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Abstract. In this paper, several algorithms have been 

developed for building decision trees from large 
datasets. These algorithms overcome some restrictions 
of the most recent algorithms in the state of the art. 
Three of these algorithms have been designed to 
process datasets described exclusively by numeric 
attributes, and the fourth one, for processing mixed 
datasets. The proposed algorithms process all the 
training instances without storing the whole dataset in 
the main memory. Besides, the developed algorithms 
are faster than the most recent algorithms for building 
decision trees from large datasets, and reach 
competitive accuracy rates. 
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Clasificadores basados en arboles de 
decisión para grandes conjuntos 

de datos1
 

Resumen. En este artículo se desarrollaron varios 

algoritmos de generación de árboles de decisión a 
partir de grandes conjuntos de datos, los cuales 
resuelven algunas de las limitaciones de los algoritmos 
más recientes del estado del arte. Tres de estos 
algoritmos permiten procesar conjuntos de datos 
descritos exclusivamente por atributos numéricos; y 
otro puede procesar conjuntos de datos mezclados.  
Los algoritmos propuestos procesan todos los objetos 
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del conjunto de entrenamiento sin necesidad de 
almacenarlo completo en memoria. Además, los 
algoritmos desarrollados son más rápidos que los 
algoritmos más recientes para la generación de árboles 
de decisión para grandes conjuntos de datos, 
obteniendo resultados de clasificación competitivos. 

Palabras clave. Árboles de decisión, clasificación 

supervisada, grandes conjuntos de datos. 

1 Introduction 

Decision Trees [12] are among the most used 
algorithms for solving supervised classification 
problems. A decision tree (DT) is a structure 
consisting of internal nodes, edges and leaves. 
An internal node has one or more test attributes 
associated with it and two or more edges which 
lead to other nodes. A leaf includes a class label 
which is assigned to new instances arriving to the 
leaf. 

Currently, it is a very common task in 
computation to operate datasets with a big 
amount of instances [3]. Nevertheless, building 
DTs from large datasets requires long time for 
processing all the training instances and, 
moreover, the available memory may be not 
sufficient for storing the whole training set. 
Therefore, implementation of conventional 
algorithms for building DTs becomes very time 
and space consuming, and in some cases not 
applicable. For this reason in the literature, a 
number of authors have proposed algorithms for 
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building DTs from large datasets (See Section 2). 
However, these algorithms have some 
drawbacks. Therefore, in this PhD thesis we 
introduced DT induction algorithms which 
overcome some of these drawbacks. The main 
characteristics of our algorithms are as follows. 
Firstly, they process the whole training set for 
building a DT without storing the set in the main 
memory, and secondly, they are faster than the 
most recent algorithms for building DTs from large 
datasets, maintaining a competitive accuracy rate. 

The rest of the paper is organized as follows. 
Section 2 describes the related work. Section 3 
introduces the proposed algorithms. Section 4 
shows some experimental results. Finally, Section 
5 presents our conclusions and future work. 

2 Related Work 

Many algorithms have been developed for 
building decision trees such as ID3 [10], C4.5 
[13], ID5R [18], ITI [19], CART [2], ModelTrees 
[16], CTC [11], UFFT [5], FDT [8], etc. However, 
all these algorithms have to keep in memory the 
whole training set for building a DT. Therefore, 
they cannot be applied to large training sets. 

Other algorithms have been developed for 
building DTs from large training sets, for example, 
SLIQ [9], SPRINT [15], CLOUDS [1], RainForest 
[7] and BOAI [20]; however, all of them use lists 
for keeping a dataset in the main memory. For 
each attribute in the dataset, these algorithms 
assign a list. The problem is that some of these 
lists require more space than the one required to 
store the whole training set. Other algorithms, like 
BOAT [6], ICE [21] and VFDT [4], are incremental 
algorithms. Both BOAT and ICE use a subset of 
training instances for building a DT; but for large 
datasets, to search this subset of instances may 
be too expensive. In VFDT, the user needs to 
define values for three parameters before building 
a DT, which could be very difficult in practice. 

The algorithms proposed here solve some of 
the restrictions highlighted above. Our algorithms 
process the whole training set without storing it in 
memory and their parameters can be easily 
defined by the user. Besides, our algorithms are 
faster than the most recent algorithms reported in 
the literature for building DTs from large datasets. 

3 Proposed Algorithms 

This section introduces the main features of the 
proposed algorithms for building DTs from large 
training sets. In order to reduce memory 
requirements and handle large training sets, our 
algorithms process the training instances one by 
one in an incremental way, updating the DT with 
each instance. For expanding a node, our 
algorithms employ only a small amount of 
instances, so the expansion of the nodes is faster 
than the common expansion process used in 
previous algorithms reported in the literature. 
Besides, in our algorithms, the instances used for 
expanding a node will be deleted once the 
expansion is done, in order to avoid storing the 
whole training set in memory. 

The structure of a DT built by our algorithms is 
similar to the structure of a conventional DT. A DT 
has a root node, internal nodes and leaves. Each 
internal node has one or more test attributes 
associated with it (according to the algorithm) and 
each leaf includes a class label used for 
classifying new instances. 

In all the algorithms developed in this PhD 
thesis, the building step starts with creating an 
empty root node. Then, each training instance 
traverses the DT beginning in the root node and 
descending through internal nodes, until it 
reaches the leaf in which the instance is stored. 
When a leaf has s instances (s is a parameter of 
our algorithms), it is expanded or updated, using 
only the s instances stored in the leaf.  

Depending on the type of s instances stored in 
a node, the node is expanded or updated. If these 
instances belong to two or more classes, the 
node is expanded. For expanding a node, one or 
more test attributes are obtained and for each 
class, using instances belonging to that class, a 
test value for each test attribute is computed thus 
creating a set of test values for each class. Each 
one of these sets is assigned to the 
corresponding edge (one edge per class); this 
process is presented graphically in Figure 1. The 
way of obtaining test attributes and sets of test 
values depends on a particular algorithm (see 
Section 3.1). 

On the other hand, if a node has instances 
only of a single class, this node is updated. For 
updating a node, a set of test values is obtained 
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from s instances stored in the node, and this set 
is combined with the set of test values assigned 
to the input edge of the node. The new set of test 
values replaces the set assigned to the input 
edge of the node; Figure 2 shows the scheme of 
this process. 

Once a node is expanded or updated, the s 
instances stored in it are deleted. 
Finally, once all training instances have been 
processed, a class label is assigned to each leaf 
in the DT (the majority class of the instances 
stored in the leaf or the class associated to the 
input edge if the leaf is empty), and the DT 
induction finishes. 

Since at the beginning the DT has only the 
root node (a leaf), the first s instances are stored 
in that node. In order to avoid having instances 
from only one class in the root node, we propose 
to reorganize the training set before starting to 
build a DT. This reorganization consists in 
alternating instances from each class. The first 
instance will be from class 1, the second instance 
from class 2, and so on. If there are c classes, the 

(c+1)
th
 instance will be from class 1, the (c+2)

th
 

instance will be from class 2, and so on. 
The classification step using the generated DT 

is similar to the one used in traditional algorithms. 
A new instance traverses the DT starting at the 
root node and descends through internal nodes, 
until it arrives to the leaf with the relevant class 
label. This label is assigned to the new instance. 

3.1 Expansion Process 

We have defined three ways to expand a node for 
our algorithms designed to process numeric 
datasets; each one defines a different algorithm 
as follows: 

1. Using all the attributes as test attributes in the 
node (IIMDT algorithm). For each attribute and 
each class, a test value is computed in order to 
form the set of test values corresponding to each 
of the output edges of the node. Therefore, the 
number of output edges is the same as the 
number of classes. 
2. Using n attributes (n is another parameter) as 
test attributes (IIMDTS algorithm). This algorithm 
expands a node in a similar way as in the IIMDTS 
algorithm, with the difference that IIMDTS uses 
only n test attributes for computing the sets of test 
values for the output edges. 
3. Using only one attribute as test attribute (DTFS 
algorithm), computing only the test value for this 
attribute, one for each class. 

These options are used when a training set is 
described exclusively by numeric attributes, since 
the test values for each attribute are computed as 
the mean of the values of the corresponding 
attributes in the instances belonging to the 
corresponding class. 

The way to expand a node when we have 
mixed training sets is as follows: 

4. Using a single test attribute (DTLT algorithm).  

The rule for expanding a node using a numeric 

attribute is X  V (creating two output edges) as in 
the C4.5 algorithm [13]. Applying a categorical 
attribute, the number of edges will be the same as 
the number of possible values in the attribute. 

In all cases, once a node has been expanded, 
the s instances stored in the node are deleted, in 
order to save memory space. 

 

Fig. 1. Expansion process for proposed algorithms 

 

Fig. 2. Updating process for proposed algorithms 
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4 Experimental Results 

To demonstrate the behavior of our algorithms, 
we evaluated the processing time and the 
accuracy rate. We compared the obtained results 
of the proposed algorithms with ICE, VFDT and 
BOAI algorithms. For all experiments, we 
employed 10-fold cross validation, showing in the 
graphs the 95% confidence intervals. Our 
experiments were performed on a Pentium 4 
processor at 3.06 GHz, with 2 GB of RAM, 
running Linux Kubuntu 7.10. 

Based on experimental analysis, we used 
s=100 for all algorithms and n=1,2,5 for IIMDTS, 
since these values were the best for our 
algorithms. Such values assure the best trade-off 
between processing time and accuracy rate. 
Several real and synthetic datasets were used for 
evaluating our algorithms. However, in this paper 
we give results only from one dataset for each 
algorithm. 

First, we present the results of IIMDT, IIMDTS 
and DTFS using the GalStar dataset [14]. This is 
a real-world dataset with 2 classes, 30 numeric 
attributes and 4,000,000 instances. In this 
experiment, several training sets from 500,000 to 
4,000,000 instances were created from GalStar. 

Figures 3 and 4 show the processing time and 
accuracy rates obtained for this dataset, 
respectively. BOAI was not included in this 
experiment because it is not able to process 
training sets bigger than 200,000 instances. As 
one can observe, our algorithms are the best, 
since they are faster than ICE and VFDT, 
obtaining competitive accuracy rates. 

We utilize the KDD dataset [17] for showing 
the behavior of DTLT for a mixed dataset. This is 
a real-world dataset with 2 classes, 41 mixed 
attributes and 4,800,000 instances. We also 
created several training sets from this dataset, 
from 500,000 to 4,500,000 instances. BOAI 
cannot process any of these training sets; 
therefore it was not included in this experiment. It 
can be observed in Figures 5 and 6 that DTLT is 
faster than ICE and VFDT, being better than ICE 
and similar to VFDT in accuracy. 

We also included some experiments for 
showing the behavior of our algorithms when the 
number of attributes is increased. A synthetic 
dataset with two classes and 4,000,000 instances 

 

Fig. 3. Processing time for the GalStar dataset 

 

Fig. 4. Accuracy rate for the GalStar dataset 
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was created with different number of attributes. 
Several training sets were created, from 5 to 40 
attributes, with increments of 5. The datasets 
were randomly generated following the normal 
distribution with different mean and standard 
deviation for each class and each attribute. 

Figure 7 shows the processing time obtained 
from these experiments; in this figure it can be 
observed that the processing time used by our 

algorithms increases slightly, while ICE and VFDT 
processing time increases quickly. 

Additionally, we analyzed the amount of 
memory which the algorithms use for building a 
DT. Figures 8 and 9 show the results using 
GalStar (numeric dataset) and KDD (mixed 
dataset). As one can observe, for the GalStar 
dataset, IIMDT and ICE use a similar amount of 
memory which is less than for IIMDTS and DTLT, 
which in their turn use even less memory than 

 

Fig. 7. Processing time when the number of attributes  

is increased 

 

Fig. 8. Amount of memory used for the GalStar dataset 

 

Fig. 5. Processing time for the KDD dataset 

 

Fig. 6. Accuracy rate for the KDD dataset 
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VFDT. However, it is important to highlight that 
ICE uses only a subset of instances for building a 
DT. For the KDD dataset, our algorithm DTLT 
uses less memory than ICE and VFDT. The BOAI 
algorithm does not appear in these figures, 
because it cannot not process training sets bigger 
than 200,000 instances, otherwise it produces 
memory failures.  

5 Conclusions and Future Work 

In this PhD thesis we have proposed new 
algorithms for building decision trees from large 
training sets. These algorithms solve some 
restrictions of previous algorithms reported in the 
state of the art. Our algorithms process the whole 
training set in an incremental way without storing 
it in memory. Besides, the algorithms use only a 
small amount of instances for expanding a node 
which allows them to fulfill a fast selection of test 
attributes. Taking advantage of this characteristic, 
the proposed algorithms are able to process large 
training sets. 

The obtained experimental results show that 
our algorithms IIMDT, IIMDTS, DTFS and DTLT 
display good behavior when the number of 
instances increases. Besides, they are faster than 
the most recent algorithms for building DTs from 
large datasets (ICE, VFDT and BOAI), 
maintaining competitive accuracy rates. Also, a 

fast selection of the test attributes makes our 
algorithms stable in terms of processing time, 
when the number of attributes increases.  

As future work, we will propose methods for 
automatic selection of values for the parameters 
in our algorithms. 
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