
Parallel Processing Strategy for Solving the Thermal-Mechanical
Coupled Problem Applied to a 4D System using the Finite Element

Method

Victor E. Cardoso-Nungaray, Miguel Vargas-Félix, and Salvador Botello-Rionda

Computational Sciences Department,
Centro de Investigación en Matemáticas A.C.,

Jalisco S/N, Col. Valenciana, 36240, Guanajuato, Gto.,
Mexico

{victorc, miguelvargas, botello}@cimat.mx

Abstract. We propose a high performance computing
strategy (HPC) to simulate the deformation of a solid
body through time as a consequence of the internal
forces provoked by its temperature change, using the
Finite Element Method (FEM). The program finds a
solution of a multi-physics problem, solving the heat
diffusion problem and the linear strain problem for
homogeneous solids at each time step, exchanging
information between both solutions to simulate the
material distortion. The HPC strategy approach
parallelizes vector and matrix operations as well as
system equation solvers. The tests were realized over
a model simulating a car braking system (a rotating disk
velocity decreased by friction). Then we performed a
quantitative analysis of stress, strain and temperature in
some points of the geometry, and a qualitative analysis
to show some visualizations of the simulation.

Keywords. Parallel computing, HPC, simulation, FEM,
finite element, thermal-mechanical coupled problem,
dynamic analysis, heat distortion.

Estrategia de procesamiento paralelo
para la solución del problema

térmico-mecánico acoplado aplicado a
un sistema 4D utilizando el método de

elemento finito

Resumen. Utilizando el Método de Elemento Finito
(FEM), se propone una estrategia de cómputo de
alto rendimiento (HPC) para simular dinámicamente
la deformación causada por las fuerzas internas de
un cuerpo sólido, como concecuencia del cambio de
su temperatura. El programa resuelve un problema
de multifı́sica, ya que da solución al problema de
difusión de calor y al problema de deformación lineal
de sólidos homogéneos para cada instánte de tiempo,
intercambiando información entre ambas soluciones
para simular la distorción del material. La estrategia de
HPC consiste en paralelizar las operaciones matriciales

y los algoritmos de solución de sistemas de ecuaciones.
Las pruebas se realizaron en un modelo computarizado
del sistema de frenado de un vehı́culo moderno
(disminuir la velocidad de rotación de un disco a través
de la fricción de un dispositivo de frenado). Después
se realizó un análisis cuantitativo del estrés, de la
deformación y de la temperatura en algunos puntos de
la geometrı́a, y un análisis cualitativo para mostrar las
visualizaciones más ilustrativas del fenómeno.

Palabras clave. Cómputo paralelo, simulación, MEF,
elemento finito, problema térmico/mecánico acoplado,
analı́sis dinámico, calor.

1 Introduction

The analysis of physical phenomena caused by
heat-induced stress is of special interest for the
metallurgic, building, automotive and electronic
industries. In this work, using numerical methods
and computing power, we successfully simulate
this process solving two differential equations, the
first to model the heat diffusion over the medium
and the second to model the deformation produced
by the internal forces. This paper proposes
a parallel strategy to solve the heat diffusion
problem as shown in [3] and the problem of
linear deformation of homogeneous solids as in
[2] using FEM. On the other hand, we use the
Finite Differences Method (FDM) to implement the
dynamic analysis with a scheme explained in [7].

The authors of [1] describe a non-transitive
solution scheme based on FEM to approach
the thermal distortion problem of strictly
cylindrical-shaped geometries. The parallel
strategy proposed here works for two dimensions
(2D) and three dimensions (3D), plus time (4D)
over any coherent geometry.

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 289-298
ISSN 1405-5546

The implementation design includes
cache-oblivious algorithms parallelized with
OpenMP in order to exploit the X86 computer
architecture, increasing the execution speed
almost to its double using four processors.

2 Solution of the Heat Diffusion
Problem

To determine the temperature of any point in the
solid body, we want to integrate the following
differential equation over the domain (the body):

∂
∂x

(
kx

∂φ
∂x

)
+ ∂

∂y

(
ky

∂φ
∂y

)
+ ∂

∂z

(
kz

∂φ
∂z

)
+Q = ρcp

∂φ
∂t , (1)

where φ = φ(x, y, z) is the temperature, kx, ky and
kz are the material thermal conductivity for each
component, cp is the specific heat, Q is the source
term, and ρ is the density of the body.

The flows over each component are denoted as

qx(x, y, z) = −kx
∂φ

∂x
,

qy(x, y, z) = −ky
∂φ

∂y
,

qz(x, y, z) = −kz
∂φ

∂z
.

(2)

To solve the equation we must define at least one
boundary condition, this can be

— Dirichlet: Set the temperature to a subdomain
(φ(x̂, ŷ, ẑ) = φ̂);

— Neumann: Set the flow to subdomain
(∆φ(x̂, ŷ, ẑ) = q̂).

where x̂ denotes a specific value for the variable
x, and in the same way we use the variables ŷ, ẑ
and q̂.

Then we must discretize the domain (this
process is called meshing), and the goal is to divide
a given geometry into polygons (triangles for 2D) or
polyhedrons (tetrahedrons for 3D). Each of these
divisions is known as an element, each element
is connected with the other elements through its
vertices or nodes as they are called in FEM.
In [10] it is explained how to use the Delauney
triangulation to generate a mesh.

There exist several types of elements according
to their geometry and the integration approximation
degree over the domain (using Gaussian
quadrature integration), Botello [3] presents a

detailed explanation of almost all of them. The
implementation developed in this work uses
tetrahedral elements with linear approximation.

For each element type, depending on its
geometry, a shape function Ni(ξ, η, ζ) is defined
for each node i in the normalized space and
its respective partial derivatives ∂Ni

∂ξ , ∂Ni

∂η and
∂Ni

∂ζ . Also, depending on the approximation degree
used, each type of elements has its own integration
points known as Gauss points. The authors of
[3] present a table of values for each element
configuration of Gauss points.

In the case of the tetrahedral element with linear
approximation, there is only one integration point
(np = 1), in which wp = 1, and its normalized
coordinates are

ξ =
1

4
, η =

1

4
and ζ =

1

4
, (3)

then, the shape functions are

N1(ξ, η, ζ) = 1− ξ − η − ζ, N3(ξ, η, ζ) = η,

N2(ξ, η, ζ) = ξ, N4(ξ, η, ζ) = ζ.
(4)

The following step is to create the stiffness matrix
K(e) ∈ Rne×ne , the mass matrix M(e) ∈ Rne×ne ,
and the flow vector f (e) ∈ Rne for each element:

K(e) =

np∑
p=1

BTDB|J(e)|wp, (5)

M(e) =

np∑
p=1

ρNTN|J(e)|wp, (6)

f (e) =

np∑
p=1

NTQ|J(e)|wp, (7)

where B is the strain matrix of the element, D is the
constitutive matrix, N is the shape function matrix
of the element evaluated at the point p, J(e) is the
Jacobian matrix of the element evaluated at the
point p, and wp is the multiplication of Gaussian

Susana
Cuadro de texto
290 Victor E. Cardoso-Nungaray, Miguel Vargas-Felix, and Salvador Botello-Rionda

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 289-298
ISSN 1405-5546

integration weights. These matrices are given by

B = [B1,B2, ...,Bne], (8)

D =

kx 0 0
0 ky 0
0 0 kz

 , (9)

N = [N1,N2, ...,Nne
], (10)

J(e) =


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

 , (11)

=



ne∑
i=1

∂Ni
∂ξ xi

ne∑
i=1

∂Ni
∂ξ yi

ne∑
i=1

∂Ni
∂ξ zi

ne∑
i=1

∂Ni
∂η xi

ne∑
i=1

∂Ni
∂η yi

ne∑
i=1

∂Ni
∂η zi

ne∑
i=1

∂Ni
∂ζ xi

ne∑
i=1

∂Ni
∂ζ yi

ne∑
i=1

∂Ni
∂ζ zi


,

where ne is the elemental number of nodes, xi, yi
and zi are the i-nodal coordinates, and Bi is the
strain matrix which is defined by

Bi =


∂Ni

∂x

∂Ni

∂y

∂Ni

∂z

 = (J(e))−1


∂Ni

∂ξ

∂Ni

∂η

∂Ni

∂ζ

 . (12)

When K(e),M(e) and f (e) are computed, they must
be assembled inside the global stiffness matrix
K ∈ Rn×n, the global mass matrix M ∈ Rn×n and
the global flow vector f ∈ Rn, respectively (n is
the number of nodes in the mesh). This process is
repeated over all the elements.

The assembly process of the elemental matrix
inside the global matrix is as simple as to add to
the global matrix the values of the elemental matrix
in the positions of the global matrix which refer to
the nodes that conform this particular element. For
example, if the element is formed by the nodes 3,
5, 8 and 9, then the elemental matrices are of 4×4,
and the value that is at K(e)

1,1 must be added to the
value of K3,3, while the K

(e)
2,4 must be added to the

K5,9. In the same way M and f are assembled.
Summarizing, we use the spatial information

(node coordinates) and the connectivity matrix
(whose nodes form each element) to assembly the
stiffness matrix K, the mass matrix M and the flow

vectors f to build the complete system which gives
solution to the differential equation 1; then, we use
FDM to integrate them over t as explained in [7]:

(M + α∆tK)φt+1 = (M− (1− α)∆tK)φt+

∆t(αf t+1 + (1− α)f t),
(13)

if f is constant through time, the system is reduced
to

(M + α∆tK)φt+1 = (M− (1− α)∆tK)φt + (∆t)f ,
(14)

where φ ∈ Rn is the vector with the node’s
temperatures, ∆t is the step size, and α ∈ [0, 1]
is a parameter to adjust the scheme. Afterwards, α
must be selected considering the following facts:

If α = 0, the system is a completely explicit
scheme and conditionally stable.

If α = 1, the system is a completely implicit
scheme and unconditionally stable.

If α = 0.5, the system is a semi-implicit
scheme.

3 Solution of the Linear Strain Problem
for Homogenous Solids

We want to determine the displacement field at any
domain point, this field is defined as

u =

u(x, y, z)
v(x, y, z)
w(x, y, z)

 . (15)

The stress ε(e)p at the Gauss point p of the element
is computed from the displacement field using the
following differential operator:

ε(e)p =


εx
εy
εz
γxy
γyz
γzx

 =



∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x



uv
w

 = BU(e),

(16)

Susana
Cuadro de texto
Parallel Processing Strategy for Solving the Thermal-Mechanical…291

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 289-298.
ISSN 1405-5546

where U(e) ∈ R3ne is the elemental displacement
vector, and B = [B1,B2, ...,Bne

] is the elemental
strain matrix, that are respectively defined as

U(e) =


u1

u2

...
une

 , where ui =

uivi
wi

 , (17)

Bj =



ne∑
i=1

∂Ni

∂x 0 0

0
ne∑
i=1

∂Ni

∂y 0

0 0
ne∑
i=1

∂Ni

∂z

ne∑
i=1

∂Ni

∂y

ne∑
i=1

∂Ni

∂x 0

0
ne∑
i=1

∂Ni

∂z

ne∑
i=1

∂Ni

∂y

ne∑
i=1

∂Ni

∂z 0
ne∑
i=1

∂Ni

∂x



. (18)

Then, from the stress and the constitutive equation
D we can compute the strain at the same
elemental Gauss point p.

σ
(e)
p =


σx
σy
σz
τxy
τyz
τzx

 = Dε(e)

= E

d


(1− ν) ν ν

ν (1− ν) ν
ν ν (1− ν) (

1
2
− 2ν

)(
1
2
− 2ν

)(
1
2
− 2ν

)


︸ ︷︷ ︸

D


εx
εy
εz
γxy
γyz
γzx



(19)

where d = (1 + ν)(1 − 2ν), and E and ν are
the Young and Poisson moduli of the material,
respectively.

The stress and strain of the element are
obtained by numerical integration using the Gauss
quadrature:

ε(e) =

np∑
p=1

ε(e)p |J|wp, σ(e) =

np∑
p=1

σ(e)
p |J|wp. (20)

The elemental stiffness matrix K(e) ∈ R3ne×3ne

is computed in the same way as in the heat
diffusion problem, considering that the elemental
strain matrix B and the constitutive matrix D are
different.

The elemental load vector f (e) is defined as

f (e) =

np∑
p=1

[BT ((σ(e))0−D(ε(e))0)−Hb]|J|wp, (21)

where (σ(e))0 and (ε(e))0 are the initial strain and
stress of the element, H ∈ R3ne is a matrix which
contains the shape functions in its diagonal and
b ∈ R3ne is the force vector denoted as

b =



(bx)1
(by)1
(bz)1

(bx)2
(by)2
(bz)2

...

(bx)ne

(by)ne

(bz)ne



. (22)

The assembly of the global stiffness matrix K ∈
R3n×3n, the global displacement vector U ∈ R3n,
and the global load vector f ∈ R3n follows the
same assembly process explained in the previous
section (heat diffusion problem), considering that
there are three variables per node instead of one;
the detailed steps are shown in [2].

Finally, we solve the system:

Ku = f (23)

to determine the displacements at each node and
then compute ε and σ at the elemental Gauss
points.

4 Internal Forces Produced by Thermal
Variation

If the temperature of a structure increases,
the material of such structure reacts with
displacements as it is explained in [6]. This
explanation is based on experimental evidence,

Susana
Cuadro de texto
292 Victor E. Cardoso-Nungaray, Miguel Vargas-Felix, and Salvador Botello-Rionda

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 289-298
ISSN 1405-5546

and the research community has adopted the
following model to describe the caused forces:

ε(e) =


εx
εy
εz
γxy
γxz
γyz

 =


ωx
ωy
ωz
0
0
0

 (24)

where ωx,ωy and ωz are the thermal distortion
constants for each component and dependent of
the material.

The forces are going to be recomputed at each
time step, serving as input to the software module
that solves the solid strain problem; this module
will compute the displacements, which will be used
to update the mesh geometry as the input to the
software module which solves the diffusion heat
problem in the next time step.

The program must end when all the time steps
(predefined before the start of the simulation) are
completed, see Fig 1.

read mesh();

t = 0;

while(t < time steps){
solve diffusion heat problem();

compute forces();

solve strain solid problem();

update mesh();

write results();

t = t+1;

}

Fig. 1. Pseudo-code

In the previous pseudo-code we give a detailed
description of the program, where the bold lines are
parallel implementations.

5 Parallel Processing

The HPC strategy approach parallelizes the
matrix-vector operations of the program (Algorithm
1) and uses Jacobi preconditioned conjugate
gradient, as it is shown in [8], to solve the equation
systems (Algorithm 2). Fig. 2 shows how many
times it takes for Algorithm 1 to compute a system
with more than 185 000 variables as a function of
the number of cores.

Fig. 2. Cores vs. Time processing for Algorithm 1

A core is a processing unit. A processor can
have one or more cores and its own RAM memory,
with intermediate cache memories which make
the data traffic between the processor and the
RAM easy. The management of memory and
thread creation to execute several simultaneous
processes is done using OpenMP which is an
API for shared memory parallel computing. In
[4], OpenMP is explained with examples and
applications.

In order to use the least possible amount
of memory, the Compression Storage by Rows
format (CSR) is used to house the sparse matrix,
explained in detail in [9]. The CSR format
maintains an array with indices and an array of
values for each row of the matrix, only the values
different from zero (nonzero values) are stored.
The indices of the rows correspond to the column
values and must be sorted in ascending mode. For
example, the matrix

A =


5.2 2.6 0 0 0 0
2.6 6.1 1.8 0 0 0
0 1.8 3.3 8.4 0 0
0 0 8.4 2.7 0 0
0 0 0 0 1.2 1.4
0 0 0 0 1.4 5.6

 ,

must be stored (in CRS format) as:

Susana
Cuadro de texto
Parallel Processing Strategy for Solving the Thermal-Mechanical…293

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 289-298
ISSN 1405-5546

A
(j)
0 ← 0, 1

A
(v)
0 ← 5.2, 2.6

A
(j)
1 ← 0, 1, 2

A
(v)
1 ← 2.6, 6.1, 1.8

A
(j)
2 ← 1, 2, 3

A
(v)
2 ← 1.8, 3.3, 8.4

A
(j)
3 ← 2, 3

A
(v)
3 ← 8.4, 2.7

A
(j)
4 ← 4, 5

A
(v)
4 ← 1.2, 1.4

A
(j)
5 ← 4, 5

A
(v)
5 ← 1.4, 5.6

,

where A
(j)
i is the value for the corresponding

columns at the row i of the matrix A, with the index
numeration starting from zero (like in C/C++), and
A

(v)
i being the vector of values of the ith row of the

same matrix.

In the previous example, we store only 38.88% of
the values of A, but this percentage is lower than
0.1% when we work with matrices generated with
FEM in 3D problems with more than 100 nodes.

Algorithm 1. Matrix-Vector multiplication (C code)

void multiply(csr∗ const M,

double∗ const vec,

double∗ out){
int i;

#pragma omp parallel for private(i)

for(i=0; i < M->rows; i++) {
int j, col;

out[i] = 0;

for(j=0; j < M->rows size[i]; j++){
col = M->index[i][j];

out[i] +=

M->values[i][j]*vec[col];

}
}

}

To compile Algorithm 1, we have to tell the
compiler that we use OpenMP; in the case of gcc,
we use the flag -fopenmp.

The argument *M is a pointer to a C structure
which implements the CSR format to store a sparse
matrix, whose code is shown in Fig. 3.

typedef struct {
int rows;

int ∗rows size;

int ∗∗index;
double ∗∗values;

}csr;

Fig. 3. Compress storage by rows (CSR) format C
implementation

where rows is the number of the matrix rows,
*rows size is an array of length equal to rows

which contains the number of columns for each
row, **index is a double array which contains
the indices of enabled columns of each row, and
**values store its values.

Algorithm 2. Preconditioned conjugate gradient

Given the matrix A, the initial vector xo and the
vector b of the equation system Ax = b,

Given a convergence tolerance ε.

g0 ← Ax0 − b

q0 ← diagonal(A)−1g0 (Jacobi)

p0 ← −q0 (Descent direction).

k ← 0 (Iteration counter).

While gk > ε

wk ← Apk (Parallel operation)

αk ←
gTk qk
pTkwk

xk+1 ← xk + αkpk

gk+1 ← gk + αkwk

qk+1 ← diagonal(A)−1gk+1

βk =
gTk+1qk+1

gTk qk

pk+1 ← −qk+1 + βkpk

k ← k + 1

End of iterations

Susana
Cuadro de texto
294 Victor E. Cardoso-Nungaray, Miguel Vargas-Felix, and Salvador Botello-Rionda

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 289-298
ISSN 1405-5546

The solver algorithm was designed to achieve
high performance on two levels. On the upper level,
the CSR format allows the parallelization of the
matrix-vector multiplication on several cores. On
the lower level, by allocating each row of the sparse
matrix in a compact way, the algorithm makes a
better use of the cache memory of each core,
increasing the cache hits and reducing the number
of accesses to the RAM (the access time to the
cache memory is at least an order of magnitude
faster than the access to the RAM), see [5].

6 Application Example

We model a conventional car braking system
formed by a disk which is slowed by friction when a
hydraulic device (mounted over the disk) presses
both sides of its geometry. To simulate friction,
we impose Dirichlet boundary conditions on the
equation system of the heat diffusion problem,
where it is supposed to be the contact. The
following function defines the temperature that
evaluates the friction:

φ(t) = λ log(1 + t) (25)

where λ is a constant dependent of the material.
This function is proposed only to show how the
method works, but the heat produced by the friction
between two materials doesn’t necessarily have
this behavior.

GiD is a software for pre- and post-processing
of FEM results (among other numerical
analyses), the user manual and the
reference manual can be downloaded from
www.gidhome.com/support/manuals.

Fig. 4 shows the real system and the
computerized model created with GiD to realize the
numeric simulation.

Generally, the disks of the real braking system
are made of cast iron, based on [11], we choose
the following parameters to approximate the same
behavior for the computer model:

kx = ky = kz = 83.2646
ωx = ωy = ωz = 4.0E− 05
cp = 1
Q = 460
ρ = 7870
λ = 50

The mounted device pads (braking pads) are made
of high iron content, but the device is made of

Fig. 4. Real braking system and its computer model

Fig. 5. Finite Element Mesh of the model

steel with low carbon content, and its properties are
approximately

kx = ky = kz = 45.0810
ωx = ωy = ωz = 1.5E− 06
cp = 1
Q = 490
ρ = 7850
λ = 50

The mesh which discretizes the braking device
has 51464 elements and 9612 nodes, while the
mesh of the disk has only 22844 elements and
8116 nodes. The device mesh must be finer than
the disk mesh in order to capture the temperature
variations in short spaces. Fig. 5 shows the mesh
of both geometries.

The computation was made with ∆t = 4.2E −
05 for 1000 time steps using α = 1 (parameter
to adjust the FDM schema), and then we
post-processed the results using GiD.

Susana
Cuadro de texto
Parallel Processing Strategy for Solving the Thermal-Mechanical…295

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 289-298
ISSN 1405-5546

Fig. 6. Simulation of step 80 with transparency

Fig. 6 shows the simulation at the time step 80
(0.00336 seconds) with transparency.

If we compare the visualizations (with and
without transparency) of the simulation step 1000
(0.042 seconds) in Fig. 7, we can see the
increment of the temperature.

The heat spreads through the disk from the
friction surface, and in the same way, the braking
device starts to heat, although with a lower
rate than the rotating disk, because the physical
properties of heat diffusion are different for each
material.

The distance (with respect to the center)
displaced by the edge of the disk caused by the
distortion of the solid, represents just the 4.081%
of the initial distance. Fig. 8 shows the initial and
the final geometry of the solid. The distortion is
evident in the middle of the brake device.

Using 4 cores working in parallel, we spend
1340.12 seconds to complete the process (1.34
seconds for each time step), while the solution
of the same problem using only one core takes
2380.35 seconds (2.38 seconds for each time step
approx.). We achieved the goal reducing the
computing time 56.29% of the serial version.

7 Conclusions

We show how to compute a solid distortion
simulation caused by temperature variation using
HPC techniques on two levels: a lower level using
cache-oblivious algorithms (or cache-transcendent
algorithms) and a high level using OpenMP to solve

Fig. 7. Simulation of step 1000 with and without
transparency

Fig. 8. Initial geometry (left) and final distortion (right)

Susana
Cuadro de texto
296 Victor E. Cardoso-Nungaray, Miguel Vargas-Felix, and Salvador Botello-Rionda

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 289-298
ISSN 1405-5546

the equation system taking advantage of several
cores.

The implementation solves the heat diffusion
problem and the solid strain problem separately,
but with feedback between them. We highlight the
processing time reduction of the solution with an
application example.

References

1. Alizadeh, H. (2010). Simulation of Heat-Induced
Elastic Deformation of Cylindrical-Shaped Bodies.
Master’s thesis, Friedrich-Alexander-Universitat
Erlangen-Nurnberg.

2. Botello, S., Esqueda, H., Gómez, F., Moreles, M.,
& Oñate, E. (2004). Módulo de aplicaciones del
método de los elementos finitos MEFI 1.0, chapter
Manual Teórico. CIMAT & CIMNE, 6–69.

3. Botello, S., Moreles, M., & Oñate, E. (2009).
Módulo de aplicaciones del método de los
elementos finitos para resolver la ecuación de
Poisson MEFIPOIS 1.0, chapter Manual Teórico.
CIMAT & CIMNE, 6–69.

4. Chapman, B., Jost, G., & Van Der Pas, A.
(2008). Using OpenMP. Portable Shared Memory
Parallel Programming. Massachusetts Institute of
Technology.

5. Drepper, U. (2007). What every programmer should
know about memory.

6. Krysl, P. (2010). Thermal and Stress Analysis
with the Finite Element Method, chapter Galerkin
Formulation for Elastodynamics. Pressure Cooker
Press, 292–299.

7. Lewis, R., Nithiarasu, P., & Seetharamu, K.
(2004). Fundamentals of the Finite Element Method
for Heat and Fluid Flow, chapter Transient Heat
Conduction Analysis. John Wiley & Sons, 150–172.

8. Nocedal, J. & Wright, S. (2006). Numerical
Optimization, Second Edition, chapter Conjugate
Gradient Methods. Springer, 118–120.

9. Saad, Y. (2003). Iterative methods for sparse linear
systems, Second Edition, chapter Sparse Matrices.
SIAM, 92–94.

10. Siu-Wing, C., Krishna, D., & Shewchuk, J.
(2013). Delaunay Mesh Generation, chapter
Three-dimensional Delaunay Triangulations.
Chapman & Hall/CRC, 85–102.

11. Wilson, J. (2007). Thermal diffusivity.
http://www.electronics-cooling.com/2007/

08/thermal-diffusivity/.

Victor E. Cardoso-Nungaray
graduated from the Instituo
Tecnológico y de Estudios
Superiores de Monterrey
as Information Technology
Engineer, he obtained a
Master’s degree in Information
Technology from the same

University and an M.Sc. in Industrial Mathematics
and Computational Sciences from the Centro de
Investigación en Matemáticas A.C. He is currently
enrolled in the Ph.D. Computer Sciences program
of the CIMAT. His work is related to numerical
methods, discrete element, finite element, PDE’s
solutions, parallel programming and optimization.

Miguel Vargas-Félix
graduated from the Centro de
Investigación en Matemáticas,
A.C. and obtained a M.Sc. in
Industrial Mathematics and
Computational Sciences. He is
currently enrolled in the Ph.D.
Computer Sciences CIMAT

program. He is the main developer of FEMT, a
library to solve large systems in parallel using FEM.
His work is related to numerical linear algebra for
sparse matrices, finite element, isogeometric
analysis, partial differential equations and parallel
computing.

Susana
Cuadro de texto
Parallel Processing Strategy for Solving the Thermal-Mechanical…297

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 289-298
ISSN 1405-5546

Salvador Botello-Rionda
graduated from Universidad de
Guanajuato as Civil Engineer
and obtained a Master’s degree
in Engineering from the Instituo
Tecnológico y de Estudios
Superiores de Monterrey,
afterwards he received his Ph.D.

from the Universitat Politécnica de Catalunya in the
same field. His main interests are solid mechanics

and flows, applications of the Finite Element
Method, multiobjective optimization and image
processing. He is author of 33 international journal
papers, 8 national journal papers, 19 books and 15
books chapters, and is a member of the National
System of Researches of Mexico (Level II). Also,
he was editor of 6 congress memories.

Article received on 10/02/2013; accepted on 20/07/2013.

Susana
Cuadro de texto
298 Victor E. Cardoso-Nungaray, Miguel Vargas-Felix, and Salvador Botello-Rionda

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 289-298
ISSN 1405-5546

