti, K., Ranka, S., & Singh, V. (1998).

CLOUDS: A decision tree classifier for large
datasets. Fourth International Conference on
Knowledge Discovery and Data Mining (KDD-98),
New York, USA, 2–8.

2. Breiman, L., Friedman, J.H., Olshen, R.A., &
Stone, C.J. (1984). Classification and Regression

Trees. Belmont, Calif.: Wadsworth International
Group.

3. Chakrabarti, S., Cox, E., Frank, E., Güting, R.H.,
Han, J., Jiang, X., Kamber, M., Lightstone, S.S.,
Nadeau, T.P., Neapolitan, R.E., Pyle, D., Refaat,
M., Schneider, M., Teorey, T.J., & Witten, I.H.
(2009). Data Mining: Know it all. Burlington, MA:
Elsevier/ Morgan Kaufmann Publishers.

4. Domingos, P. & Hulten, G. (2000). Mining high-
speed data streams. Sixth ACM SIGKDD
international Conference on Knowledge Discovery
and Data Mining (KDD’00), Boston, MA, USA, 71–
80.

5. Gama, J. & Medas, P. (2005). Learning decision
trees from dynamic data streams. Journal of
Universal Computer Science, 11(8), 1353–1366.

6. Gehrke, J., Ganti, V., Ramakrishnan, R., & Loh,
W.Y. (1999). BOAT – Optimistic decision tree

construction. ACM SIGMOD Record, 28(2), 169–
180.

7. Gehrke, J., Ramakrishnan, R., & Ganti, V.
(2000). Rainforest – A framework for fast decision
tree construction of large datasets. Data Mining
and Knowledge Discovery, 4(2-3), 127–162.

8. Janikow, C.Z. (1998). Fuzzy decision trees:
Issues and methods. IEEE Transactions on
Systems, Man and Cybernetics - Part B:
Cybernetics, 28(1), 1–14.

Fig. 9. Amount of memory used for the KDD dataset

Decision Tree based Classifiers for Large Datasets 101

Computación y Sistemas Vol. 15 No. 2, 2011 pp. 95-102
ISSN 1405-5546

9. Mehta, M., Agrawal, R., & Rissanen, J. (1996).

SLIQ: A fast scalable classifier for data mining.
Fifth International Conference Extending Database
Technology (EDBT), Avignon, France, 18–32.

10. Mitchell, T.M. (1997). Machine Learning. New
York: McGraw Hill.

11. Pérez, J.M., Muguerza, J., Arbelaitz, O.,
Gurrutxaga, I., & Martin, J.I. (2007). Combining

multiple class distribution modified subsamples in
a single tree. Pattern Recognition Letters, 28(4),
414–422.

12. Quinlan, J.R. (1986). Induction of decision trees.
Machine Learning, 1(1), 81–106.

13. Quinlan, J.R. (1993). C4.5: Programs for Machine
Learning. San Mateo, Calif.: Morgan Kaufmann
Publishers.

14. SDSS - Adelman-McCarthy, J., Agueros, M. A.,
Allam, S.S., et al. (2008). The Sixth Data Release
of the Sloan Digital Sky Survey. The Astrophysical
Journal Supplement, 175(2), 297–313.

15. Shafer, J.C., Agrawal, R., & Mehta, M. (1996).

SPRINT: A scalable parallel classifier for data
mining. 22

nd
 International Conference on Very

Large Data Bases (VLDB '96), Mumbai, India,
544–555.

16. Hsing-Kuo, P., Shou-Chih, C., & Yuh-Jye, L.
(2005). Model trees for classification of hybrid data
types. 6

th
 international conference on Intelligent

Data Engineering and Automated Learning
(IDEAL’05), Queensland, Australia, 32–39.

17. Kdd cup 1999 data (1999). Retrieved from
http://kdd.ics.uci.edu/databases/kddcup99/kddcup
99.html

18. Utgoff, P.E. (1989). Incremental induction of
decision trees. Machine Learning, 4(2), 161–186.

19. Utgoff, P.E., Berkman, N.C., & Clouse, J.A.
(1997). Decision tree induction based on efficient
tree restructuring. Machine Learning, 29(1), 5–44.

20. Yang, B., Wang, T., Yang, D., & Chang, L.
(2008). BOAI: Fast alternating decision tree
induction based on bottom-up evaluation. 12

th

Pacific-Asia Conference on Advances in
Knowledge Discovery and Data Mining
(PAKDD’08), Osaka, Japan, 405–416.

21. Yoon, H., Alsabti, K., & Ranka, S. (1999). Tree-
based incremental classification for large datasets.
Technical Report (TR-99-013), Gainesville, FL.:
University of Florida.

Anilu Franco Arcega received
her B.S. and M.Sc. degrees in
Computer Science from
Autonomous University of Hidalgo
State in 2003 and 2006,
respectively. Her Ph.D. degree
was obtained from the National

Institute of Astrophysics, Optics and Electronics
(INAOE), Puebla, Mexico.

Jesús Ariel Carrasco Ochoa
received his Ph.D. degree in
Computer Science from the
Center for Computing Research
of the National Polytechnic
Institute (CIC-IPN), Mexico, in
2001. At present, he is a full time
researcher at the National

Institute for Astrophysics, Optics and Electronics
(INAOE) of Mexico. His current research interests
include Sensitivity Analysis, Logical Combinatorial
Patter Recognition, Testor Theory, Feature
Selection, Prototype Selection and Clustering.

Guillermo Sánchez Díaz
received his B.S. degree in
Computer Science from
Autonomous University of
Puebla (BUAP), Mexico, in
1995; his M.Sc. degree in
Computer Science from

Autonomous University of Puebla, Mexico, in
1997, and his Ph.D. degree in the Center for
Computing Research of the National Polytechnic
Institute (CIC-IPN), Mexico, in 2001. His current
research interests include Pattern Recognition,
Data Mining, Image Processing, Testor Theory.

102 Anilu Franco-Arcega, Jesús Ariel Carrasco-Ochoa, Guillermo Sánchez-Díaz…

Computación y Sistemas Vol.17 No.1, 2013 pp. 95-102
ISSN 1405-5546

José Francisco Martínez
Trinidad received his B.S.
degree in Computer Science
from Physics and Mathematics
School of the Autonomous
University of Puebla (BUAP),
Mexico, in 1995; his M.Sc.
degree in Computer Science

from the Faculty of Computer Science of the
Autonomous University of Puebla, Mexico, in
1997; his Ph.D. degree from the Center for
Computing Research of the National Polytechnic
Institute (CIC-IPN), Mexico, in 2000. Professor
Martinez-Trinidad edited/authored seven books
and over one hundred and twenty journal and
conference papers on subjects related to Pattern
Recognition.

Article received on 21/09/2011; accepted on 25/09/2011.

