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Abstract. In this paper, we give an overview of efforts 

to improve current techniques of load-balancing and 
efficiency of finite element method (FEM) computations 
on large-scale parallel machines and introduce a 
multilevel load balancer to improve the local load 
imbalance. FEM is used to numerically approximate 
solutions of partial differential equations (PDEs) as well 
as integral equations. The PDEs domain is discretized 
into a mesh of information and usually solved using 
iterative methods. Distributing the mesh among the 
processors in a parallel computer, also known as the 
mesh-partitioning problem, was shown to be NP-
complete. Many efforts are focused on graph-
partitioning to parallelize and distribute the mesh of 
information. Data partitioning is important to efficiently 
execute applications in distributed systems. To address 
this problem, a variety of general-purpose libraries and 
techniques have been developed providing great 
effectiveness. But the load-balancing problem is not yet 
well solved. Today’s large simulations require new 
techniques to scale on clusters of thousands of 
processors and to be resource aware due the 
increasing use of heterogeneous computing 
architectures as found in many-core computer systems. 
Existing libraries and algorithms need to be enhanced 
to support more complex applications and hardware 
architectures. We present trends in this field and 
discuss new ideas and approaches that take into 
account the new emerging requirements. 
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Balanceo de Cargas para 
Computación en Paralelo con el 

Método de Elementos Finitos 

Resumen. En este artículo damos una vista general de 

los esfuerzos para mejorar las técnicas actuales de 

balanceo de cargas y eficiencia en el cómputo con el 
uso del método de elementos finitos (MEF o FEM por 
sus siglas en inglés) en máquinas paralelas de gran 
escala. Introducimos también un balanceo de cargas 
multinivel para mejorar las diferencias locales. El MEF 
es usado para aproximar numéricamente las 
soluciones a ecuaciones diferenciales parciales (EDP o 
PDE por sus siglas en inglés) o a ecuaciones 
integrales. El dominio de las EDP se hace discreto 
convirtiéndolo en una malla de información y 
usualmente se soluciona utilizando métodos iterativos. 
La distribución de la malla en los procesadores de una 
computadora paralela, también conocido como el 
problema de partición de la malla, es NP-completo. 
Muchos esfuerzos se enfocan en partición de grafos 
para paralelizar y distribuir la malla de información. La 
partición de la información es importante para ejecutar 
las aplicaciones eficientemente en sistemas 
distribuidos. Para abordar este problema, una variedad 
de librerías de propósito general y técnicas se han 
desarrollado proveyendo gran efectividad. Pero el 
problema del balanceo de cargas no está del todo 
solucionado. Las extensas simulaciones de hoy 
requieren nuevas técnicas para poder ser ejecutadas 
eficientemente  en sistemas de miles de procesadores 
y para tomar en cuenta los recursos disponibles debido 
al extenso uso de arquitecturas heterogéneas en la 
actualidad. Las librerías y algoritmos actuales deben 
ser adaptados para ser capaces de manejar 
aplicaciones más complejas y diferentes arquitecturas 
de hardware. Nosotros presentamos las tendencias en 
este campo y discutimos nuevas ideas que consideran 
los requerimientos emergentes. 
 

Palabras clave. Balanceo de cargas, método de 

elementos finitos, eficiencia en computación de alto 
desempeño. 
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1 Introduction 

The finite element method (FEM) is a powerful 
tool widely used for predicting behavior of real-
world objects with respect to mechanical stresses, 
vibrations, heat conductions, etc. [1, 2]. However, 
applications have large computation, 
communication and memory costs to be useful in 
practice in the form of sequential 
implementations. Parallel systems allow FEM 
applications to overcome this problem [3], but in 
turn they create new problems regarding system 
efficiency, see Section 3 for details. 

Partial differential equations (PDEs) are used 
to describe a given problem. The PDEs domain is 
discretized into a mesh of information (triangles or 
rectangles in 2D, tetrahedra or hexahedra in 3D), 
then the PDEs are transformed into a set of linear 
equations defined on these elements [4]. In 
general, iterative methods such as Conjugate 
Gradient (CG) or Multigrid (MG) are employed to 
solve the linear systems [1, 5]. The quality of the 
solution heavily depends on the accuracy of the 
discretization; the elements of the mesh have to 
be small enough in order to allow an accurate 
approximation. An extremely fine discretization 
may incur in extra computation, communication 
and memory costs. Adaptive techniques allow the 
solution error to be kept under control while costs 
can be minimized [6]. 

The parallelization of numerical simulation 
algorithms usually follows the single-program 
multiple-data (SPMD) paradigm. Hence, the mesh 
is partitioned and distributed evenly among the 
parallel system [2, 7]. Distributing the mesh 
among the processors in a parallel computer, also 
known as the mesh-partitioning problem, was 
shown to be NP-complete [8, 9]. The mesh can be 
easily represented as a graph, so in recent years, 
much effort has been focused on developing 
suitable heuristics based on the graph-partitioning 
problem [10–17]. 

The most important causes of load imbalance 
in FEM parallel applications are the dynamic 
nature of the problem over time (in computational 
and communication costs) and the adaptive 
refinement of meshes during the computations. 
Other causes may include the interference from 
other users in a time-shared system, among 
others. Thus, an efficient dynamic load balancing 

is required. The increasing size of modern parallel 
or distributed computers requires software 
libraries to be enhanced to support these new 
hardware architectures. 

In the next section we present a background of 
FEM computations and basic concepts in the 
area. Section 3 presents the load balancing 
problem in parallel FEM computations and 
relevant previous work. Trends in the field and 
discussion of new ideas and approaches that 
consider the new emerging requirements are 
given in Section 4, while Section 5 finishes the 
paper with some conclusions and hints for future 
research. 

2 Background 

In this section, we give an overview of the FEM. 
We refer the reader to [5] for a more extensive 
description. We also describe some available 
FEM frameworks. 

2.1 FEM and PDE 

PDEs are often used to model physical 
phenomena such as the flow of air around a wing, 
the distribution of temperature on a plate, the 
propagation of a crack [1, 2], and rarely have an 
explicit solution. 

The most widely used method to solve PDEs 
is to discretize them into a mesh (triangles or 
rectangles in 2D, tetrahedra or hexahedra in 3D). 
There are several ways to do it (e.g., [18]). The 
simplest method uses finite difference 
approximations for the partial differential 
operators. The FEM replaces the original function 
by a function with some degree of smoothness 
over the global domain. A structure with a 
complex geometry is modeled by a number of 
small connected cells (elements, nodes). Thus, 
the function can be numerically approximated. 

The matrices which arise from these 
discretizations are generally large and sparse. 
Since the derived matrices are sparse, the 
equations are typically solved by iterative 
methods such as CG or MG [1, 5]. The quality of 
solutions obtained by such numerical 
approximation algorithms heavily depends on the 
accuracy of the discretization. The smaller the 
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elements, the better is the quality of the solution 
achieved. It is also true that a better solution 
leads to more intensive computations. 

2.2 Solvers and Preconditioners 

The FEM solver solves a set of matrix equations 
which approximate the physical phenomena 
under study. The first introduced iterative methods 
were based on relaxation of the coordinates like 
Jacobi, Gauss-Seidel, and SOR [5]. These 
methods are rarely used in our days. Other 
techniques utilize a projection process to 
approximate the solution of the linear system. The 
Krylov subspace methods are considered among 
the most important techniques. We can mention 
Arnoldi’s Method, CG, Lanczos 
Biorthogonalization, and Transpose-Free Variants 
[5], among others. MG methods were initially 
designed for the solution of discretized elliptic 
PDEs. Later, they were enhanced to handle other 
PDEs problems as well as problems not 
described by PDEs. The performance of MG 
methods is superior to that achieved by Krylov 
subspace methods, however, they require specific 
implementations for each problem in contrast with 
Krylov subspace methods which are for general 
purpose. 

 
The equations are typically solved by iterative 

methods such as CG or MG. MG methods are 
among the fastest numerical algorithms for 
solving large sparse systems of linear equations 
[19]. The CG method is an iterative algorithm for 
realization of an orthogonal projection onto a 
Krylov subspace and it is suitable only for 
symmetric positive definite matrices. 

As described in [5], a preconditioner is a form 
of implicit or explicit modification of an original 
linear system which makes it “easier” to solve by 
a given iterative method. It conditions a given 
problem into a form that is more suitable for a 
numerical solution. A preconditioner can be 
defined as a subsidiary approximate solver 
combined with an outer iteration technique. The 
lack of robustness is a well-known problem of 
iterative solvers, the reason why preconditioning 
is a key ingredient for Krylov subspace methods. 

2.3 Meshes 

The quality of the solution heavily depends on the 
accuracy of discretization. The elements of a 
mesh have to be small in order to allow an 
accurate approximation. Unfortunately, regions 
with large gradients are not known in advance. 
Hence, meshes can be unstructured and 
periodically refined/coarsened in areas where it is 
required during calculations; or they can be 
structured with equal connectivity for each node. 
The main issue with structured meshes is a large 
number of small elements in regions where they 
are not needed. Obviously, the first variant is 
preferred and used for FEM. The solution has the 
same quality but the time needed is only a fraction 
of the time required by the structured mesh. 
Adaptive techniques allow the solution error to be 
kept under control while computation costs can be 
minimized [6]. 

Depending on the problem, some regions of 
the mesh are refined during computations. Since 
these areas are not known in advance or can vary 
over time, the mesh is refined and coarsened 
several times during the computations. This is a 
source of imbalance in parallel FEM simulations. 
Hence, load balancing techniques must be 
applied to reduce the impact of this 
refinement/coarsening process on the efficiency 
of computations. It is necessary to find a new 
balanced partition with the additional objective not 
to cause too many elements to change their 
processor. Migrating elements may be an 
extremely costly operation since a lot of data has 
to be sent over communication links. A number of 
solutions were proposed [20, 21]. Well known 
graph partitioning libraries, presented later in 
Section 3, also deal with the adaptive mesh 
refinement problem. 

2.4 Parallelization of Numerical Simulations 

Due to a large amount of mesh elements required 
to obtain an accurate approximation, FEM has 
become a classical application for parallel 
computers. Parallel versions of numerical 
simulation algorithms follow the SPMD paradigm. 
Each processor executes the same code on a 
different part of the data. The mesh has to be 
divided and mapped to processors in order to 
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minimize the overall computation time [2, 7]. 
Distributing the mesh among the processors in a 
parallel computer, also known as the mesh-
partitioning problem, was shown to be NP-
complete [8, 9]. The parallel efficiency heavily 
depends on two factors: the distribution of data 
(mesh) on the processors and the communication 
overhead of boundary data. 

During the computations, the mesh is refined 
and coarsened several times. Hence, the 
workload is changed unpredictably and a new 
distribution of the mesh among the processors is 
required without causing a change of the location 
for too many elements. Dynamic load balancing 
has to be applied. The application has to be 
interrupted for a load balancing step. This 
interruption should be as short as possible. Thus, 
the full advantages of High Performance 
Computing (HPC) technology will be able to be 
exploited only when efficient load balancing 
techniques are applied. 

As parallel simulations and environments 
become more complex, partitioning techniques, 
used to distribute the load among the processors, 
must be enhanced to fit the emerging 
requirements. Partitioning algorithms need to be 
aware of computer architectures, memory and 
communication resources. Additionally, FEM 
simulations must scale linearly with respect to the 
number of processors and the problem size. 

2.5 FEM Frameworks and Simulators 

A variety of FEM tools and frameworks have been 
developed in the last years [22–42]. Ready-to-use 
software is also available for commercial use [2, 
43–45]. While some provide effective results for 
particular problems, others are more suitable for 
general purposes. We mention the most relevant 
tools including their main features. 

Charm++ [22] is a parallel framework 
developed at the University of Illinois. It gives 
scientists the opportunity to focus on modeling the 
problem and not on parallelization details. It is 
based on multi-partition decomposition and data 
driven execution. The application is decomposed 
into a large amount of small parts called objects. 
The objects are then distributed among the 
processors. The communication pattern is set 
between the objects and not between processors. 

The framework separates the numerical 
algorithms from the parallel implementation. One 
example of FEM simulators based on the 
Charm++ framework is NAMD2 described in [46]. 
The authors give the analysis of its performance 
on some benchmark applications. 

Recent effort is being focused on massively 
parallel programming due to the increasing use of 
clusters of thousands of processors. Heister et al. 
[37] focus on a design of efficient data structures 
and algorithms for these new requirements. They 
have enhanced the library deal.II [47] to take 
advantage of the large cluster power. This library 
uses object-oriented and data encapsulation 
techniques to divide finite element 
implementations into smaller blocks. It supports a 
large number of different applications covering a 
wide range of scientific areas, programming 
methodologies, and application-specific 
algorithms. 

Dolfin [28] employs novel techniques for 
automated code generation. Mathematical 
notations are used to express Finite Element (FE) 
variational forms, from which low-level code is 
automatically generated, compiled, and integrated 
with implementations of meshes and linear 
algebra. Dolfin differs from many other projects 
such as Sundance [31] and Life [34, 35], among 
others, in that it relies more on code generation. 
As a result, Dolfin supports a wider range of FE 
since it may assemble FE variational forms on FE 
spaces supported by the form compiler and FE 
backend. The form compiler automatically 
generates code from a user-defined high-level 
description of the FE variational form [28]. 

FEAST [29] is a FE based solver toolkit for the 
simulation of PDE problems on parallel HPC 
systems. It is being developed at the Technical 
University of Dortmund. It is the successor of the 
established FE packages FEAT and FEATFLOW 
[48]. The next version, FEAST2, is currently under 
development and will include new features such 
as 3D support. 

ESI Group [44] develops a wide selection of 
software for different applications such as 
biomechanics, casting, crash, electromagnetic, 
and fluid dynamics applications, among others. 
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3 The Load-Balancing Problem in 
Parallel Computations with FEM 

This section presents information related to load-
balancing techniques. We mainly focus on load-
balancing through graph/mesh partitioning 
methods. Much work has been done previously in 
this area. 

3.1 Description and Factors Leading to 
Imbalance 

Load-balancing is important in parallel 
computations; it is an interesting area of research 
with a vast range of applications. It was first 
introduced by Shivaratry et al. [49] who described 
and compared some common strategies. Load-
balancing maximizes application performance by 
keeping processor idle time and interprocessor 
communication overhead as low as possible. To 
minimize the overall computation time, all 
processors should contain the same amount of 
computational work, and data dependencies 
between processors should be minimized. Thus, 
the full advantages of HPC technology will be 
able to be exploited only when efficient load 
balancing techniques are applied. 

Numerous methods for static and dynamic 
load balancing have been proposed. Some of 
them will be discussed later. The dynamic 
problem has not been extensively studied as the 
static one. Devine et al. [50] provide ideas to 
address the dynamic problem. Willebeek-LeMair 
and Reeves [51] provide a comparison study of 
dynamic load-balancing strategies. 

The most important causes of load imbalance 
in FEM parallel application are the dynamism of 
the problem over time (in computational and 
communication costs), and the adaptive 
refinement of meshes during the calculation. 
Since these areas are not known in advance or 
can vary over time, the mesh is refined and 
coarsened several times during the computations. 
Interference from other users in a time-shared 
system and heterogeneity in either the computing 
resources or in the solver can also result in load 
imbalance and poor performance. 

3.2 Multiphase Problems 

For certain applications the mesh elements may 
belong to more than one phase. Typically these 
applications arise from multiphysics or contact-
impact modeling, and geometric partitioners are 
often preferred to compute the partitions. 

As data needs to be communicated between 
phases, computing a single partition well with 
respect to all phases would reduce 
communication. Computing this single partition is 
more complex as each processor would have 
multiple workloads corresponding to each phase. 
In principle, the partitioning is done phase by 
phase, using the results of the previous phase to 
influence the partition of the current one [52]. 

This kind of problems consists of various 
separate phases interrelated (e.g., crash 
simulations consist of two phases: computation of 
forces and contact detection). Often, separate 
partitions are used for each phase  and data 
communication is required [53]. 

3.3 Load Balancing through Graph Partitioning 

Mesh-based PDE problems are often expressed 
as graphs. Graph vertices represent the data (or 
work) to be partitioned. Edges represent 
relationships (data dependencies) between 
vertices. The number of boundary edges 
approximates the volume of communication 
needed during computation. Vertices and edges 
can be weighted to reflect associated computation 
and communication costs, respectively. The goal 
of graph partitioning, then, is to assign equal total 
vertex weight to partitions while minimizing the 
weight of cut edges. 

However, this should be considered only as 
balancing the application if it is known that each 
graph vertex represents an equal amount of work. 
In fact, this is usually not true, and the 
computational work is dominated by the cost of 
the local subdomain solutions. Another limitation 
of the use of graphs is the type of systems they 
can represent [54]. Since edges in the graph 
model are non-directional, they imply symmetry in 
all relationships, making them appropriate only for 
problems represented by square, symmetric 
matrices. To address this drawback, hypergraphs 
are used to model PDE problems. As in a graph, 
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hypergraph vertices represent the data to be 
partitioned. However, hypergraph edges 
(hyperedges) are sets of two or more related 
vertices. The number of hyperedge cuts is an 
exact representation of communication volume, 
not merely an approximation [55]. Effectiveness of 
hypergraph partitioning has been demonstrated in 
many areas, including VLSI layout [56], sparse 
matrix decompositions [55, 57], database storage 
and data mining [58, 59]. 

3.3.1 The Graph-Partitioning Problem 

In a few words, the graph-partitioning problem is 
to divide the set of vertices of a graph into subsets 
(subdomains) no larger than a given maximum 
size, so as to minimize some cost function (e.g., 
the total cost of the edge cut). 

For the purposes of this paper, we use the 
definition of graph partitioning presented in [60]. 
Let    (   ) be an undirected graph of   

vertices, with   edges which represent the data 
dependencies in the mesh. We assume that the 
graph is connected. We also assume that both 
vertices and edges are weighted (with positive 
integer values) and that | | denotes the weight of 

vertex  . Similarly, | |, |  | and |   | denote the 
weights of edge  , subdomain    and edge cut   , 
respectively. 

Given that it is necessary to distribute the 
mesh to   processors, we define a partition   to 
be the mapping of   into   disjoint subdomains    

such that ⋃      . The partition   induces a 

subdomain graph on  , which we shall refer to as 

     (   ). There is an edge (     )    if 

there are vertices         with (     )   , and 

     ,      ; the weight of a subdomain is just 

the sum of the weights of the vertices in it, 

|  |  ∑ | |    
. We denote the set of 

intersubdomains or edge cut (i.e., edges cut by 
the partition) by    (note that |  |  | |). Vertices 
that have an edge in    (i.e., 
{                           (    )    }) are 
referred to as border or boundary vertices. 

The definition of the graph-partitioning problem 
is to find a partition that evenly balances the load 
(i.e., vertex weight) in each subdomain, while 

minimizing the communication cost. The optimal 

subdomain weight is given by  ̅   ⌈| |  ⁄ ⌉ (where 
the ceiling function ⌈ ⌉ return the smallest 

integer  ), and the imbalance is then defined as 
the maximum subdomain weight divided by the 
optimal weight (since the computational speed of 
the underlying application is determined by the 
most heavily weighted processor). Throughout 
this paper, the communication cost will be 
estimated by |  |, the weight of edge cut or cut-
weight. A more precise definition of the graph-
partitioning problem is therefore to find   such 

that |  |   ̅ and |  | is minimized. Note that a 

perfect balance is not always possible for graphs 
with non-unitary vertex weights. 

To date, algorithms have been used almost 
exclusively to minimize the edge cut weight. It is 
important to note that this metric is only an 
approximation of communication volume and 
usually does not model the real costs [54]. 
Besides, it is known that this is not necessarily the 
best metric to use. It has been demonstrated that 
it can be extremely effective to vary the cost 
function based on the knowledge of the solver 
[61]. A more appropriate metric is the number of 
boundary vertices. It models the resulting 
communication volume more accurately, but 
unfortunately, it is harder to optimize [54]. 

However, for many applications, minimizing 
other metrics may be desirable. We list the most 
widely used ones here: send volume, receive 
volume, diameter, outgoing migration, and 
incoming migration. The send volume is the 
amount of outgoing information from each sub-
domain. The receive volume is the amount of 
incoming information. The diameter is the longest 
shortest path between two vertices of the same 
sub-domain (infinity, if the sub-domain is not 
connected). The outgoing migration is the number 
of vertices that have to be migrated to a different 
sub-domain. And the incoming migration is the 
number of vertices that have to be migrated from 
a different sub-domain. 

Furthermore, in dynamic load balancing, 
speed is often more important than quality of the 
partition (its balance). A less balanced solution 
does not necessarily cause unbalances during 
computation, but of course, allows other metrics 
to improve. 
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3.3.2 Mesh to Graph/Graph to Mesh 
Conversion 

The mesh is converted into a weighted graph. The 
vertex weights correspond to calculation costs 
and edge weights correspond to potential 
communication costs. Different graph 
representations can be used. The type of graph 
should be selected based on the application 
requirements, the cost function model, and the 
accuracy with which the cost model should be 
approximated. We refer the reader to [62] for 
details. 

The output of graph partitioners is an array 
indicating for each graph vertex to which process 
(sub-domain) it should be migrated. In the case of 
a dual graph, this array gives only a new 
distribution for the mesh elements, while a new 
distribution for the nodes still has to be 
determined. A similar situation holds in the case 
that a nodal graph has been used. 

Types of graphs 

Dual graph or element graph. The weighted 
graph vertices correspond to mesh elements and 
the associated calculation costs. The edges 
represent the potential communication between 
neighboring elements. Vertices are connected by 
an edge if the corresponding elements share an 
edge in 2D or a face in 3D. 

Extended dual graph. For meshes with 
elements of different dimensions, the potential 
communication cannot be well represented by a 
dual graph. In an extended dual graph, graph 
vertices are connected by an edge when the 
corresponding elements share one or more 
nodes. Hence, certain connections between sub-
domains that are lost in a classical dual graph, 
including connections between elements of 
different dimensions, are maintained. However, 
the extended dual graph may become very 
complex, requiring a lot of memory, especially for 
3D tetrahedral meshes. 

Generalized dual graph. This graph lies 
between the classical dual graph and the 
extended dual graph. As with the extended dual 
graph, it is well suited for meshes with different 
element types. However, not all elements sharing 
a node are joined by an edge of the graph. An 

element is connected only to those neighboring 
elements that share a (local) maximum number of 
nodes. 

Nodal graph. Here graph vertices correspond 
to mesh nodes, and vertices are connected if they 
share an element. 

Combined graph. In this graph, both elements 
and nodes are represented by vertices, allowing a 
good representation of all calculation costs. Since 
finite element applications often use node lists for 
inter-process communication, graph edges 
represent communication requirements between 
elements and nodes. Hence, this graph is a 
simplification of a general combined graph that 
would have all kinds of element-element, node-
node, and element-node connections. 

3.3.3 Partitioning Algorithms 

Many methods have been proposed in the 
literature to deal with the partitioning problems of 
FE graphs on distributed memory multicomputers. 
These methods have been implemented in 
several graph partitioning libraries. We give an 
overview of their classification. 

Greedy methods 
Greedy approaches are based on graph 

connectivity. Typically, the first subdomain of a 
partition is initialized with one single vertex and 
further vertices are added until the required 
subdomain size is reached. Then, a new 
subdomain is initialized with an unassigned vertex 
and it is built up in the same greedy fashion. 
Several possibilities of choosing new vertices 
exist: progressing in a breath-first manner [11], 
choosing vertices which reduces the edge cut 
[10,15], etc. The greedy approach usually results 
initially in very compact subdomains, but often the 
last subdomain consists of all leftover elements 
and its shape is not smooth. Different methods try 
to solve this problem [15, 63–65]. 

A well-known algorithm is Bubble [66]. Its 
major drawback is the lack of a guarantee for 
balanced partitions. Although at the end the 
seeds are spread out evenly over the whole 
graph, the subdomains could not contain the 
same number of vertices. To overcome this 
problem, one may add a local partitioning method 
to balance the load, trying to further optimize 
either the edge cut or the aspect ratio (AR). 
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Geometric methods 
Geometric partition methods [67, 68] are quite 

fast but they often provide worse partitions than 
those of more expensive methods such as 
spectral. Furthermore, geometric methods are 
applicable only if coordinate information for the 
graph is available. They are effective only when 
geometric locality is important and/or natural 
graph connectivity is not available. Geometric 
partitioners can induce higher communication 
costs than graph partitioners for some 
applications because they do not explicitly control 
communication. However, because of their 
simplicity, they generally run faster and can be 
implemented easier than graph partitioners. 
Examples of this approach are presented in [15, 
50, 69–71]. 

Diffusive methods 
This technique for dynamic load balancing has 

been proposed primarily due to its simplicity and 
its analogy with the physical process of diffusion. 
It is the work diffusing in a natural way through the 
multiprocessor network. Another interpretation of 
this approach involves analogies with finite 
Markov chain models. Work distribution can be 
considered to be an initial probability distribution, 
and the diffusion of work is mathematically 
identical to the evolution of state occupation 
probabilities. Much work has been done in this 
area [11, 66, 72–78]. 

Spectral methods 
More elaborate methods, called spectral 

methods, use the connectivity measures based on 
the second smallest eigenvalue of the graph's 
Laplacian. These methods [14, 79] are quite 
expensive, but combined with fast multilevel 
contraction schemes they belong to the state-of-
the-art in graph partitioning software [80, 81]. The 
Multilevel Spectral Bisection (MSB) algorithm 
produces partitions that are as good as those 
produced by the original spectral bisection, but it 
is one to two orders of magnitude faster, because 
it computes the Fiedler vector of the graph using a 
multilevel approach [82]. Other approaches can 
be found in [66, 73, 77, 83]. 

Multilevel methods 
Recently, a number of researches have 

investigated a popular and successful class of 

algorithms that have moderate computational 
complexity, known as multilevel algorithms. This 
class of algorithms provide excellent (even better 
than spectral) graph partitions [13, 79, 84] and the 
basic idea behind them is very simple. 

A graph contraction algorithm creates a series 
of progressively smaller and coarser graphs, 
generally until a few hundred of vertices remain in 
the coarsest graph. A bisection of this much 
smaller graph is computed. Then this partition is 
projected back towards the original graph, refining 
the partition at each graph level. Since the original 
graph has more degrees of freedom, such 
refinements usually decrease the edge cut. To 
date, these algorithms have been used almost 
exclusively to minimize the edge cut weight, a 
cost that approximates the total communication 
volume in the underlying solver. 

From the experiments presented in [13, 79], it 
is clear that multilevel graph partitioning 
algorithms are able to find high quality partitions 
for a variety of unstructured graphs. However, 
there exists little theoretical analysis that could 
explain the ability of multilevel algorithms to 
produce good partitions. We briefly describe the 
various phases of the multilevel algorithm. The 
reader should refer to [13] for further details. 

A series of progressively smaller and coarser 
graphs,    (     ), is created from the original 

graph    (     ) such that |  |  |    |. A 

coarser graph      is constructed from graph    
by finding a maximal matching       of    and 
collapsing together the vertices that are incident 
on each edge of the matching. Vertices that are 
not incident on any edge of the matching are 
simply copied to     . When vertices        are 

collapsed to form a vertex       , the weight of 

the vertex   is | |  | |  | |, while the edges 

incident on   is set equal to the union of the 
edges incident on   and   minus the edge (   ). 
In the case when a vertex   in    contains edges 

to both   and   such that (   ) and (   ), then 
the weight of the resulting edge in      is set to 
|(   )|  |(   )|. Thus, during successive 
coarsening levels, the weights of both vertices 
and edges are increased. 

Some authors do not consider the matching as 
a separate phase, but part of the coarsening one. 
Maximal matching can be computed in different 
ways [13, 60, 85]. The method used to compute 
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the matching greatly affects both the quality of the 
bisection, and the time required during the 
uncoarsening phase [86]. Here, we just mention 
some. 

Random matching (RM) computes the 
maximal matching by using a randomized 
algorithm [79]. Heavy-edge matching (HEM), 
computes a matching    such that the weight of 

the edges in    is high. The modified heavy-edge 
matching (HEM*) is a modification of HEM which 
tries to decrease the average degree of coarser 
graphs. Walshaw and Cross use a variant of the 
graph contraction algorithm proposed by 
Hendrickson and Leland [79]. 

The third phase of a multilevel algorithm is to 
compute a balanced partition of the coarsest 
graph    (     ). The k-way partitioning 
problem is most frequently solved by recursive 
bisection. It is also possible to directly compute a 
k-way partition, but the coarsening phase may 
become more expensive to perform. 
Nevertheless, there are advantages such as the 
entire graph now needs to be coarsened only 
once, and it is well known that recursive bisection 
can perform arbitrarily worse partitions than direct 
k-way partitioning [87]. An evaluation of different 
algorithms for partitioning a coarser graph can be 
found in [13]. 

During the uncoarsening phase, the partition of 
the coarsest graph    is projected back towards 
the original graph    by going through the graphs 

              , refining the partition at each 

graph level. Even if the partition of    is at a local 
minima, the partition of     , obtained by the 
projection, may not be at a local minima. Hence, 
local refinement heuristics must be applied to 
improve the partition of     . A number of 
refinement algorithms are investigated in [13]. 

3.3.4 Graph Partitioning Software 

Multilevel graph partitioning software is available 
in the form of public domain libraries, and most of 
them are free for academic research, such as 
Chaco [80, 81], METIS [88, 89] and SCOTCH 
[90–92]. We refer the reader to [93] for a more 
detailed description of each one. The 
performance of this software has been compared 
several times in recent years [21,60, 94, 95]. Due 
to a large number of configuration parameters of 

each library, it is hard to achieve a clear 
conclusion. 

Jostle [96–98] is suitable for partitioning 
unstructured meshes for use on distributed 
memory parallel computers. It can also repartition 
and load-balance existing partitions. The 
refinement algorithm used by Jostle is a multi-way 
version of the Kernighan-Lin (KL) algorithm [17], 
which incorporates a balancing flow. The balance 
flow is calculated either with a diffusive type 
algorithm, or with an intuitive asynchronous 
algorithm. Jostle can be used to dynamically 
repartition a changing series of meshes, both to 
load-balance and to minimize the amount of data 
movement, and hence, redistribution costs. Jostle 
also has a variety of built-in experimental 
algorithms and modes of operations such as 
optimizing subdomain AR. Jostle is very suitable 
for dynamic repartitioning. 

METIS is a set of serial programs for 
partitioning graphs, partitioning FE meshes, and 
producing fill reducing orderings for sparse 
matrices. METIS is capable of minimizing the sub-
domain connectivity as well as the number of 
boundary vertices. The implemented algorithms 
are based on the multilevel recursive-bisection 
[13], multilevel k-way [99], and multi-constraint 
partitioning schemes. METIS is based in the 
multilevel paradigm [13, 79, 94, 100] and includes 
a variety of algorithms for each phase of the 
partitioning process. Additionally, METIS includes 
an MPI-based parallel library for the partitioning of 
unstructured graphs, meshes and computing fill-
reducing orderings of sparse matrices. 

METIS currently supports four different types 
of mesh elements: triangles, tetrahedra, 
hexahedra, and quadrilaterals. The first step is to 
convert the mesh into a nodal or dual graph. After 
this is done, the graph is partitioned and 
converted back into the original mesh including 
the partition information. 

METIS and Jostle are designed to support 
partitioning and load balancing of adaptive mesh 
calculations in parallel. Both use the algorithm of 
[101] in order to determine the balancing flow and 
use a multilevel strategy for shifting elements, 
where optionally the coarsening is done only 
inside subdomains. 

Chaco addresses three classes of problems. 
First, it computes graph partitions using a variety 
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of approaches with different properties. Second, 
Chaco intelligently embeds the partitions it 
generates into several different topologies. The 
topologies are those matching the common 
architectures of parallel machines, namely, 
hypercubes and meshes. Third, Chaco can use 
spectral methods to sequence graphs in a 
manner that preserves locality. Chaco implements 
five partitioning algorithms: linear, inertial, 
spectral, KL, and multilevel-KL; all described in 
the user’s manual [81]. Each of these algorithms 
can work on weighted graphs, and can be used to 
create partitions of two, four, or eight subdomains 
at each stage of recursive decomposition. 

Party [102–104] serves a variety of different 
partitioning methods in a very simple and easy 
way. It can be used as stand-alone or as library 
interface, and provides default settings for an 
easy and fast start. The PARTY partitioning library 
provides interfaces to the Chaco library, and the 
central methods therein can be invoked from the 
PARTY environment. One of the main advantages 
of Party is that its general partitioning procedure 
allows several partitioning methods to be 
managed at once. Among others, Party generates 
initial partitions through linear, random and Farhat 
techniques, and improves the partition with KL or 
Helpful Sets (HS). In contrast to other 
implementations, the local refinement algorithm in 
Party is based on theoretical analysis finding 
upper bounds for the bisection width of regular 
graphs [105, 106]. Instead of moving single 
vertices, the HS heuristic exchanges whole vertex 
sets between the partitions. However, this 
approach has been successfully applied only to 
bisectioning. Complete information can be found 
in [104]. 

SCOTCH is a software package for static 
mapping partitioning and sparse matrix block 
ordering of graphs and meshes. It is based on the 
Dual Recursive Bipartitioning (DRB) mapping 
algorithm and several graph bipartitioning 
heuristics [107]. The mapper can map any 
weighted source graph onto any weighted target 
graph, or even onto disconnected subgraphs of a 
given target graph, which is very useful in the 
context of multi-user parallel machines. Recently, 
the ordering capabilities of SCOTCH have been 
extended to native mesh structures, thanks to 

hypergraph partitioning algorithms. It also 
comprises parallel graph ordering routines. 

As mentioned above, a concrete and concise 
conclusion comparing different graph partitioning 
software cannot be established. Many 
comparisons between them have been published 
[21, 60, 94, 95] with different results. Karypis and 
Kumar [94] pointed out some differences between 
Chaco and METIS at the refinement phase, 
leading to a more expensive partitioning process 
in the former. Diekmann et al. [21] showed that 
Jostle and METIS are not suitable for use in long 
periods of time without a complete repartitioning 
from time to time, when AR is a metric of 
importance. The experimental results by Walshaw 
and Cross [60] show a degraded performance of 
METIS compared to Jostle due the coarsening 
phase. METIS coarsens to 2000 vertices while 
Jostle coarsens until the number of vertices 
equals the number of final subdomains. Usually, 
METIS is very fast, while Jostle takes longer time 
but often computes better solutions. 

Furthermore, libraries like METIS and Jostle 
primarily minimize the edge cut and cannot obey 
constraints like connectivity and straight partition 
boundaries which are important for some 
numerical solvers. 

3.3.5 Hypergraph Partitioning Software 

Serial hypergraph partitioning libraries are 
available, such as hMETIS [108, 109], PaToH 
[110, 111], Mondriaan [112]. But for large scale 
and dynamic applications, parallel hypergraph 
partitioners are needed. The load balancing 
library Zoltan [113, 114] also includes a serial 
hypergraph partitioner which uses multilevel 
strategies developed for graph partitioning [13, 
79]. The hypergraph is coarsened into 
successively smaller hypergraphs. The smallest 
hypergraph is partitioned and the coarse 
decomposition projected back to the larger 
hypergraphs, using local optimization to reduce 
hyperedge cuts while maintaining balance at each 
level. 

3.4 Load Balancing Libraries 

The DRAMA [62, 115] library performs a parallel 
computation of a mesh re-allocation that will re-
balance the costs of the application code based 



Load Balancing for Parallel Computations with the Finite Element Method 309 

Computación y Sistemas Vol. 17 No.3, 2013 pp. 299-316 
ISSN 1405-5546 

on the DRAMA cost model. The DRAMA cost 
model is able to take into account dynamically 
changing computational and communication 
requirements. The library provides the application 
program sufficient information to enable an 
efficient migration of the data between processes. 
DRAMA is designed to be called by parallel 
message-passing (MPI) mesh-based applications. 

Different parts of parallel applications that are 
separated by explicit synchronization points are 
defined as phases within the DRAMA cost model. 
The total cost is then given by the sum of the 
maximum cost over all processes per phase and 
over all phases. The load imbalance for each 
phase is the ratio of the maximum to average 
process costs for that phase. 

The Zoltan Parallel Data Services Toolkit [113, 
114] is unique in providing dynamic load 
balancing and related capabilities to a wide range 
of dynamic, unstructured and/or adaptive 
applications. Zoltan supports many applications 
through its data-structure neutral design. Similar 
libraries, such as DRAMA which supports only 
mesh-based applications, focus on specific 
applications; Zoltan does not require applications 
to have specific data structures. However, with 
respect to data migration, libraries like DRAMA 
can provide greater capabilities, as they have 
knowledge of application data structures. 

Zoltan’s design is effective for both 
applications and research. It allows both existing 
and new applications to easily use Zoltan. New 
algorithms can be added to the toolkit easily and 
compared to existing algorithms in real 
applications using Zoltan. 

 
Dynamic Resource Utilization Model (DRUM) 

[116, 117] provides applications aggregated 
information about the computation and 
communication capabilities of an execution 
environment. DRUM has been designed to work 
with Zoltan, but may also be used as a separate 
library. DRUM encapsulates the details of 
hardware resources, capabilities and 
interconnection topology; provides a facility for 
dynamic, modular, and minimally intrusive 
monitoring of an execution environment; and 
provides this information to be used by any load-
balancing algorithm as the percentage of overall 
application load to be assigned to a partition. 

UMPAL [118] is an integrated tool consisting of 
five components: a partitioner, load balancer, 
simulator, visualization tool, and web interface. 
The partitioner uses three partitioning libraries: 
Jostle, Metis and Party. The partitioning results 
are then optimized by the Dynamic Diffusion 
Method (DDM) [75], the Directed Diffusion Method 
(DD) [119] or the Multilevel Diffusion Method (MD) 
[97]. The load balancer provides two load-
balancing methods: the prefix code matching 
parallel load-balancing method and the binomial 
tree based parallel load-balancing method, both 
proposed by Liao [75]. The simulator provides a 
performance simulation environment for a 
partitioned mesh. The visualization tool provides a 
way for users to view a partitioned mesh. The web 
interface provides a mean for users to use 
UMPAL via Internet and integrates the other four 
parts. 

4 Current Trends 

In this section, we present the current trends 
related to load-balancing techniques. We also 
propose a new model for load-balancing and 
optimizing unstructured mesh partitions based on 
a multilevel technique. 

4.1 New Challenges 

Today’s large simulations require new techniques 
to scale on clusters of thousands of processors, 
and to be resource aware due the increasing use 
of heterogeneous computing architectures as 
found in many-core computer systems. Existing 
libraries and algorithms need to be enhanced to 
support more complex applications and hardware 
architectures. Thus, the full advantages of HPC 
technology will be able to be exploited only when 
efficient load balancing techniques are applied. 

Often, FEM libraries restrict their use to small 
systems, and this becomes a limitation when 
thousands of cores are available. This has led to 
a significant disparity between the current 
hardware and software running on it. Heister et al. 
[37] propose parallel data structures and 
algorithms to deal with massively parallel 
simulations. They enhanced the library deal.II to 
overcome the problem. They focus on the primary 
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bottlenecks to parallel scalability: the mesh 
handling, the distribution and global numbering of 
the degrees of freedom, and the numerical linear 
algebra. Another library designed for massively 
parallel simulations is ALPS [25]. It is based on 
the p4est library [120], but it lacks the extensive 
support infrastructure of deal.II, and it is not 
publicly available. 

After the mesh refinement, the workload 
among processors may become unbalanced. As 
the load-balancing step could be relatively large, 
a load-balancing step is necessary only when the 
degree of imbalance is high. Therefore, it is 
important to determine the influence of the 
imbalance on the total cost of a numerical 
simulation in order to decide if the load-balancing 
step should be performed or not. Olas et al. [27] 
introduce a new dynamic load balancer to NuscaS 
[26] based on a performance model. This model 
estimates the cost of the load-balancing step, as 
well as the execution time for a computation step 
performed with either balanced or unbalanced 
workload. 

Many supercomputers are constructed as 
networks of shared-memory multiprocessors with 
complex and non-homogeneous interconnection 
topologies. Grid computing enables the use of 
geographically distributed systems as a single 
resource. This paradigm introduces new and 
difficult problems in resource management due 
the extreme computational and network 
heterogeneity. To distribute data effectively on 
such systems, load-balancers must be resource-
aware. That is, they must take into account the 
heterogeneity in the execution environment. 
Some attempts to address this issue can be found 
in [50, 121–124]. 

4.2 Multilevel load balancer 

As previously mentioned, new hardware 
architectures bring new capabilities and new 
problems in resource management. New 
approaches and algorithms have to be developed 
in order to overcome these issues. To this end, 
we propose a new multilevel load-balancing 
model, which aims to reduce the local imbalance, 
while tries to reduce the global communication 
overhead. The use of resource information and a 

cost function is important to achieve a good load 
balance. 

The compute time has to scale linearly with 
respect to the problem and the number of 
processors. Additionally, local memory 
requirements should depend only on the local, not 
the global problem size. To efficiently distribute 
data on the underlying system, we need to gather 
information about the computing environment 
(e.g., processors, network topology and memory). 
A perfect balanced partition is worthless if it 
cannot be efficiently mapped. Such partitions 
have to be computed based on the knowledge of 
the system. A non-balanced partition could fit 
better to specific hardware architectures (e.g., 
when processor speeds differ between them). The 
system information is gathered before the actual 
FEM simulation begins using a configuration step. 
In case of dynamic resources, this step has to be 
performed before each computation step within 
the simulation. There exist libraries, such as 
LINPACK [125], that can be used for this purpose. 

Our model works as follows. The first level is 
responsible for the main load-balancing steps. It 
performs the load distribution over the entire 
system, such as traditional models, before each 
computation step. We use additional information 
to compute the mesh partitioning and mapping. A 
graph is built from the available hardware 
information which represents the underlying 
system. Vertices represent processors and edges 
network links; both can be weighted to mimic the 
heterogeneity. Therefore, we use two graphs, one 
representing the mesh, and one the system. With 
this the extra information, a partition that better fits 
the system can be found. In this way, we are able 
to better distribute the load among the processors 
using well known libraries such as METIS and 
Jostle. 

A similar cost model to the one proposed by 
Olas et al. [27] can be used to determine if a 
balancing step is required or not. If the time 
required by the load balancing step is smaller 
than the time that will be saved with a new 
distribution, then it is performed. We enhanced 
the model by adding additional information and 
handling the system heterogeneity. Instead of 
computing the communication time only by 
multiplying the amount of data to be transferred 
and the network speed, we take into account the 
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speed of each network link independently. The 
same is applied to the computing time. In this 
way, we have a more accurate prediction; 
therefore, the second level of load-balancing will 
provide better results. 

The second level uses hardware information to 
perform a local load-balancing. It is not a separate 
step; instead it is performed during computations. 
First, we identify clusters of processors (groups of 
processors joint by high speed network links). 
This can be done during the configuration step 
before the FEM simulation (or during each 
configuration step before each computation step 
in a dynamic system). Second, we identify the 
mesh cells with numbers. These numbers 
represent the gain of moving the cell to a 
neighbor processor in the case of imbalance. This 
is done during the last global load-balancing step 
when the partition is refined. We keep these 
values and use them to improve local imbalance 
in this balancing level. As previously mentioned, 
the graph model does not represent the exact real 
workload. Thus, the imbalance may become 
evident during the computation step. According to 
the progress in solving PDEs by each processor, 
we can decide to move some mesh cells to a 
neighboring processor within the cluster of 
processors with high speed network links. 
Overloaded processors migrate mesh cells to 
neighbors during the computation step. This is 
done only if local predictions assure a gain in 
performance. As these communications are done 
concurrently and locally, the performance of the 
whole system is not degraded. 

This approach solves some of the problems 
we have described previously. We believe that by 
tuning-up the cost functions used in predictions 
during the simulation, we can achieve better 
results. Including more information in the 
partitioning process may add complexity to the 
problem; but if used efficiently, a good 
improvement in performance can be achieved. 

5 Conclusions and Future Work 

In this paper, we presented an overview of efforts 
to improve current techniques of load-balancing 
and efficiency of FEM on large-scale parallel 
machines. Much work has been done in the field, 

but requirements of emerging technologies are 
not met by state-of-the-art libraries. We also 
introduced a multilevel load balancer to improve 
the local load imbalance. It is based on graph 
partitioning algorithms and takes into account the 
hardware architecture. We have presented an 
enhancement to the cost function used by Olas et 
al. [27] including new information, which helps to 
better approximate the computation and load-
balancing costs of the next FEM computation 
step. 

Our new model can successfully be used as a 
starting point for a more complex balancing 
strategy. It is still under development and 
comparison data is not available up to date. The 
research can be extended to a number of 
directions including the development of a more 
complex cost function, and prediction model into 
the multilevel load balancer. 
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