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Abstract. In this paper, a design methodology for a 

proportional integral derivative (PID) control design is 
presented by means of the statement of a 
multiobjective optimization problem (MOP). Two-
degrees-of-freedom controller (PID-ISA) is used. The 
objective functions are deployed considering a set point 
response, load disturbances and robustness to model 
uncertainty as its components. The time constant of 
measurement noise filter is a component of the vector 
of decision variables. The optimization problem is 
solved by means of a genetic algorithm. 

Keywords. Multiobjective optimization, two-degrees-of-

freedom PID controller, robustness, uncertainty, 
genetic algorithm. 

Sintonización de controladores PID 
robustos de dos grados de libertad 

mediante un algoritmo genético 
multiobjetivo 

Resumen. En este artículos e presenta una 

metodología de diseño de controladores PID 
(Proporcional, Integral y Derivativo), de dos grados de 
libertad mediante el planteamiento de un problema de 
optimización multiobjetivo. Las funciones objetivo 
propuestas consideran entre otros: respuesta de 
referencia al escalón, perturbación de carga y robustez 
ante incertidumbre en el modelado. También se incluye 
un filtro para minimizar el ruido de medición y la 
constante de tiempo se incluye en el vector de 
variables de decisión. El problema de optimización se 
resuelve con un algoritmo genético. 

Palabras clave. Optimización multiobjetivo, controlador 

PID de dos grados de libertad, robustez, incertidumbre, 
algoritmo genético. 

1 Introduction 

Proportional-Integral-Derivative (PID) controllers 
are widely used in many control systems. In 
process control, more than 95% of the control 
loops are of PID type [2]. Since Ziegler and 
Nichols [28] proposed their empirical method to 
tune PID controllers to date, many relevant 
methods to improve the tuning of PID controllers 
have been reported in the control literature, one of 
them is a tutorial written by Hang et al. [14]. In the 
case of PID controller design, multiobjective 
optimization makes sense when designing two-
degrees-of-freedom PID controllers due to a wide 
availability of choices concerning such controller 
structure, whose main advantage is the possibility 
of decoupling set-point and load-disturbance 
signals [2, 3, 13, 25, 27]. This feature can be of 
advantage by posing two different objective 
functions depending on the set of controller 
parameters and on the other hand, setting  the 
sensitivity function as the objective function leads 
to many useful physical interpretations for 
feedback systems. Moreover, problem formulation 
by using three objective functions makes it 
possible to obtain distinct controllers, all of them 
Pareto optimal but showing different performance 
concerning design objectives required in terms of 
control specifications. 

The multiobjective optimization problem makes 
sense when the performance indices involved are 
in conflict; otherwise the multiobjective 
optimization problem can be regarded as a 
monoobjective one, since one single solution is 
enough to simultaneously minimize or maximize 
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the objective functions. Very often, in real-world 
problems the objectives enter into conflict to 
varying extents. The complexity of some 
multiobjective optimization problems (e.g., very 
large search spaces, uncertainty, noise, disjoint 
Pareto curves, etc.), encourage to use some 
evolution strategy such as a genetic 
algorithm [8, 10]. 

Genetic algorithms have been successfully 
applied to multiobjective optimization. One of the 
first reported applications is due to Fonseca and 
Fleming (1988), who reportedly applied a 
multiobjective genetic algorithm (MOGA) for 
controlling a gas turbine [12]. In Herrero's doctoral 
thesis (2000), an algorithm termed "multiobjective 
robust control design" (MRCD) was proposed for 
the design of robust PID controllers, considering 
parametric uncertainties [15].  

For the tuning of the PID-ISA controllers, the 
feedback control problem appears as a 
multiobjective optimization problem, that of a set 
of functions, where the controller parameters are 
included. The design specifications can be 
formulated as objective functions, subject to 
certain constraints, expressed in terms of different 
norms involving the closed-loop transfer functions 
of the considered control system.  The NSGA-II 
(non-dominated sorting genetic algorithm-II), used 
in this work, gives a set of solutions, all good in 
the sense of Pareto non-dominance (Pareto 
optimal set), where each of the solutions contains 
the PID controller parameters. From this set, the 
person who solves an optimization problem can 
select some solutions according to a given 
suitable determined criterion. The NSGA-II has 
been used in many control applications as shown 
in [8, 18, 23] and most recently in [4, 6, 26]. 

The method proposed in this paper takes into 
account model uncertainty, for the wide spectrum 
of plants used for testing the design of two-
degrees-of-freedom PID-ISA controllers.  Due to 
the fact that modeled dynamics is unknown  
(unstructured uncertainty), the uncertainty is 
modeled by assuming it to be bounded by a 
frequency dependent weighting function,  keeping 
in mind that uncertainty affects the system mostly 
at frequency higher than cutoff frequency of 
closed-loop system. The effect of the sensitivity 
function values of the closed-loop system, as a 
measure of robustness against possible variations 

in the parameters of the plant, is also considered 
in the proposed PID controller design. 

The rest of the paper is organized as follows. 
In Section 2 the basic definitions of multiobjective 
optimization as well as a genetic algorithm 
(NSGA-II) procedure are given. In Section 3, 
some basic principles of modeling uncertainty for 
control systems are presented in order to design 
robust PID controllers for systems subject to 
unstructured uncertainties. Section 3 also poses 
the control problem and the robust PID controller 
design problems. Section 4 presents the results of 
evaluating the performance of the designed PID 
controllers. For each of the proposed process 
models, two different solutions are shown to 
emphasize the concept of multiobjective 
optimization. Conclusions are presented in 
Section 5. 

2 Basic Concepts  

As a consequence of applying the multiobjective 
genetic algorithm to the optimization problem, the 
algorithm outputs a set of ideal solutions called 
Pareto optimal set; from this set, the person who 
solves an optimization problem (the user) can 
select some solutions in accordance with his/her 
preferences, since in the majority of practical 
problems it is not possible to find a unique 
solution that either minimizes or maximizes all 
objectives simultaneously. 

Next, the basic definitions related to the ideal 
solutions or non-dominated solutions (in the 
Pareto sense) are presented. Solutions are non-
dominated if no better solutions exist, considering 
all the objective functions (see [10] as 
an example). 

Definition 1 (General MOP). Find the vector 

 Tnxxxx **
2

*
1

* ,...,,


,  which satisfies the m 

inequality constraints 

mixgi ,...,2,1  0)( 


, (1) 

the p equality constraints 

pixhi ,...,2,1  0)( 


, (2) 

and optimizes the vector function 
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 Tk xfxfxfxf )(),...,(),()( 21


 , (3) 

where  Tnxxxx ,..., 21


is the vector of decision  

variables. 

Definition 2 (Pareto Dominance). A vector 

),...,( 1 kuuu 


is said to dominate ),...,( 1 kvvv 


(denoted by vu





) iff u is partially  less  than v, 

i.e.,  

Definition 3 (Pareto Optimality). A point *x


 

is Pareto optimal, if for every x


 and 

},...,2,1{ kI   either 

))()(( *xfxf iiIi


  , (4) 

or there is at least one Ii  such that 

)()( *xfxf ii


 , (5) 

where Ω is the feasible region. In other words, 

this definition says that *x


 is Pareto optimal if 

there exist no feasible vector x


 which would 

decrease some criterion without causing a 
simultaneous increase in at least one other 
criterion. 

Definition 4 (Pareto Optimal Set). For a given 

MOP )(xf


, the Pareto optimal set )( P is 

defined as 

)}(´)(´{: xfxfxxP





 . (6) 

Definition 5 (Pareto Front). For a given MOP

)(xf


 and Pareto optimal set )( P , the Pareto front 

)( FP  is defined as 

   PxxfxffuPF k ))(),...,((: 1

 . (7) 

In contrast to simple genetic algorithms which 
look for the unique solution, the multiobjective 
genetic algorithm tries to find as many elements 
of the Pareto set as possible.  For the case of 
the NSGA-II, this one is provided with operators 
who allow it to know the level of not-dominance of 
every solution as well as the grade of closeness 

with other solutions; which allows it to explore 
widely inside the feasible region. 

In a brief form, the functioning of the MOGA 
NSGA-II can be described by the following steps. 

Fast Non-dominated Sort. A very efficient 
procedure is used to arrange the solutions in 
fronts (non-dominated arranging) in accordance 
with their aptitude values. This is achieved by 
creating two entities for each of the solutions. A 
domination counts np, the number of solutions 
which dominates the solution p and a set (Sp) 
which contains the solutions that are dominated 
for p. The solutions of the first front have the 
higher status of not-dominance in the 
Pareto sense. 

Diversity Preservation. This is achieved by 
means of calculation of the crowding degree or 
closeness for each of the solutions inside the 
population. This quantity is obtained by 
calculating the average distance of two points on 
either side of a particular solution along each of 
the objectives. This quantity serves as an 
estimate of the cuboid perimeter formed by using 
the nearest neighbors as the vertices.  There is 
also an operator called crowded comparison         

( n ), which guides the genetic algorithm towards 

the Pareto optimal front in accordance with the 
following criterion:  

)(and

)(or

)(if  

tantan cediscedis

rankrank

rankrankn

ji

ji

jiji







. 

iiii vukivuki  :},...,2,1{},,...,2,1{ . 

 

Fig. 1. NSGA-II procedure 
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In accordance with the previous criterion, 
between two non-dominated solutions, we prefer 
the solution with the better rank. Otherwise, if 
both solutions belong to the same front, then we 
prefer the solution that is located in a lesser 
crowded region. 

Initial Loop. Initially, a random parent 
population (Po) of size N is created. Later this one 
is ordained using the procedure of non-dominated 
arranging. Then the usual binary tournament 
selection, recombination and mutation operators 
are used to create a new population (Q0), of 
size N.  

Main Loop. The NSGA-II procedure can be 
explained by describing the i-th generation just as 
it is showed in Fig. 1. The procedure begins with 
the combination of Pt and Qt forming a new 
population called Rt, then the population Rt is 
sorted using the non-domination criterion. Since 
all previous and current population members are 

included in Rt, elitism is ensured [17]. The 
population Rt has a size of 2N; later, different 
fronts of non-dominated solutions are created, 
being F1 the front that contains the better rank 
solutions. Fig. 1 shows that during the process of 
forming a new population Pt+1, the algorithm takes 
all members of the fronts F1 and F2 and some 
elements of the front F3; this is because N 
solutions are needed exactly for the new 
population Pt+1 to find exactly N solutions. The last 
front is ordained, which for this description is the 
number 3, arranging the solutions in descending 

order by means of crowded comparison ( n ) and 

selecting the best solutions needed to fill all 
population slots. After having the population Pt+1, 
the genetic operators of selection, crossing and 
mutation are used to create a new population Qt+1 

of size N. Finally it is mentioned that in the 
selection process, the crowded comparison 
operator is used. The NSGA-II algorithm is shown 
in Algorithm 1, [10]. 

The selected algorithm (NSGA-II) turns out to 
be of complexity O(M N

2
), where M is the number 

of objectives and N is the population size. 

3 PID-ISA Controller 

The Proportional-Integral-Derivative (PID) 
controller proposed in this work is a two-degrees-
of-freedom controller. PID-ISA controller 
(Instrument Society of America), which contains 
seven parameters, is tuned by means of the 
multiobjective genetic algorithm NSGA-II. The 
control scheme proposed in this work is shown in 
Fig. 2 where 

r denotes the reference input signal, 

e denotes the error signal, 

ỹ denotes the filtered output signal, 

u denotes the control signal, 

l  denotes the load disturbance signal, 

d denotes the noise signal, 

y   denotes the output signal, 

G(s) denotes a Linear Time-Invariant (LTI) 
Single-Input Single-Output (SISO) plant, 

PID(s) denotes the PID-ISA Controller. 

The filter F(s) is used to reduce the noise 
effect of high frequency in the output signal, 
where Tf  is the filter time constant:  

Algorithm 1. NSGA-II algorithm 

1: Procedure NASG-II (N, g, fx(xk)) where N 
members evolved g generations to solve fk(x) 

2: Initialize Population P 
3: Generate random population – size N 
4: Evaluate Objective Values 
5: Assign Rank (level) based on Pareto 

dominance – sort 
6: Generate Child Population  
7: Binary Tournament Selection 
8: Recombination and Mutation 
9: for i=1 to g do 
10:  for each Parent and child in Population do 
11:   Assign Rank (level) based on Pareto – sort 
12: Generate sets of non-dominated vectors 

Along PFknown 
13:  Loop (inside) by adding solutions to next 

generation starting from the first front until 
N individuals found determine crowding 
distance between points on each front 

14:   end for 
15: Select points (elitist) on the lower front (with 

lower rank) and outside a crowding distance 
16:  Create next generation 
17:  Binary Tournament Selection 
18:  Recombination and Mutation 
19: end for 

20: end Procedure. 
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and the PID-ISA model controller: 
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(9) 

Also, the PID-ISA controller can be 
represented as in Fig. 3: 


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


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




NsT
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
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
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







NsT
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sT
ksC
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d

i
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1

1
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In (10) and (11), k, Ti and Td correspond to the 
controller gain, the integral time and the derivative 
time, respectively. The parameters b and c are 
the weightings that influence the set point 
response without altering the response of the 
controller to the load disturbances and 
measurement noises. Also the high frequency 
gain of the derivative term sTd/(1+sTd/N) is limited 
to avoid noise amplification [2]. The gain limitation 
can be parameterized in terms of the parameter 
N. The control scheme can be represented by 
means of nine transfer functions, Equation (12) 
(for instance, see [11]), where each close-loop 
transfer function (Tzw(s)) denotes the relationship 

between the output signal z and the input signal: 
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3.1 Modeling Uncertainty  

No mathematical model can exactly describe a 
physical system. For this reason, it is necessary 
to be aware of the impact that modeling errors 
have on a control system.  Model uncertainty is 
presented in two different forms: parametric 
uncertainty and unstructured uncertainty.   In this 
paper an unstructured uncertainty is considered, 
specifically, a multiplicative perturbation model is 
proposed. Equation (13) describes the plant with 
multiplicative perturbation [1, 11, 12, 21, 22]: 

)())()(1()( sGssWsG o 
, (13) 

where Go(s) corresponds to nominal plant, ∆(s) is 
the multiplicative perturbation acting on the plant 

and it is assumed that 1)( 


s . )(sW
is 

known as a weighting function and scales ∆(s) to 
account for the frequency dependent magnitude 
of the uncertainty, where it is assumed that the 
model uncertainty is less than )( jW . 

If 1)( 


s , then inequality (14) holds: 

)(1
)(

)(

0

sW
sG

sG
 . 

(14) 

 

Fig. 2. Description of PID-ISA controller 

 

Fig. 3. Equivalent diagram for the PID-ISA 
controller 
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Taking into account the upper bounds just 
described, the perturbation may be 
represented as 

)(

)()(
)(

0

0

sG

sGsG
s


 . 

(15) 

Since no experimental values of the plant 
parameters are available, an a priori upper bound 
for the multiplicative uncertainty is proposed. The 
weighting function is chosen taking into account 
the uncertainty introduced at high frequencies, 
where the influence of neglected or unmodeled 
dynamics may be significant 

The weighting function magnitude plot is 
shown in Fig. 5. 

The weighting function )( jW
 is typically small 

(i.e., )( jW
=lg) at low frequencies, where Go(s) 

accurately represents the system, and large (i.e., 

)( jW
=hg) at high frequencies w>>wT, where 

the influence of unmodeled dynamics may be 
significant. The WT represents the transition 
frequency where the model Go(s) becomes 
unreliable. Transition frequency is considered 
close to the desired band-width wB of the closed-
loop system. The weighting function, see [1], is 
modeled by means of 

 
gT

gT

g
hj

lj
hjW









 )(

. 
(16) 

3.2 Robust Stability for Unstructured 
Uncertainty  

In correspondence with [9], assuming that the 
nominal feedback system (i.e., with ∆=0) is 
internally stable for controller C(s), the necessary 
and sufficient condition for the robust stability of 
the control system is given in the following 
Theorem 1. 

Theorem 1. The uncertain closed loop in Fig. 4 is 

robustly stable for all ∆ such that 1)( 


s , iff 

.1)()( 
 sTsW  

T(s) in the previous expression is the 
complementary sensitivity function given by 

)()(1

)()(

1
1)(

sCsG

sCsG

L

L
SsT





 . 

(17) 

Likewise, S is called the sensitivity function. 

4 PID-ISA Tuning Procedure  

The design of PID-ISA controllers is formulated as 
an optimization problem of a series of norms of 
certain transfer functions that evaluates the 
control process specifications. The wished 
specifications of the control system (showed in 
Fig. 2), can be formulated in terms of the 

minimization of the following HH ,2 and L1 norms. 

The objective functions are proposed considering 
set point response, load disturbances, 
measurement noises and robustness to model 
uncertainty. Then, the objective functions 
are formulated. 

4.1 Attenuation of Load Disturbance 

This effect is measured by the integral of the 
output signal for an input step, applied in the 
signal control u. Using the principle of 
superposition, i.e., making zero the values of the 
reference signal and the measurement 
noise signal, 





0

1 ,)( NpdttyJ
p , (18) 

and normally 1 or 2 is selected for p. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Standard feedback loop with multiplicative 
perturbation 
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Since y(t) in Equation (18) can be  expressed 

by the inverse Laplace transform of 
syl sT 1)( t, 

where )(sTyl  is the transfer function between the 

perturbation signal l and the output signal y, the 
Equation (18) can be expressed as  

p

p

yl
s

sTJ

/1

1

1
)(














 , (19) 

where 
p

 denotes the p-norm. In this case, 

p=1(L1 norm), which allows us to minimize the 
changes of the output signal y in the temporary 
domain and in presence of the disturbance signal. 
This objective is defined in [3, 10]: 

1

1

1
)(

s
sTJ yl . 

(20) 

4.2 Set Point Response 

It is important to have a good response to set 
point changes. Most important points are 
considered to be the raise time, the settling time, 
the decay ratio, the overshoot and the steady-
state error. To characterize the temporary 
response of the control system to a reference 
signal, the following index performance [11] 
is used: 

p
p
dttteJ
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0
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
 



 (21) 

where e(t) is the output signal corresponding to a 
step input  in r(t). On the other hand, if e(t) is the 
impulse response of a system, with a transfer 

function 
ser sT 1)( , then te(t) is the impulse 

response to a control system with a transfer 

function  
serds

d sT 1)( . Therefore the performance 

Index 
2J  is equivalent to  

p

er
s

sT
ds

d
J

1
)(2 

 
(22) 

and in this case p=2. 

4.3 Sensitivity to Modeling Errors 

Since the controller is tuned for a particular 
process, it is desirable that the closed loop 
system should be not very sensitive to variations 
of the process dynamics. A convenient way to 
express the sensitivity of the closed loop system 
is through the sensitivity function S(s) defined as

)(1
1)(

sL
sS


 , where L(s) denotes the loop 

transfer function. L (s) is given by 
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The sensitivity function S(s) is given by the 

closed-loop transfer function
)(1

1)(
sLyd sT


 , 

included in Equation (12). The maximum 
sensitivity (frequency response) is then given by

)(max 


iSM s 
. Therefore Ms is given by


 )(sTM yds

. On the other hand, it is known that 

the quantity Ms is the inverse of the shortest 
distance from the Nyquist curve of loop transfer 
function to the critical point s=-1 [2]. Typical 
values of Ms are in the range from1.2 to 2.0. This 
way, the third objective is given by 

p
p
dttteJ

1

0
2 )( 








 



 (21) 

 

Fig. 5.Weighting function magnitude plot W∆ (j) 
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
 )(3 sTMJ yds

. (23) 

Objective Function 1 in (20) measures the 
effect of the load disturbance (l); Objective 
Function 2 in (21) assures a good response to the 
set point changes, and finally, Objective Function 
3 in (23) measures the effect of robustness   from 
the model uncertainties. 

The constraints given by (24), (25) y (26), 
define the feasible region (Ω).The first constraint 
in (24) guides the algorithm towards the solutions 
that make the control system stable. The second 
constraint limits the magnitude of the signal 
control u(s). This is very important in practice, 
since the control designs often produce very large 
values of u(s) which would cause actuator 
saturation. Constraint 2 is expressed by 
Equation (25). 

0))(( ydTrealpoles , (24) 




)(1 sTr ur
. (25) 

Constraint 3 is aimed at ensuring robust 
stability of the control system subject to 
unstructured uncertainty [11, 16, 20-22, 24]. 

.1)()( 
 sTsW  (26) 

In order to build the weight function needed in 
equality (16), the proposed plants are assumed to 
have 10% uncertainty at lower frequencies and 
200% at high frequencies (with respect to the 
cutoff frequency).  

4.4 Test Plants and Tuning Procedure 

The proposed plants in this article cover a wide 
range: stable and integrating, with short and 
long dead times, whit real and complex poles, 
and with positive and negative zeroes, which 
are representative of the automatic control 
literature [2, 14]. The test plants are shown in 
Table 1. 

5 Results 

In this research, the objective functions and 
constraints of the optimization problem were 
made as a MATLAB

®
 function to be called from 

the multiobjective genetic algorithm NSGA-II by 
using the MATLAB

®
 engine library. 

In case of multiobjective optimization, from the 
Pareto front, different values of PID controllers 
based on different objectives can be obtained for 
a particular process. As it was expected, the 
different Pareto front solutions present different 
overshoot values such as settling time and rise 
time ones. Thus, one can select solutions based 
on system conditions and requirements.  

The obtained values of the objective functions 
and constraints of the optimization problem are 
consistent with the controller performance 
according to the requirements from the point of 
view of the requirements in the time domain and 
frequency. The proposed objective functions 
capture the essence of the process control as it 
can be seen in Table 3. It shows that for larger 
values of the objective function, Ms, the system 
response, is increased, however, the overshoot 
also increases. The response to load disturbance 
is in accordance with the values of the objective 

Table1. Proposed processes 

Process Process Transfer Function 

1 3)1(

1

s
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function J1, where the settling time and amplitude 
are lower when the value of the function J1 is 
smaller. Set point following responses are as fast 
as the values of the objective function 
J2 decrease. 

In order to assess the performance of the 
controllers obtained via the procedure described 
in this paper, several simulations were performed 
using MATLAB/SIMULINK

®
.  Two distinct PID 

controllers, namely PID-Ai and PID-Bi, were 
selected from the Pareto set  of the i-th process 
example (i = 1, 2,3,4,5,6,7,8). 

The operation of NSGA-II was configured with 
the following parameter values: 

– Population size: 100. 
– Number of generation: 100 
– Crossover probability: 0.80 
– Mutation Probability: 0.09 

Table 2 presents the parameters of robust PID 
controllers tuned by multiobjective optimization 
and Table 3 shows the values of the performance 
indices and constraints. 

Table 2. PID parameters for i 

PID-A 
i 

PID-B 
Ti TF TD N k C b 

PID-A 

1 

PID-B 

2.21 0.0028 0.645 35.48 4.16 0.618 0.0002 

2.3 0.005 0.808 35.59 3.84 0.616 0.0141 

PID-A 

2 

PID-B 

0.70 0.0018 0.100 16.76 7.588 0.691 0.0168 

0.77 0.0018 0.136 16.29 7.632 0.687 0.0169 

PID-A 

3 

PID-B 

9.56 2.8828 3.679 51.93 0.335 0.897 0.0967 

7.45 1.4897 3.895 52.0 0.315 0.929 0.3218 

PID-A 

4 

PID-B 

13.6 0.0632 1.431 57.24 0.38 0.646 0.1899 

13.9 0.0052 1.618 66.92 0.525 0.674 0.1100 

PID-A 

5 

PID-B 

2.6 0.1789 0.797 16.5 0.469 0.937 0.0271 

2.43 0.0192 1.007 61.20 0.508 0.937 0.0883 

PID-A 

6 

PID-B 

1.32 0.8977 0.311 48.08 0.586 0.963 0.0011 

2.53 2.0279 0.383 51.01 2.308 0.116 0.0143 

PID-A 

7 

PID-B 

0.36 0.0015 0.0015 0.0082 0.258 0.570 0.0016 

0.34 0.0012 0.0774 0.1245 0.152 0.617 0.0168 

PID-A 

8 

PID-B 

5.62 0.001 0.467 84.89 0.542 0.57 0.579 

6.68 0.0009 0.426 84.53 0.693 0.713 0.551 
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The ranges of parameter values of the 
controllers used in the optimization problem are 
presented in Table 4. 

5.1 Results of Process 1 

Fig. 6 shows the Pareto front in three dimensions 
and their corresponding projections of the 
objective vectors associated with the PID 
controllers of Process 1. The dots in Fig. 6 
indicate the solutions obtained from the final 
population. The model Process 1 is a third order 
model. Fig. 7 shows the simulation result which 

illustrates the resulting closed-loop system 
responses to unit-step followed by a load 
disturbance corresponding to Process 1. 

Fig. 8 illustrates the Nyquist curve of a nominal 
loop transfer function, and the circles show the 
uncertainty regions. This means that the 
perturbed Nyquist curve will not reach the critical 

Table 3. Objective functions and constraints 

PID J1 J2 Ms 
r1 

 
TW  

PID-A 

Process 1 

PID-B 

0.532 0.931 1.6 4.38 0.806 

0.615 1.083 1.489 4.3 0.724 

PID-A 

Process 2 

PID-B 

0.092 0.086 1.333 7.38 0.6916 

0.100 0.096 1.283 7.35 0.6364 

PID-A 

Process 3 

PID-B 

33.56 70.99 1.392 1.98 0.7231 

30.23 57.65 1.516 5.56 0.9919 

PID-A 

Process 4 

PID-B 

35.69 5.181 1.212 4.37 0.6364 

26.56 4.416 1.237 4.22 0.6364 

PID-A 

Process 5 

PID-B 

6.766 6.069 1.746 1 0.6488 

6.268 5.326 1.868 3.22 0.6364 

PID-A 

Process 6 

PID-B 

2.289 1.701 1.176 8.98 0.6364 

1.200 2.741 1.489 8.05 0.6701 

PID-A 

Process 7 

PID-B 

1.764 0.833 1.449 9.00 0.7022 

2.586 1.619 1.236 9.00 0.6603 

PID-A 

Process 8 

PID-B 

10.75 2.189 1.347 4.0 0.6880 

9.797 1.232 1.436 4.0 0.8446 

Table 4. Lower and upper bounds of controller 

parameters 

Ti Tf Td N K b c 

0-20 0 -20 0-20 0-100 0-10 0-1 0-1 
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point −1. Also, the plot in Fig. 8 shows an 
interpretation of the robust stability condition

1)()( 
 sTsW  in the Nyquist diagram. 

Fig. 9 shows the distance from Nyquist curve 
and the critical point s=-1 for Process 1. A 
sensitivity Ms guarantees that the distance from 
the critical point  to the Nyquist curve is always 
greater than 1/Ms. 

5.2 Results of Process 2 

The responses to changes in the set point and 
load disturbance of Process 2 are shown in 
Fig. 10. The parameter values of the selected 
controllers (PID-A and PID-B) are found in Table 
2. In Fig. 10 the set point response corresponding 
to PID-B controller can be seen to be very soft 
(almost no overshoot) as compared to PID-A. The 
PID-B presents a minor sensitivity value (Ms), 

compared with PID-A as it is seen in Table 3, that 
implies a minor overshoot in relation to PID-A 
controller. The disturbance load response is very 
similar in both controllers. 

5.3 Results of Process 3 

Plant 3 is a model with long dead time. In this 
work, the dead time was replaced by their first-
order Pade approximation. This approximation 

Fig. 6. Pareto front (Process 1, PID-B) 

 

Fig. 7. Set point and load disturbance response 

process with transfer function 1/(s+1)
3 

Fig. 8. Robust stability in Nyquist diagram, Process1 

(PID-B) 

Fig. 9. Sensitivity Ms in Nyquist diagram, Process 1 

Fig. 10. Set point and load disturbance responses of 
the Process 2 
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added a zero on the right half complex plane 
(systems of non-minimum phase). The systems of 
non-minimum phase present slow temporal 
responses.  

The transport delay is a common example of 
the non-minimum phase systems and occurs 
mainly in thermal, hydraulic and pneumatic 
systems. The output signal of Process 3 is 
depicted in Fig. 11, where one can observe the 
inverse response at the beginning of the step 
responses and the load disturbance caused by 
the delay in the model of the proposed plant. 

5.4 Results of Process 4 

The model of Process 4 is an integral one, and 
the results found by the optimization method 
shows that integrating processes can be treated 
in the same way as a stable process. The 
temporal response is depicted in Fig. 12. 

5.5 Results of Process 5 

The model of Process 5 has a zero on the right 
half complex plane. This kind of system is said to 
be a non-minimum phase one; the systems which 
do not have the minimum phase are more difficult 
to control.  

The output response of the closed loop system 
is illustrated in Fig. 13 which shows the step 

Fig 13. Set point and load disturbance response of 

the Process 5 

 

Fig. 14. Set point and load disturbance response of 
the Process 6 

Fig. 11. Set point and load disturbance response of 

the Process 3 

 

Fig. 12. Set point and load disturbance response of 

the Process 4 
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response followed by a load disturbance. It is 
observed that the output goes in the wrong 
direction initially. This is sometimes referred to as 
inverse response. 

5.6 Results of Process 6 

Process 6 corresponds to an oscillatory dynamics 
model with relative damping ζ=0.033, which 
means the control is difficult [3, 14]. The designed 
PID controllers behave very well in spite of the 
poorly damped poles, as it can be seen in Fig. 14. 
Also, it shows the step and the load responses 
where the time responses for the close loop 
system have no oscillations, as there can be in 
other tuning methods of PID controllers. 

5.7 Results of Process 7 

Plant 7 is a pure time delay model. In this kind of 
systems, the phase lag increases linearly with 
frequency and is difficult to control. This system 
has w90= π/2 and w180=π.The obtained results 
show that the design procedure produces suitable 
controller parameters in this example too, as it 
can be seen in Fig. 15 which shows the closed 
loop response of Process 7. 

5.8 Results of the Process 8 

The final example corresponds to a pure 
integrator with time delay model, this system has 
w90= π/2 and w180=π. In this case the obtained 
controllers have good performance too, as it is 
shown in Fig. 16, where the temporal responses 
are depicted. 

6 Conclusions 

The NSGA-II was selected since it is a tool in the 
public domain and has been quoted in multiple 
reports concerning evolutionary multiobjective 
optimization. It is a robust algorithm of general 
application that can be executed in different 
platforms. The components of the objective 
function, as well as the restrictions defining the 
admissible domain, were formulated in terms of 
control performance specifications for a PID 
controller. Results also highlight the merits of 

multiobjective genetic algorithm (NSGA-II) in the 
application of automatic control. 

It was observed that in all presented cases, 
the two-degrees-of-freedom PID controllers have 
good performance in terms of set point and load 
disturbance response process. 

It is also important to mention that Ms value 
was always a referent in relation to a good 
performance of the designed PIDs, especially at 
the relative stability; on the other hand, when the 
Ms value is within the proposed range, this 
ensures that the controlled systems are 
insensitive to possible changes in plant 
models [3]. As shown in Table 2, the fact that 
constraint 3 is satisfied ensures robust stability to 
control system subject to unstructured 
uncertainty. Concerning the problem of high 

 

Fig. 15. Set point and load disturbance response of 

the Process 7 

 

Fig. 16. Set point and load disturbance response of 
the Process 8 
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frequency noise measurement, this is attenuated 
by the addition of low-pass filter in the derivative 
term. This means an advantage over the PID 
controller with pure derivative action. 

On the other hand, with regard to the 
convergence of the genetic evolutionary algorithm 
NSGA-II, it is known that in practice there is no 
way to know whether it has reached or not the 
real Pareto Front (that applies any MOP). A 
possible stopping criterion is the consecutive lack 
of new solutions that dominate the ones which are 
better up to the moment. If there is no progress 
after a certain number of iterations, it is 
reasonable to assume that the algorithm 
converged already, but obviously there is no 
guarantee of that. This is a handicap of heuristic 
strategies, so when they stop, there is no 
guarantee that they have reached the 
ideal solution. 
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