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Abstract. Supervised classification is one of the most 

active research fields in the Artificial Intelligence 
community. Nearest Neighbor (NN) is one of the 
simplest and most consistently accurate approaches to 
supervised classification. The training set 
preprocessing is essential for obtaining high quality 
classification results. This paper introduces an attribute 
and case selection algorithm using a hybrid Rough Set 
Theory and naturally inspired approach to improve the 
NN performance. The proposed algorithm deals with 
mixed and incomplete, as well as imbalanced datasets. 
Its performance was tested over repository databases, 
showing high classification accuracy while keeping few 
cases and attributes. 

Keywords. Nearest neighbor, case selection, attribute 

selection. 

Selección de atributos y casos para el 
clasificador NN a través de conjuntos 
aproximados y algoritmos inspirados 

en la naturaleza 

Resumen. La clasificación supervisada constituye una 

de las áreas de investigación más activas dentro de la 
Inteligencia Artificial. La regla del vecino más cercano 
(NN) es una de las más simples y efectivas para la 
clasificación supervisada. El pre-procesamiento del 
conjunto de entrenamiento es esencial para obtener 
clasificaciones de alta calidad. En este artículo se 
introduce un nuevo algoritmo de selección de atributos 
y casos que utiliza un enfoque híbrido basado en los 
Conjuntos Aproximados y los algoritmos inspirados en 
la naturaleza para mejorar el desempeño de 
clasificadores NN. El algoritmo propuesto permite el 
manejo de conjuntos de datos mezclados, incompletos, 
y no balanceados. El desempeño de dicho algoritmo se 
analizó utilizando bases de datos de repositorio, 

mostrando una alta eficacia del clasificador, utilizando 
solamente pocos casos y atributos. 

Palabras clave. Vecino más cercano, selección de 

casos, selección de atributos.  

1 Introduction 

One of the simplest yet powerful techniques for 
case-based decision making is the Nearest 
Neighbor rule [1]. It is a non-parametric technique 
that uses the information of stored cases to 
determine the class of a new, unseen case. To do 
this, the Nearest Neighbor (NN) classifier 
compares the unknown instance to every case in 
the training set by means of a dissimilarity 
function. Then, it assigns it the class of its nearest 
case (nearest neighbor). Let 𝑋 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} be 
a set of labeled cases, referred to as the training 
set of the NN classifier. Each case in 𝑋 is 

described by a set 𝐴 = {𝐴1, 𝐴2, ⋯ , 𝐴𝑚} of 

attributes. If the attributes in 𝐴 are of different 
type, for example, some are numerical and others 
are categorical, the cases in 𝑋 have mixed 
descriptions. In addition, if an attribute value of 
some case is unknown, the description of the 
cases in 𝑋 will be incomplete.  

Dealing with mixed and incomplete cases in 
the context of NN has been approached in 
several ways. One of the most common is to 
codify categorical attributes and to fill missing 
values by means of some estimation procedures; 
and then to use some distance function, such as 
the Euclidean one, to compare the cases. One of 
the main disadvantages of this approach is that 
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codifying categorical attributes imposes an order 
relation among attribute values, which may not 
have sense in some domains. For example, 
attributes like color do not intrinsically have an 
order among attribute values. For instance, let 
𝐶𝑜𝑙𝑜𝑟 = {𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑦𝑒𝑙𝑙𝑜𝑤, 𝑝𝑖𝑛𝑘} be an attribute 

codified as 𝑟𝑒𝑑 = 1, 𝑔𝑟𝑒𝑒𝑛 = 2, 𝑦𝑒𝑙𝑙𝑜𝑤 = 3, 

𝑝𝑖𝑛𝑘 = 4, then the Euclidean distance between 
(𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛) = 1, and between  (𝑟𝑒𝑑, 𝑝𝑖𝑛𝑘) = 3, 
which may have no sense in real life.  

Another approach to deal with mixed and 
incomplete cases in the context of NN is to use 
dissimilarity functions able to compare cases with 
such characteristics. Usually, these dissimilarities 
use different comparison criterion for numeric and 
categorical attributes, and also for comparing 
cases with missing values. Among the most 
commonly used dissimilarities for mixed and 
incomplete data are HEOM and HVDM, 
introduced by Wilson and Martinez in 1997 [2]. 
Using this kind of dissimilarity function avoids 
modifying the original description of cases, but its 
main limitation is that this kind of dissimilarities 
does not fulfill the properties of a distance 
function (i.e., symmetric, positive defined and 
triangle inequality).  

As known, the major disadvantages of the NN 
classifier are its storage and classification 
computational costs, which increase with the 
cardinality of the training set and the attribute set. 
To solve this drawback, the research community 
has followed two main alternatives: using distance 
properties to find the nearest neighbor of the 
unseen case without comparing it with the entire 
training set (known as fast nearest neighbor 
finding [3]), which is not directly applicable in 
mixed and incomplete domains given that 
dissimilarity functions do not fulfill distance 
properties; and preprocessing the training set by 
selecting relevant cases and attributes [4, 5]. This 
alternative has been found very useful to diminish 
NN costs and also to improve its accuracy.  

Training set preprocessing by selecting both 
relevant attributes and cases is an active field of 
research. Studies carried out separately by 
Kuncheva and Jain [6] and Derrac et al. [7] have 
found that selecting relevant cases and attributes 
in a unique procedure leads to better results than 
sequential selection of attributes and cases.  

This finding may be due to the fact that in 
sequential selection, the second algorithm does 
not access the (whole) original data, only the 
results of the first selection algorithm applied 
(Fig. 1). 

Rough Set Theory (RST) has been widely 
used to separately select representative cases [8] 
and attributes [9]. RST is also a major component 
in some algorithms for integrated case and 
attribute selection. Section 2 presents the basics 
of RST. Other commonly used algorithms for 
attributes, cases, and integrated attribute and 
case selection are Swarm Intelligence and 
evolutionary algorithms (Section 3). 

Although several proposals have been made 
to obtain a high quality preprocessed training set 
by integrated selection of cases and attributes, 
most of them are either not suitable for mixed and 
incomplete data having a strong stochastic 
component, or are intractable in high 
dimensionality domains. Section 4 introduces the 
IFIS-RST-SI algorithm for attribute and case 
selection, based on rough set theory and swarm 
intelligence. Section 5 covers some previous work 
done in selecting both cases and attributes for NN 
classifiers. The performance of the proposed 
algorithm is tested over repository datasets in 
Section 6, and conclusions and future works are 
given in Section 7.  

 
 

 

Fig. 1. In sequential selection of cases and attributes, 

the second selection algorithm only accesses the 
result of the first one 
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2 Rough Set Theory and Metaheuristic 
Algorithms in Training Set Selection 
for NN Classifiers 

Rough Set Theory (RST) was introduced by 
Pawlak in 1982 [10]. RST tries to approximate 
any concept (a class, for example) by means of 
two sets: the lower and upper approximations of 
the concept. Let X be the set of labeled cases, 
described by the set of attributes A, the pair 
(𝑋, 𝐴 ∪ {𝑑}) where d is the decision attribute is 
called a Decision System.  

In the classic RST, the lower and upper 
approximations of a class are constructed by 
using an indiscernibility relation over the attribute 
set. Two cases are discernible if they have 
different values on at least one attribute. The 
lower approximation of a class 𝐾𝑖 is denoted by 

𝐼𝑁𝐹(𝐾𝑖) and is a set formed by all cases 

belonging to 𝐾𝑖 which are discernible with respect 
to every other case not belonging to 𝐾𝑖, that is, 

𝐼𝑁𝐹(𝐾𝑖) = {𝑥 ∈ 𝐾𝑖 : [∀𝑦 ∉ 𝐾𝑖 , ∃𝐴𝑖 ∈ 𝐴: 𝑥(𝑖) ≠ 𝑦(𝑖)]}, 
where 𝑥(𝑖) and 𝑦(𝑖) are the values of the 𝐴𝑖 
attribute in cases x and y, respectively. On the 
other hand, in the upper approximation of a class 
𝐾𝑖, denoted by 𝑆𝑈𝑃(𝐾𝑖) are included the cases 
belonging to the class, and also cases from 
different classes, but indiscernible with respect to 
cases of  𝐾𝑖, that is, 𝑆𝑈𝑃(𝐾𝑖) = {𝑥 ∈ 𝐾𝑖 ∪
[𝑦 ∉ 𝐾𝑖: ∀𝐴𝑖 ∈ 𝐴: 𝑥(𝑖) = 𝑦(𝑖)]}.The idea behind the 
lower and upper approximations is that cases in 
the lower approximation of a decision class are 
separate from cases belonging to other decision 
classes and therefore are sure members of the 
class, while cases in the upper approximation are 
possible members of the decision class.  

For cases described by numerical attributes, 
constructing the lower approximation using the 
above definition may not be useful due to cases 
with very small differences between attribute 
values. Such cases are discernible, but they may 
not be separated enough from cases of different 
decision classes. To overcome this limitation, 
RST has been extended in order to use similarity 
(or dissimilarity) relations to decide if two cases 
are dissimilar enough to be considered as 
separated or discernible cases [11-13]. In the 
aforementioned works, the definitions of lower 
and upper approximations are rewritten in terms 

of dissimilarity relations. Thus, the lower 
approximation of a class will be 𝐼𝑁𝐹(𝐾𝑖) =
{𝑥 ∈ 𝐾𝑖 : [∀𝑦 ∉ 𝐾𝑖 , 𝑑𝑖𝑠𝑠(𝑥, 𝑦) > 𝜀]}, where 𝑑𝑖𝑠𝑠(𝑥, 𝑦) 
is a dissimilarity function that compares cases x 

and y, and 𝜀 is a similarity threshold. In the same 

way, 𝑆𝑈𝑃(𝐾𝑖) = {𝑥 ∈ 𝐾𝑖 ∪ [𝑦 ∉ 𝐾𝑖 : 𝑑𝑖𝑠𝑠(𝑥, 𝑦) ≤ 𝜀]}. 
The information of lower and upper 
approximations has been used to select 
representative cases of the training sets, and to 
eliminate possible noisy or mislabeled cases [8, 
13, 14]. In addition, lower approximation has been 
also used for attribute selection, as an element of 
the Classification Quality measure [9, 11]. 
Classification quality (Equation 1) is computed as 
the amount of cases in the lower approximation of 
the decision with respect to the total amount 
of cases.  

𝛾𝐴(𝑋) =
|⋃ 𝐼𝑁𝐹(𝐾𝑖)𝐾𝑖∈𝐾 |

|𝑋|
 (1) 

Let BA be an attribute set, the higher the 
classification quality, the better the attribute set is. 
If 𝛾𝐵(𝑋) = 𝛾𝐴(𝑋), then it is said that the attributes 
in B form a reduct of the decision system. In RST, 
attribute selection aims at obtaining an attribute 
set with the same discerning ability that the 
original attribute set, that is, a reduct. However, 
obtaining all possible reducts of a training set is 
an extremely costly computational process. 
Researches carried out by Bell and Guan [15] 
show that the computational cost of obtaining one 
reduct is bounded by n2*m2, where m is the 
attribute set cardinality and n is the cardinality of 
the training set. They also found that the time 
complexity of finding all reducts is O(2m*J), where 
J is the cost of finding one reduct. 

Although some efficient algorithms have been 
developed for finding the set of all reducts (for 
example, LEX [16]), they are unable to find them 
in training sets described by several tens of 
attributes. In addition, most RST based attribute 
selection algorithms obtain only one reduct [9, 
17, 18].  

The training set preprocessing by selecting 
cases or attributes can be viewed as a discrete 
optimization problem, where the search space is 
defined over all possible subsets of cases or 
attributes, and the optimization function is a 
measure of the selected training set quality. 
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Metaheuristic algorithms [19, 20] are suitable for 
this purpose.  

Among metaheuristic algorithms, Genetic 
Algorithms (GAs) have been widely used for case 
selection [21-23] and for attribute selection [24-
27]. Other metaheuristic algorithms used for case 
selection are Artificial Immune Systems [28, 29] 
and Particle Swarm Optimization [30]. They are 
also used for attribute selection [31-33]. Other 
metaheuristic algorithms used for this purpose are 
Ant Colony Optimization [34], Firefly Optimization 
[18] and Bee based optimization [9, 17]. 

Several fitness functions are proposed for 
case selection by means of metaheuristic 
algorithms, and most of them take into 
consideration classifier accuracy and cardinality 
of the selected case set. On the other hand, 
fitness functions for attribute selection usually use 
RST measures like classification quality (Equation 
1). As shown, both metaheuristic algorithms and 
RST provide useful tools for training set 
preprocessing, for both attribute and case 
selection. In this paper, we use those approaches 
to select cases and attributes in large 
dimensionality domains.  

3 Selecting Cases and Attributes for 
NN Classifiers by RST and 
Metaheuristic Algorithms 

The proposed algorithm for case and attribute 
selection works in three stages (Fig. 2). Stage 
one preprocesses the training set by removing 
noisy, mislabeled or irrelevant cases. It also 
selects several relevant attributes sets. These 
processes are detailed in Sections 3.1 y 3.2, 
respectively. Stage two of the algorithm obtains 
several submatrices by projecting the selected 
cases using the attributes in the relevant attribute 
sets, and applying a case selection algorithm 
(Section 3.3). Finally, stage three merges the 
submatrices using a heuristic approach, also 
described in Section 3.3.  

3.1 Training Case Preprocessing 

Training set preprocessing is carried out 
according to the characteristics of the data. 
Among them, we take into consideration class 

overlapping and class imbalance. Removing 
noise or possible mislabeled cases is also an 
important step in training set preprocessing, given 
that it guarantees smoothing decision boundaries, 
and also may increase NN accuracy. We used 
Minimum Neighborhood Rough Sets to perform 
case filtering by selecting cases belonging to the 
lower approximation of the decision. Minimum 
Neighborhood Rough Sets [13] use similarity 
relations to decide if cases are distinguishable or 
not. Let 𝑥 ∈ 𝑋 be a case of the training set and let 

𝐵𝐴 be a set of attributes, the neighborhood 
𝑛𝐵(𝑥) of 𝑥 in the attribute space B is composed by 
cases having minimum dissimilarity with respect 

to 𝑥. Let diss𝐵(x, y) be a dissimilarity function, the 
neighborhood of a case 𝑥 is given by 𝑛𝐵(x) =

{y ∈ 𝑋: diss𝐵(x, y) = min
z∈𝑋

(diss𝐵(x, z))}. The lower 

approximation of a class 𝐾𝑖 only includes cases 
whose neighborhood is composed by cases of its 
class, and also the cases that are not included in 
the neighborhoods of cases from different 
classes. It is defined as 𝐼𝑁𝐹(𝐾𝑖) = {𝑥 ∈
𝐾𝑖: [∀𝑦 ∈ 𝑛𝐵(𝑥), 𝑦 ∈ 𝐾𝑖]}.  

Case filtering is carried out by selecting cases 
belonging to the lower approximation of the 
decision. However, some domains show a high 
degree of imbalance between decision classes. 
Class imbalance appears when one of the 
decision classes is much less represented than 
the others. NN classifiers should not be affected 
by class imbalance, but if decision classes are 

 

Fig. 2. Representation of proposed algorithm for case 
and attribute selection 
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highly overlapped, the minority class may be 
misclassified by an NN classifier (Fig. 3). In such 
domains, a filtering procedure may not obtain 
good results, due to the class overlap.  

To deal with highly imbalanced and 
overlapped domains, our algorithm uses a 
preprocessing strategy consisting in preserving 
decision boundaries of classes, keeping cases 
belonging to the limit region, instead of cases 
belonging to the lower approximation. Figs. 4 and 
5 offer the pseudocode of filtering and boundary 
preserving procedures for case preprocessing. 

To select representative cases of a class 
having an empty limit region, we use a prototype 
selection procedure based on Maximum Similarity 
Graphs (MSG) [35]. An MSG is a directed graph 
that connects each case with its most similar 
neighbors. Formally, let 𝐺 = (𝑋, 𝜃) be an MSG for 
a set of cases X, with arcs θ. In this graph, two 

cases 𝑥, 𝑦 ∈ 𝑋 form an arc (𝑥, 𝑦) ∈ θ if 

max
𝑧∈𝑋

{𝑠𝑖𝑚(𝑥, 𝑧)} = 𝑠𝑖𝑚(𝑥, 𝑦), where 𝑠𝑖𝑚(𝑥, 𝑦) is a 

similarity function. Usually, 𝑠𝑖𝑚(𝑥, 𝑦) = 1 −
𝑑𝑖𝑠𝑠(𝑥, 𝑦).  

In case of ties, an MSG establishes a 
connection between a given case and each of its 
nearest neighbors. Compact Sets are the 
connected components of such graph. 

The representative case selection procedure 
(Fig. 6) computes the Compact Sets of the 
classes having an empty limit region, and for each 
compact set, it selects as representative the one 
which maximizes the overall similarity between 
cases.  

Intuition suggests filtering cases in balanced 
domains as well as in imbalanced, but not 
overlapped domains, and keeping border cases in 

imbalanced and highly overlapped scenarios. 
However, we use the JRip classifier available with 
the Weka software [36] to obtain a set of rules to 
decide whether to filter or to preserve boundaries 
in case preprocessing.  

The rule obtained by JRip was the following: if 
IR > 10 and CO > 0.75, preserve boundaries, else   

(a) (b) 

Fig. 3. Note how in (a) an NN using the Euclidean 

distance can achieve perfect classification of 
triangles, while in (b) no triangle can be 
correctly classified 

Case filtering procedure (CF) 

Input: Training set X, dissimilarity function diss 

1. P =  
2. Compute the lower approximation of the 

decision as INF(X) = ⋃ INF(Ki)i , where 

𝐼𝑁𝐹(𝐾𝑖) = {𝑥 ∈ 𝐾𝑖: [∀𝑦 ∈ 𝑛𝐵(𝑥), 𝑦 ∈ 𝐾𝑖]} 
3. Keep the cases included in the lower 

approximation, 𝑃 = INF(X) 

Return P 

Fig. 4. Procedure for filtering cases in training 

case preprocessing 

Boundary preserving procedure (CB) 

Input: Training set X, dissimilarity function diss 

1. P =  
2. For each decision class 𝐾𝑖 

2.1. Compute the limit region of the decision 
in a Nearest Neighborhood Rough Set, 
as 𝐿𝐼𝑀(𝐾𝑖) = 𝑆𝑈𝑃(𝐾𝑖) −  𝐼𝑁𝐹(𝐾𝑖).  

2.2. If the limit region of the class is empty, 
then 𝑃 = 𝑃 ∪ 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒_𝐶𝑎𝑠𝑒𝑠(Ki). 

Else,  𝑃 = P ∪ 𝐿𝐼𝑀(𝐾𝑖) 

Return P 

Fig. 5. Procedure for boundary preserving in 

training case preprocessing 

Representative case procedure 

Input: decision class 𝐾𝑖, dissimilarity function diss 

1. 𝑅 =   

2. Compute compact sets (CS) of 𝐾𝑖 

2.1. For each 𝑐𝑠 ∈ 𝐶𝑆 

2.1.1. Select a representative case r as 

r = argmin
𝑜∈𝐶𝑆

{ ∑ 𝑑𝑖𝑠𝑠(𝑜, 𝑖)

𝑖∈𝐶𝑆

} 

2.1.2.  𝑅 = 𝑅 ∪ {𝑟} 
Return R 

Fig. 6. Procedure for selecting representative 

cases in decision classes having an empty 
limit region 
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filter cases. Imbalance ratio (IR) is computed as 
the case count belonging to minority class, with 
respect to cases belonging to the majority class. 
Class overlapping (CO) is measured as the 
maximum amount of cases of a class having 
nearest neighbors of different class, that is, cases 
not belonging to the lower approximation of 
Minimum Neighborhood Rough Sets. Although 
the thresholds for IR and CO are fixed by the JRip 
rule, this rule can be interpreted as follows: if IR is 
high and CO is high, preserve boundaries, 
otherwise filter cases.  

3.2 Selecting Relevant Attribute Sets 

Using a unique attribute set in case and attribute 
selection may not consider some interactions 
among attributes, and may exclude some relevant 
features, also computing all reducts is 
impracticable in domains with several tens of 
features.  To overcome this drawback, we 
propose to use population–based metaheuristic 
algorithms to obtain several candidate attribute 
sets. We explore using Artificial Bee Colonies and 
Genetic Algorithms for this purpose.  

Artificial Bee Colony (ABC) optimization was 
introduced by Karaboga and Basturk [37-39]. This 
metaheuristic procedure is based on the behavior 
of honey bees for finding good flower nectar. In a 
bee colony, there are three kinds of bees: scout 
bees, employed bees and onlooker bees. Scout 
bees search the area around the colony to find 
food sources for all the other bees. Once found, 
employed bees are assigned to food sources to 
extract the nectar.  

Each employed bee takes a portion of nectar 
and return to the colony. Then, onlooker bees 
taste the nectar portions provided by employed 
bees, and select the best food sources based on 
the nectar quality. Then, onlooker bees search 
around the best food sources, to obtain other 
sources with higher quality. This process 

0 1 1 0 0 1 

Fig. 7. Representation of a candidate attribute set 

(food source) in the ABC algorithm. Only the second, 
third and sixth attributes are included in the selected 
attribute set. 

Fig. 8. Representation of the process for obtaining 

submatrices 
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Fig. 9. Result of merging two submatrices 

 

Fig. 10. Submatrix merging strategy 
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guarantees that the colony exploits the best food 
sources and obtains high quality nectar. Once a 
food source is exhausted, scout bees replace it by 
a new one. 

As the ABC algorithm maintains a population 
of food sources, it is suitable for obtaining several 
attribute sets by returning the entire population. 
For attribute selection, food sources are modeled 
as binary strings having as many bits as 
attributes. Each bit represents the inclusion or 
exclusion of a certain attribute in the solution 
(Fig. 7). 

In the ABC algorithm, each food source is 
associated to a nectar quality, which guides the 
searching procedure. We use the RST measure 
for classification quality (Equation 1) as the 
amount of nectar of candidate attribute sets, but 
computing lower approximation by using Minimum 
Neighborhood Rough Sets [13].  

To obtain a food source near to a current 
source, we use a modification strategy consisting 
in changing bits in the string representing the 
current source.  

Table 1. Datasets used in experiments 

Dataset Attributes Cases IR CO 

breast-cancer* 9 289 2.37 0.74 

breast-w 9 699 1.90 0.10 

car 6 1728 18.69 1.00 

colic* 22 368 1.73 0.29 

credit-a* 15 690 1.25 0.23 

credit-g 20 1000 2.35 0.53 

cylinder * 40 512 1.37 0.36 

dermatology* 34 366 5.62 0.21 

diabetes 8 768 1.87 0.46 

heart-c* 13 303 1.20 0.28 

heart-h* 13 294 1.77 0.32 

hepatitis* 19 155 3.87 0.51 

hypothyroid* 30 3772 1497.35 1.00 

kr-vs-kp 36 3196 1.09 0.32 

lymph 18 148 47.55 0.64 

mushroom* 22 8124 1.08 0.00 

page-blocks 10 5473 175.99 0.48 

sick* 30 3772 15.12 0.41 

spambase 57 4601 1.54 0.12 

splice 60 3190 2.17 0.45 

tic-tac-toe 9 958 1.89 0.94 

vehicle 18 946 1.10 0.53 

vowel 12 990 1.12 0.03 

waveform 21 5000 1.03 0.30 

wine* 13 178 1.47 0.13 

Datasets marked with * have missing values. 
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Genetic algorithms maintain a population of 
candidate solutions and are suitable for obtaining 
multiple attribute sets. We also explore using GA 
based attribute selection algorithms (GMAS) to 
obtain multiple attribute sets. 

GMAS uses the same codification strategy of 
BMAS (binary strings), and also uses the 
classification quality measure (Equation 1) as the 
fitness function. GMAS uses an elitist selection 
strategy. In crossover, GMAS selects parents 
through tournament, and it uses single point 
crossover to obtain the children. 

3.3 Obtaining and Merging Submatrices 

The first stage of the algorithm for selecting both 
attributes and cases has as outcome a 
preprocessed case set P, and a list of relevant 
attribute sets, MAS.  

In stage two, the cases belonging to the set P 
are projected using the attribute set 
corresponding to each item of the MAS list, 
having as many projections 𝑃𝑖 as attribute sets in 
the MAS list. Once the projections are obtained, a 
subclass consistent case selection procedure is 
applied to each projection, and several 
submatrices 𝑠𝑖 are obtained (Fig. 8). We suggest 
using the CSE algorithm [40] for case selection in 
the projections. CSE is a compact set based 
algorithm for case selection, able to deal with 
mixed and incomplete data; it is subclass 
consistent, and also preserves the inner structure 
of decision classes. The third stage of the 
algorithm consists in integrating the information of 
the submatrices through a merging procedure. 
Fig. 9 illustrates the merging of two submatrices. 
Note how the merged submatrix contains all 
cases and attributes of the original ones. The 
algorithm uses a greedy approach for merging 
(Fig. 10). First, it sorts the submatrices according 
to classification quality (Equation 1). Then, if the 
first (best) submatrix has better quality than the 
preprocessed training set, the process ends. 

If not, the procedure will find the available 
submatrix that merged to the current one, which 
leads to a better quality. If the merging is not 
successful or there is no available submatrix, the 
process ends. Otherwise, the merging cycle is 
repeated until the desired quality is achieved or 
one of the stopping conditions is reached. 

The algorithm handles mixed and incomplete 
data, and allows selecting several candidate 
attribute sets in large dimensionality domains, due 
to the use of metaheuristic procedures. It employs 
training set preprocessing procedures according 
to the characteristics of data. The algorithm also 
uses an RST measure, the classification quality, 
to guide the attribute set selection process and 
the submatrix sorting and merging procedures.  

4 Previous Works on Attribute and 
Case Selection for NN Classifiers 

The selection of cases and attributes in a unique 
procedure was first proposed by Skalak [41] who 
used Random Mutation Hill Climbing search 
strategy for this purpose, and introduced the 
RMHC-FP1 algorithm. A few years later, 
Kuncheva and Jain [6], as well as Ishibushi and 
Nakashima [42] used genetic algorithms as the 
underlying search strategy for selecting both 
attributes and cases. Another GA based 
algorithms for this purpose are the ones by Ahn et 
al. [43, 44] and  by Rozypal and Kubat [45]. 
Recently, evolutionary algorithms are hybridized 
with other techniques to improve classifier 
accuracy and to obtain a reduced training set. 
Examples of hybrid algorithms are HG [46], EIS-
RFS [7] and EFS-RPS [47].  

The first deterministic algorithm for selecting 
attributes and cases is the one proposed by 
Dasarathy in 2000 [48]. It combines the 
Sequential Backward Search (SBS) [49] algorithm 
for attribute selection with the application of two 
case selection algorithms: the Proximity Graph 
Based Editing using Relative Neighborhood 
graphs (RNG-E) [50] and the Minimal Consistent 
Subset method (MCS) [51]. The proposal by 
Dasarathy uses as the fitness function for the 
SBS algorithm a combined measure of the 1-NN 
accuracy with respect to a validation set and the 
amount of case reduction achieved by the 
sequential application of the case selection 
methods. To combine the accuracy and reduction, 
the method uses the Euclidean distance. This 
algorithm is computationally expensive, and also 
may delete an entire class in a training set.  

In 2006, Villuendas et al. introduced another 
deterministic algorithm, SOFSA [52], specially 
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designed to handle mixed and incomplete data. It 
is based on reduct computation and uses the 
CSE algorithm for case selection [40]. The IFIS 
algorithm [53] is inspired in SOFSA and uses RST 
to carry out an intelligent preprocessing of the 
training set. However, computing all reducts is 
impracticable on high dimensionality training sets, 
making IFIS and SOFSA not adequate to deal 
with this kind of data. 

5 Numerical Experiments 

This section presents the experiments carried out 
to test the performance of the proposed 
algorithms. It covers the data sets and 
dissimilarity function used in our research, as well 
as the algorithms used in the comparisons and 
the statistical procedures applied to contrast the 
results. In addition, this section details the results 
and their analysis.  

5.1 Data Sets and Algorithms 

We used 25 datasets from the Machine Learning 
Repository of University of California at Irvine 
[54]. Their description is given in Table 1, 
considering the amount of attributes (Attributes), 
the amount of cases (Cases), the imbalance ratio 
(IR) and the class overlapping (CO).  

We use the HEOM dissimilarity proposed by 
Wilson and Martinez [2] (Equation 2), which is 
able to handle mixed attribute types as well as 
missing values.  

𝐻𝐸𝑂𝑀(𝑥, 𝑦) = √∑ 𝑑𝑎(𝑥𝑎 , 𝑦𝑎)
𝑚

𝑎=1
 

𝑑𝑎 = {

1
𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑥𝑎 , 𝑦𝑎)

𝑑𝑖𝑓𝑓(𝑥𝑎 , 𝑦𝑎)
 

𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑥, 𝑦) = {
0  if  𝑥 = 𝑦    
1 otherwise

 

𝑑𝑖𝑓𝑓(𝑥, 𝑦) = |𝑥 − 𝑦| 𝑚𝑎𝑥𝑎 − 𝑚𝑖𝑛𝑎⁄  

(2) 

The datasets are partitioned into subsets by 
using the 10 fold cross-validation procedure. Each 
dataset is partitioned into 10 equally sized 
subsets, preserving class distribution. In a 

repetitive process, nine subsets are used for 
training, and the remaining is used for testing. 
The final results of the algorithms are computed 
by averaging the results over the ten partitions. In 
addition, stochastic algorithms are applied three 
times, and the results are averaged. 

We carried out three experiments. First, we 
compare the performance of the proposed BMAS 
and GMAS algorithms for multiple attribute 
selection, with respect to computation of all 
reducts, using the LEX algorithm [16]. Then, we 
analyze the impact of the proposed algorithm for 
selecting attributes and cases in the performance 
of NN classifier, and we compare it with selecting 
only attributes or only cases.  

In the last experiment, we compare the 
proposed algorithms with respect to other 
proposals. We selected the algorithms proposed 
by Dasarathy (DS) [48], Derrac et al. (EIS-RFS) 
[7] and Villuendas et al. (IFIS) [53], considered as 
representative of the state of the art in selecting 
attributes and cases. Table 2 details the 
parameters used in the different algorithms.  

All experiments were carried out using a laptop 
with the Windows Seven operating system, 
running on an AMD Sempron SI-42 
microprocessor at 2.10 GHz, and with 2.75 GB of 
usable RAM. If an algorithm spends more than 24 
hours without obtaining a result, we abort its 
execution. These situations are marked in tables 
with the label “+24”.  

We use hypothesis testing to establish the 
existence or non-existence of significant 
differences in the performance of the compared 
algorithms. We used Wilcoxon’s test 
recommended by Demsar [55].  

Table 2. Parameters used by the algorithms 

Algorithms Parameters 

BMAS 
Food sources: 10, Evaluations: 1000, 
Onlooker Bees: 3, Tournament size: 
30%, Limit: 20  

GMAS 

Population: 10, Evaluations: 1000, 
Crossover probability: 1.0, Mutation 
probability: 0.05 per bit, Tournament 
size: 30% 

EIS-RFS 

Population: 10, Evaluations: 1000, 
Crossover probability: 1.0, Mutation 
probability: 0.05 per bit, alpha: 0.5, 
MaxGamma: 1.0, UpdateFS: 10, beta: 
0.75 
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We compute case retention (CR) and attribute 
retention (AR) as the quality measures of 
performance. Given that we are dealing with 
some imbalanced datasets, we used the Area 
under ROC curve (AUC) to evaluate classifier 
performance on testing sets. AUC is a quality 
measure widely used to evaluate classifiers in 
imbalanced domains [56]. To compute the AUC 
for a discrete classifier, a simple method is 
proposed in [57], based on a confusion matrix 
(Equation 3). 

𝐴𝑈𝐶(𝑥, 𝑦) =
1

|𝐾|
∑

𝑊𝑒𝑙𝑙𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑒𝑑(𝐾𝑖)

|𝐾𝑖|𝐾𝑖∈𝐾
 (3) 

where 𝑊𝑒𝑙𝑙𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑒𝑑(𝐾𝑖) returns the count of 

cases belonging to class 𝐾𝑖 that are 
correctly classified.  

5.2 BMAS vs. GMAS for Selecting Attributes  

Both genetic algorithms and artificial bee colony 
optimization are population–based metaheuristic 
procedures. However, they have different search 
strategies and they do exploration and 
exploitation of solutions in a different manner. In 
this section, we compare the performance of the 
BMAS and GMAS algorithms for attribute sets 
selection with respect to computation of all 
reducts using the LEX algorithm.  

Table 4a shows the AUC results achieved by 
the algorithms. For each algorithm, we compute 
the average AUC of all obtained attribute sets, 
and also the 10 fold cross validation average 
(best results in each datasets are highlighted in 
bold). We refer to computation of all reducts as 
LEX. Table 4b shows the results according to 
attribute retention (AR). The tables also show the 
number of times each algorithm achieves the best 
results. 

The results show the validity of the proposed 
GMAS algorithm for multiple attribute sets 
selection, as it obtains the best results according 
to AUC. The LEX algorithm was unable to obtain 
the reducts in some databases, spending more 
than 24 hours without obtaining any result. 

Table 3. Averaged AUC obtained by BMAS, GMAS 

and LEX 

Datasets LEX GMAS BMAS 

breast-cancer 0.548 0.557 0.565 

breast-w 0.943 0.939 0.937 

car 0.594 0.629 0.525 

colic 0.783 0.774 0.770 

credit-a 0.819 0.817 0.791 

credit-g 0.621 0.611 0.596 

cylinder +24 0.736 0.740 

dermatology +24 0.912 0.937 

diabetes 0.675 0.658 0.638 

heart-c 0.773 0.770 0.766 

heart-h 0.727 0.755 0.745 

hepatitis 0.637 0.669 0.618 

hypothyroid 0.552 0.564 0.547 

kr-vs-kp 0.924 0.943 0.771 

lymph 0.798 0.922 0.874 

mushroom 1.000 1.000 1.000 

page-blocks 0.773 0.779 0.142 

sick 0.786 0.828 0.672 

spambase +24 0.880 0.880 

splice +24 0.768 0.751 

tic-tac-toe 0.746 0.707 0.747 

vehicle 0.686 0.703 0.712 

vowel 0.995 0.978 0.991 

waveform +24 0.700 0.688 

wine 0.962 0.951 0.954 

Times Best 9 12 7 

Table 4a. Results of Wilcoxon’s test comparing 

attribute set selection algorithms according to 
AUC 

Pair w-l-t probability 

GMAS vs. LEX 10-9-1 0.235 

BMAS vs. LEX 5-14-1 0.049 

GMAS vs. BMAS 16-7-2 0.019 

Table 4b. Results of Wilcoxon’s test comparing 

attribute set selection algorithms according to AR 

Pair w-l-t probability 

GMAS vs. LEX 17-3-0 0.004 

BMAS vs. LEX 18-2-0 0.002 

GMAS vs. BMAS 9-16-0 0.187 
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However, the Wilcoxon’s test confirms that 
differences between GMAS and LEX in AUC are 
not significant at the 0.01 significance level.  

According to attribute retention, the BMAS 
algorithm obtains the best results. It outperforms 
other algorithms on most databases. Also, GMAS 
keeps less attributes than LEX. Moreover, the 
Wilcoxon’s test confirms that differences between 
BMAS and LEX (and also between GMAS and 
LEX) are significant at the 0.01 significance level. 
The test found no significant differences between 
GMAS and BMAS.  

5.3 IFIS-RST-GA in NN Preprocessing  

As the proposed GMAS algorithm obtains best 
results according to AUC, and also good results in 

attribute retention, we used it for selecting 
multiple attribute sets in the proposed algorithm 
for both case and attribute selection. In this 
section, we compare the performance of the 
proposed IFIS-RST-GA algorithm with respect to 
attribute selection (using GMAS), case selection 

Table 5. Averaged attribute retention (AR) 

obtained by BMAS, GMAS, and LEX 

Datasets LEX GMAS BMAS 

breast-cancer 0.867 0.943 0.851 

breast-w 1.000 0.712 0.704 

car 1.000 0.733 0.827 

colic 0.738 0.555 0.585 

credit-a 0.873 0.665 0.601 

credit-g 0.634 0.588 0.604 

cylinder  +24 0.531 0.523 

dermatology +24 0.659 0.651 

diabetes 1.000 0.650 0.640 

heart-c 0.831 0.648 0.625 

heart-h 0.908 0.655 0.637 

hepatitis 0.674 0.575 0.547 

hypothyroid 0.862 0.571 0.492 

kr-vs-kp 0.772 0.668 0.549 

lymph 0.475 0.724 0.692 

mushroom 0.300 0.576 0.536 

page-blocks 0.990 0.637 0.116 

sick 0.759 0.475 0.526 

spambase +24 0.525 0.526 

splice +24 0.516 0.522 

tic-tac-toe 0.889 0.659 0.682 

vehicle 0.933 0.591 0.588 

vowel 0.846 0.632 0.780 

waveform +24 0.483 0.512 

wine 0.717 0.614 0.583 

Times Best 2 9 14 

Table 6. Averaged AUC obtained by NN, GMAS, 

CP and IFIS-GA  

Datasets NN GMAS CP 
IFIS-
GA 

breast-
cancer 

0.565 0.557 0.569 0.586 

breast-w 0.943 0.939 0.965 0.950 

car 0.594 0.629 0.592 0.250 

colic 0.781 0.774 0.768 0.784 

credit-a 0.812 0.817 0.849 0.857 

credit-g 0.630 0.611 0.618 0.597 

cylinder  0.751 0.736 0.673 0.687 

dermatology 0.940 0.912 0.937 0.922 

diabetes 0.675 0.658 0.700 0.699 

heart-c 0.774 0.770 0.815 0.784 

heart-h 0.745 0.755 0.777 0.808 

hepatitis 0.632 0.669 0.681 0.608 

hypothyroid 0.552 0.564 0.495 0.484 

kr-vs-kp 0.901 0.943 0.849 0.923 

lymph 0.888 0.922 0.663 0.711 

mushroom 1.000 1.000 1.000 0.500 

page-blocks 0.773 0.779 0.728 0.735 

sick 0.783 0.828 0.732 0.761 

spambase 0.905 0.880 0.888 0.877 

splice 0.797 0.768 0.772 0.750 

tic-tac-toe 0.764 0.707 0.821 0.709 

vehicle 0.687 0.703 0.682 0.682 

vowel 0.995 0.978 0.974 0.932 

waveform 0.733 0.700 0.759 0.699 

wine 0.962 0.951 0.960 0.947 

Times Best 9 7 7 4 

Table 7. Results of Wilcoxon’s test comparing 

IFIS-GA vs. NN, GMAS and CP algorithms 
according to AUC  

Pair w-l-t probability 

IFIS-GA vs. NN 8-17-0 0.012 

IFIS-GA vs. GMAS 9-16-0 0.049 

IFIS-GA vs. CP 9-15-1 0.166 
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(using case preprocessing, CP, procedures of 
IFIS-GA) and with respect to NN classifier using 
all cases and attributes.  

Tables 6 and 8 show the results achieved by 
the algorithms according to AUC and attributes 
and cases reduction, respectively. In addition, 

Tables 7 and 9 detail the statistical comparison 
among the algorithms using Wilcoxon’s test. 

The proposed IFIS-GA obtains slightly worse 
performance than the original NN according to 
AUC and GMAS.  

However, the Wilcoxon’s test confirms that 
differences between IFIS-GA and other 

Table 8. Averaged attribute reduction (AR) and case 

reduction (CR) obtained by GMAS, CP and IFIS-GA  

Datasets 
AR CR 

GMAS IFIS-GA CP IFIS-GA 

breast-
cancer 

0.943 0.944 0.491 0.207 

breast-w 0.712 0.711 0.944 0.217 

car 0.733 0.700 0.750 0.040 

colic 0.555 0.555 0.784 0.297 

credit-a 0.665 0.660 0.813 0.353 

credit-g 0.588 0.570 0.708 0.346 

cylinder  0.531 0.538 0.775 0.373 

dermatology 0.659 0.659 0.942 0.384 

diabetes 0.650 0.625 0.705 0.338 

heart-c 0.648 0.646 0.760 0.337 

heart-h 0.655 0.654 0.778 0.344 

hepatitis 0.575 0.584 0.807 0.314 

hypothyroid 0.571 0.579 0.408 0.408 

kr-vs-kp 0.668 0.675 0.685 0.224 

lymph 0.724 0.728 0.777 0.342 

mushroom 0.576 0.277 1.000 0.032 

page-blocks 0.637 0.630 0.956 0.403 

sick 0.475 0.479 0.959 0.375 

spambase 0.525 0.691 0.908 0.630 

splice 0.516 0.518 0.688 0.347 

tic-tac-toe 0.659 0.700 0.164 0.061 

vehicle 0.591 0.539 0.696 0.334 

vowel 0.632 0.631 0.879 0.434 

waveform 0.483 0.440 0.990 0.376 

wine 0.614 0.623 0.735 0.388 

Times Best 13 14 1 25 

Table 9. Results of Wilcoxon’s test comparing IFIS-

GA vs. GMAS and CP algorithms according to AR 
and CR  

Pair w-l-t probability 

IFIS-GA vs. GMAS 12-11-2 0.761 

IFIS-GA vs. CP 24-0-1 0.000 

 

Table 10. Averaged AUC obtained by DS, EIS-RFS, 

IFIS and IFIS-GA 

Datasets  DS 
EIS-
RFS 

IFIS 
IFIS-
GA 

breast-
cancer 

 
0.572 0.538 0.604 0.586 

breast-w  0.947 0.950 0.956 0.950 

car  0.331 0.344 0.763 0.250 

colic  0.759 0.696 0.790 0.784 

credit-a  0.817 0.776 0.841 0.857 

credit-g  0.598 0.522 0.599 0.597 

cylinder   0.656 0.632 +24 0.687 

dermatology  0.896 0.901 +24 0.922 

diabetes  0.701 0.654 0.708 0.699 

heart-c  0.769 0.767 0.020 0.784 

heart-h  0.788 0.772 0.786 0.808 

hepatitis  0.696 0.661 0.719 0.608 

hypothyroid  +24 +24 0.469 0.484 

kr-vs-kp  +24 +24 0.902 0.923 

lymph  0.703 0.601 0.675 0.711 

mushroom  +24 +24 1.000 0.500 

page-blocks  +24 +24 0.746 0.735 

sick  +24 +24 0.712 0.761 

spambase  +24 +24 +24 0.877 

splice  +24 +24 +24 0.750 

tic-tac-toe  0.664 0.532 0.666 0.709 

vehicle  0.670 0.491 0.694 0.682 

vowel  0.946 0.198 0.889 0.932 

waveform  +24 +24 +24 0.699 

wine  0.912 0.848 0.935 0.947 

Times Best  1 0 9 13 

Table 11. Results of Wilcoxon’s test comparing 

IFIS-GA vs. DS, EIS-RFS and IFIS according 
to AUC  

Pair w-l-t probability 

IFIS-GA vs. DS 12-5-0 0.107 

IFIS-GA vs. EIS-RFS 14-2-1 0.008 

IFIS-GA vs. IFIS 10-10-0 0.467 
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algorithms in AUC are not significant at the 0.01 
significance level. 

According to attribute retention and case 
retention, the proposed IFIS-GA obtains the best 
results. The Wilcoxon’s test confirms that 
differences between IFIS-GA and case 

preprocessing algorithms are significant at the 
0.01 significance level. However, the differences 
between IFIS-GA and GMAS are not significant.  

Although IFIS-GA obtains slightly worse 
performance than the original NN according to 
AUC, the results show that using both attributes 
and cases in a unique procedure gives better 
results than selecting only cases or only 
attributes. 

5.4 IFIS-RST-GA vs. Other Algorithms  

In this section, we compared the performance of 
IFIS-GA with previously reported algorithms for 
selecting both cases and attributes. We selected 
the DS [48], EIS-RFS [7], and IFIS [53] 
algorithms, because they are representative of 
different approaches for hybrid selection.  

Tables 10, 12, and 14 show the averaged 
results of the algorithms according to AUC, 
attribute retention and case retention, 
respectively. The statistical comparisons of these 
experimental results are presented in Tables 11, 
13, and 15.  

The results show the validity of the proposed 
IFIS-GA algorithm for selecting cases and 
attributes, as it obtains the best results according 
to AUC.  

The IFIS algorithm was unable to obtain any 
result because the reduct computation in some 
databases takes more than 24 hours. However, 
the Wilcoxon’s test confirms that differences 
between IFIS-GA and IFIS in AUC are not 
significant at the 0.05 significance level 
(Table 11).  

The proposed algorithm also obtains the best 
results according to attribute retention (Table 12), 
keeping much less attributes than 
other algorithms. 

The Wilcoxon’s test (Table 13) confirms that 
differences between IFIS-GA and all other 
algorithms in attribute retention are significant at 
the 0.01 significance level. 

According to cases retention, the EIS-RFS 
algorithm obtains the best results, keeping less 
than 10% of cases in each dataset. The proposed 
IFIS-GA outperforms IFIS according to cases 
retention, but loses with respect to DS and EIS-
RFS. 

Table 12. Averaged attribute retention (AR) 

obtained by DS, EIS-RFS, IFIS and IFIS-GA 

Datasets DS 
EIS-
RFS 

IFIS 
IFIS-
GA 

breast-
cancer 

0.933 1.000 0.867 0.944 

breast-w 0.922 1.000 1.000 0.711 

car 1.000 1.000 1.000 0.700 

colic 0.955 1.000 0.732 0.555 

credit-a 0.940 1.000 0.873 0.660 

credit-g 0.950 1.000 0.625 0.570 

cylinder  0.974 0.988 +24 0.538 

dermatology 0.971 0.879 +24 0.659 

diabetes 0.630 1.000 1.000 0.625 

heart-c 0.939 1.000 1.000 0.646 

heart-h 0.939 1.000 0.908 0.654 

hepatitis 0.947 1.000 0.658 0.584 

hypothyroid +24 +24 0.862 0.579 

kr-vs-kp +24 +24 0.772 0.675 

lymph 0.956 1.000 0.483 0.728 

mushroom +24 +24 0.568 0.277 

page-blocks +24 +24 0.990 0.630 

sick +24 +24 0.759 0.479 

spambase +24 +24 +24 0.691 

splice +24 +24 +24 0.518 

tic-tac-toe 0.889 1.000 0.889 0.700 

vehicle 0.944 0.856 0.933 0.539 

vowel 0.931 1.000 0.846 0.631 

waveform +24 +24 +24 0.440 

wine 0.923 1.000 0.731 0.623 

Times Best 1 0 1 23 

Table 13. Results of Wilcoxon’s test comparing 

IFIS-GA vs. DS, EIS-RFS and IFIS algorithms 
according to attribute retention  

Pair w-l-t probability 

IFIS-GA vs. DS 16-1-0 0.000 

IFIS-GA vs. EIS-RFS 17-0-0 0.000 

IFIS-GA vs. IFIS 18-2-0 0.001 
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The results show good performance of the 
proposed IFIS-GA. It obtains better or equal 
results than previously reported algorithms. It also 
has a computational complexity lower than the 
other methods.  

6 Conclusions 

Preprocessing of a training set is very important 
for NN classifiers allowing them to obtain high 
quality classifiers by removing noisy or mislabeled 
cases and redundant or irrelevant attributes. 

This paper introduced a new attribute and 
case selection algorithm called IFIS-GA. The 
proposal is based on hybridizing Rough Set 
Theory and naturally inspired algorithms to obtain 
a reduced training set, in both attributes and 
cases. The performance of the IFIS-GA algorithm 
was tested over twenty five repository datasets. 
The experimental results show that the proposed 
Genetic Multiple Feature Selection algorithm is 
useful to obtain several attribute sets, leading the 
proposed IFIS-GA to obtain better results than 
previous algorithms.  

The experiments also show that using the 
classification quality measure of RST in the 
sorting and merging strategies of IFIS-GA leads 
to better results according to area under the ROC 
curve, compared with other algorithms. 
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