
Computación y Sistemas Vol. 17 No.3, 2013 pp. 365-380
ISSN 1405-5546

GPU Generation of Large Varied Animated Crowds

Isaac Rudomin
1
, Benjamín Hernández

1,2
, Oriam de Gyves

3
, Leonel Toledo

3
,

Ivan Rivalcoba
3
, and Sergio Ruiz

2

1
 Barcelona Supercomputing Center,

Spain

2
 Tecnológico de Monterrey, Campus Ciudad de México,

Mexico

3
 Tecnológico de Monterrey, Campus Estado de México,

Mexico

isaac.rudomin, benjamin.hernandez@bsc.es,

A00465730, ltoledo, A01167172, sergio.ruiz.loza@itesm.mx

Abstract. We discuss several steps in the process of

simulating and visualizing large and varied crowds in
real time for consumer-level computers and graphic
cards (GPUs). Animating varied crowds using a
diversity of models and animations (assets) is complex
and costly. One has to use models that are expensive if
bought, take a long time to model, and consume too
much memory and computing resources. We discuss
methods for simulating, generating, animating and
rendering crowds of varied aspect and a diversity of
behaviors. Efficient simulations run in low cost systems
because we use the power of modern programmable
GPUs. One can apply similar technology using GPU
clusters and HPC for large scale problems. Such
systems scale up almost linearly by using multiple
nodes. One must combine parallel simulation and
parallel rendering in the cluster with interaction and final
rendering in lighter clients. However, in view of the
latest developments such as the new family of mobile
multicore chipsets and GPU-based cloud gaming
platforms, the pieces are almost there for this kind of
architecture to work.

Keywords. Simulation, real-time crowds, rendering and

animation.

Generación de grandes multitudes
animadas y variadas en el GPU

Resumen. En el artículo se presentan los pasos para

simular y visualizar multitudes masivas variadas y
animadas en tiempo real, usando el procesador gráfico
(GPU). En particular, se discutirán los métodos para la
simulación de comportamientos, nivel de detalle,
animación y generación de personajes variados. Dada

la arquitectura de estas técnicas, se pueden extender a
clusters de GPU o en sistemas de cómputo de alto
rendimiento (HPC). Estos sistemas son escalables casi
linealmente si se incrementa el uso de nodos, sin
embargo se deben combinar técnicas de simulación y
rendering paralelos. Sin embargo, dados los avances
tecnológicos recientes como plataformas de cloud
gaming, estas técnicas están listas para funcionar en
dichas plataformas.

Palabras clave. Generación, simulación, animación,

visualización, multitudes, tiempo real.

1 Introduction

The development of graphical models and the
incorporation of intelligent behavior made it
possible to create virtual environments with many
intelligent characters interacting. The use of these
types of models can be seen in many

applications. One example is videogames—where

one can design more challenging games with
many characters of different physical appearance
and each with its own behavior. Another area
where these models can be used are in the
design of strategies for people entering or leaving

an environment or structure—a stadium, an

auditorium, an entertainment center, even in case
of emergency. Also, they are used for simulation
of vehicular traffic for construction of the new
roads taking into account behavior of the drivers.

366 Isaac Rudomin, Benjamín Hernández, Oriam de Gyves…

Computación y Sistemas Vol. 17 No.3, 2013 pp.365-380
ISSN 1405-5546

Similar methods can be applied to other social or
health applications involving agents (epidemics,
infection) and for financial agent based
applications.

The problem is that crowd simulations need a
scalable multi-agent system architecture that
simultaneously supports the simulation of
hundreds of thousands (or millions) of complex
autonomous agents and the rendering of all those
agents as diverse, animated characters, even in
crowded scenes, yet achieving good frame rates.

Today there is no simple process for
simulating and visualizing large and varied
crowds in real time for consumer-level computers.
Animating varied crowds using a diversity of
models and animations (assets) is complex and
costly. One would require models that are
expensive if bought, take a long time to model,
and anyway consume way too much in memory
and computing resources. As solutions to these
problems, we have developed methods for
simulating and animating crowds of varied aspect
and a diversity of behaviors. They can be used for
simulations for PCs with consumer level graphic
cards (GPUs). Efficient simulations run in low cost
systems because we use the power of modern
programmable GPUs.

One can apply similar technology using GPU
clusters and HPC for large scale problems. Such
systems scale up almost linearly by using multiple
GPUs. In what follows we review our methods for
crowd simulation, level of detail rendering,
generation and animation of varied character
families, and what we do in the way of
parallelizing for larger systems.

2 Simulation and Collision Avoidance

A key component in every crowd simulation is the
synthesis of behavior; for a crowd simulation will
be accurate in the measure it is able to faithfully
emulate both individual and group human
behavior. Collision avoidance refers to the
anticipated movements with which an agent
avoids colliding with other agents present in their
environment.

There is extensive research focusing on
collision avoidance behaviors for virtual agents.
The main methods are:

 “Flocking”, by Craig Reynods [1], uses three
rules: separation alignment and cohesion to
steer the agents. This can be done using
forces for each rule and summing the effects.

 “Social forces”, by Dirk Helbing [2, 3], which is
very similar to the previous method in that it
uses forces, including forces for avoiding
other pedestrians, others for avoiding walls,
etc.

 Reciprocal Velocity Obstacles [4] applies
ideas from robotics to crowd simulations: it
finds velocities that will cause collisions and
avoids them. Planning takes place in velocity
space.

All these methods require data from the
nearest neighbors of each agent. Exhaustive
proximity queries can be prohibitive as the
number of agents increases, since the naïve
methods are O(n

2
). Researchers [5, 6] have

explored several techniques and data structures
to lower the complexity of proximity queries,
which effectively reduce this to O(nlogn).

Fig. 1. Using world space maps to encode forces that

attract or repel agents from each other

GPU Generation of Large Varied Animated Crowds 367

Computación y Sistemas Vol. 17 No.3, 2013 pp. 365-380
ISSN 1405-5546

2.1 Encoding Neighbor Information on World
Maps

Another way to lower the complexity of
simulations, however, is to use a world-space
map to encode the information in the environment
rather than the agents and thereby reduce the
problem of determining neighbor contributions to
O(n). Some methods [7, 8] encode the
environment with information guiding the agents,

but then treat these agents as simple particles
following the forces encoded in the environment.

We explored a more general method in [9].
Here the agents encode (paint) information in
world space images representing the environment
(as can be seen in Fig. 1). The agents, however,
use this information exerting their own goals and
perceptions since behaviors are specified as state
machines (also stored as images). The latter and
world and agent space images are used to
determine collision avoidance and other steering
behavior. In particular, attraction and repulsion
forces in Fig. 1 are added to achieve behavior
similar to that achieved by Reynolds and Helbing.

Other images in agent space codify agent
state. In a simplified version (Fig. 2 and 3) we use
a Label map as the single world space map. We
codify state and position in an agent map. Then,
given state and position, and by consulting color

Fig. 2. In a simplified version of the method, three

textures are used. A FSM texture, a world texture
specifying labels and an agent texture where state and
position are encoded

Fig. 3. Simulation process consists of consulting the
three textures from Fig. 1

Fig. 4. XML scripts are translated to GLSL code for

simulator and auxiliary maps; it is a more complex

scenario

368 Isaac Rudomin, Benjamín Hernández, Oriam de Gyves…

Computación y Sistemas Vol. 17 No.3, 2013 pp.365-380
ISSN 1405-5546

in the appropriate position in the label map, we
determine new state and positions from the FSM
map.

In general, we can use several auxiliary
images in world space to codify obstacles,
heights, gradients. This became rather
cumbersome, so in latter work, and for easier
authoring, maps and finite state machines were
codified in XML and translated to GLSL shaders
(Fig. 4 top). This allowed us to generate more
complex scenarios (Fig. 4 bottom).

2.2 VL Path Planning

Realistic crowd simulations face several problems
in order to achieve more accurate results; one
problem is collision avoidance. We have studied a
parallel technique using the graphics hardware to
avoid all collisions between agents by efficiently
finding the nearest neighbors in a crowd
simulation and calculating the response.

It is basically an image-based technique
similar to the one used in the previous section,
but here, instead of painting and adding different
forces, every agent paints an area of a given
radius that codifies the distance to the agent.
When these areas overlap, the distance to the
closest agent is kept. As a result, this texture is a

truncated Voronoi Diagram (Fig. 5 top left) which
other agents can read to move through the
environment (Fig. 5 top right). A truncated
Voronoi Diagram can be described as follows.
Given a set of S seed points, divide a plane into
|S| tiles such that all points ‘p’ inside a tile are
closer to a particular seed than to any other seed
and are within a predefined radius, called tile
radius ‘r’, per seed, using the seed coordinates as
a center.

Like other similar techniques that use painting
of influence areas, this technique can achieve
simulations with thousands of agents in real-time
(Fig. 5 bottom). But in contrast to methods that
codify forces, our method in the previous section,
agents do not get stuck.

To detect neighbors using the truncated
Voronoi diagrams, we take samples in the local
vicinity of the agents. To sample its
neighborhood, an agent ‘a’ performs a ray
marching technique over the diagram to sense
the viewing area in the direction of its movement.
Fig. 5 (top right) shows a graphic representation
of the ray marching process. The circles
represent the agents in the simulation; the purple
agent is the one currently looking for its nearest
neighbors and the green agents are the nearest
neighbors. The red agents are not considered by
the purple agent because they are currently out of
its viewing area.

This method is capable of simulating
thousands of autonomous agents at interactive
frame rates while performing accurate collision
avoidance. It is important to note that the
proximity queries are performed in the graphics
hardware, which allows us to implement the
collision avoidance also in the graphics card.

Following the previous idea, we have
developed other two techniques for proximity
queries that are suitable for simulating thousands
of agents in real time. These techniques are
gather-based and scatter-based approaches.
For the scatter technique, we follow the idea that
an agent should be able to find its closest
neighbors with only one texture fetch. To
accomplish this, each agent paints in an
environment map an area where it is visible. Each
pixel in the environment map holds a list with the
IDs of neighbor agents. We use a Layered frame
buffer (LFB) to generate the nearest neighbor lists

Fig. 5. Voronoi-like method for collision avoidance
(top) and Voronoi + RVO example (bottom)

GPU Generation of Large Varied Animated Crowds 369

Computación y Sistemas Vol. 17 No.3, 2013 pp. 365-380
ISSN 1405-5546

and render the environment map for the scatter
technique (Fig. 6a). LFBs are commonly used for
Order Independent Transparency (OIT) and to our
knowledge, have not been used for proximity
queries or behaviors.

Contrary to the scatter technique, in the gather
technique each agent only writes one pixel in the
environment map. To find their neighbors, every
agent scans over an area in the environment
map. The purpose of scanning an area is for each
agent to generate its own neighbor list. As in the
previous technique, every agent paints in a
texture its ID, but only on a single texture
element. This eliminates the need to create a
LFB. Then, every agent reads an area searching
for its nearest neighbors. Fig. 6b shows the main
difference between the environment maps
created.

As the first method presented in this section,
these two techniques are capable of simulating
thousands of autonomous agents at interactive
frame rates (Fig. 6c).

2.3 Data Driven Simulation

A recent trend is to try to validate models with real
world observations, rather than by reproducing
phenomena that seem to be right. Even Helbing
et al. [10] have recently stated that force models,
while successful, are not consistent with empirical
observations and are hard to calibrate. They
suggest a cognitive science approach based on
behavioral heuristics. They develop a new model
where guided by visual information, namely the
distance of obstructions in candidate lines of
sight, pedestrians apply two simple cognitive
procedures to adapt their walking speeds and
directions.

Others have done this perceptual or synthetic
vision based steering [11], however, in most of
these approaches each agent needs its own
memory, and so these methods fail to scale up to
several hundreds of thousands of agents and do it
efficiently.

Our work in [9] using the world space maps
performs efficient collision avoidance operations
in the spirit of synthetic vision even for millions of
agents, if instead of painting round areas, we
paint areas with the shape of the appropriate
perception cones. However, we have yet to

a)

b)

c)

Fig. 6. a) Layered frame buffer used to generate a list of

nearest neighbors. b) Comparison between the
environment maps generated for scatter (left) and gather
(right). c) Circle-4096 test. Agents initially in circle and
have to get to their diametrically opposite position

370 Isaac Rudomin, Benjamín Hernández, Oriam de Gyves…

Computación y Sistemas Vol. 17 No.3, 2013 pp.365-380
ISSN 1405-5546

validate this model with actual real-world
behavior. Data driven simulation is fundamental
for validating the behavior models of the agents.
Currently, we are working in this. We have
already coupled our simulation module with the
vision module. The image involving the nucleus is
first transformed from RGB color space to
grayscale, then it is equalized and a multi-
resolution histogram of SLBP [27] (semantic local
binary patterns) is extracted to form a feature
vector, then this vector is fed to a trained support
vector machine (Fig. 7 top). The result is to label
each image as having a head or not having a
head (Fig. 7 center). Each detected head is
tracked over every frame by a pyramidal version
of the Lucas-Kanade tracker. Using these points
and the simulation stage, we combine steering
models with actual behavior (Fig. 7 bottom).

3 Navigation

Closely related to collision avoidance, navigation
in a crowd simulation context refers to the ability
of agents to effectively avoid collisions against

objects within a scene while moving toward their
goal. These obstacles may or may not move, but
the criterion that classifies them as objects within
a scene is the fact that obstacles do not avoid
collisions: they do not present reactive behavior.

There is a phenomenon occurring when a
crowd is observed; at near distances individual
behavior arises while at far distances group
human behavior can be noticed. This assumption
may not imply that two types of simulations are
required but describes human behavior when
observed from different perspectives, as an
accurate simulation would. Referring to Zhou et
al. [12], this phenomenon can be interpreted on
two levels:

 Micro-level: when experienced from a close
distance, a crowd appears as a small-sized
crowd regardless of its actual size, revealing
fine entity traits.

 Macro-level: when viewed as a whole, from
far distance, a crowd presents coarse, fluid-
like traits.

Nevertheless, in practice, there are crowd
navigation techniques which perform well at either
micro- or macro-level. For example, classic path
finding algorithms such as A* or Dijkstra’s [13]
has been used extensively at micro-scale level
when the number of agents is low (in a number
that a CPU can handle) and obstacles do not
move. For a macro-scale level simulation, with
higher agent numbers and the option of moving
obstacles, several techniques model and solve
the agent navigation problem, in the form of grid
partitioning, formation and navigable areas or
using video sequences as input.

Grid partitioning methods consist in dividing
the navigable space into cells where according to
different rules or mathematical models, agents
are able to find their path to a given goal even if
objects are present in the environment. An
approach to grid partitioning is the use of cellular
automata [14, 15, 16]. Cellular automata solve the
collision avoidance and navigation problems with
one algorithm, but it presents a lack of separation
and control for individuals as they must follow the
majority flow and the direction toward an exit. A
navigation method similar to cellular automata –in
the sense of grid partitioning of the navigable
space– is the one based on vector fields; such

Fig. 7. Vision module combined with simulation
(avatars in red, simulated agents in black)

GPU Generation of Large Varied Animated Crowds 371

Computación y Sistemas Vol. 17 No.3, 2013 pp. 365-380
ISSN 1405-5546

method is able to produce a character motion flow
for one agent which is responsive to user
input [17].

Another option for navigation consists in
defining navigable areas instead of a well-
structured grid. Pettré et al. [18] opt for
decomposing the navigable area into overlapping
cylindrical cells with the aid of a Voronoi Diagram
that will generate a Navigation Graph which
provides path variety and batch processing for
groups of pedestrians. It does not, however,
support dynamic scenarios.

Video sequences also have been used as
input to generate the motion of a virtual crowd
[19]. It turns out that since video sequences
capture reality, it is expected that the agents’
navigation is shaped by the physical
characteristics of the captured scenario.

3.1 MDP for Planning

As it was mentioned earlier, navigation
techniques can simulate crowds at micro- or
macro-level, so our approach, on which we are
working now, will unify these levels of abstraction,
thus agents will be able to take its own decisions
which may affect the whole crowd, while group
dynamics may affect the individual. Our first
observation is that an agent, while moving
through an environment, performs a sequential
decision problem which when solved has to find
its path from an origin to a destination following a
set of additive rewards; this is usually called
Markovian Decision Process (MDP). A layered-
based method which solves a semi-MDP [20] may
turn impractical, since it requires different layers
encoding extra information of the navigable
space. In cases where obstacles or other kind of
objects are dynamically introduced, a new layer
must be added which increments complexity to
the whole solution. Another problem with the MDP
formalism is that the state space grows
exponentially with the number of domain
variables, and its inference methods grow in the
number of actions. Thus, in large problems,
MDPs become impractical and inefficient.

In our case we have implemented a layer
independent GPU-based approach. It uses
MDPs, and an MDP is running as a preprocess to
calculate multiple free-of-collision trajectories

which agents in a crowd will follow (Fig. 8 top).
Then on run-time, the MDP is adapted within a
given radius, using a spatial kernel which
encodes route alternatives inside a given radius,
thus characters are able to avoid collisions
against other agents or moving objects (Fig. 8
bottom).

Table 1 shows performance results obtained
from calculating MDP in GPU and CPU for the
test scenario shown in Fig. 8 top. In the case of
the CPU-based MDP, it used only a single thread
process and after 25 minutes the program
calculated only 10 of 184 iterations needed to
reach the optimal policy.

3.1 Lattice-Boltzmann Crowd Flow

For extreme densities of agents, intersection

Fig. 8. MDP for crowd navigation and collision
avoidance

Table 1. GPU- and CPU-based MDP comparison

System Iterations Optimal Policy

Nvidia Geforce
GT445M

184 4.1s

Inter Core i7 1.87
GHz, single

thread
10

1,500s After 10
iterations

372 Isaac Rudomin, Benjamín Hernández, Oriam de Gyves…

Computación y Sistemas Vol. 17 No.3, 2013 pp.365-380
ISSN 1405-5546

computation becomes expensive or our adaptive
MDP approach might have unnecessary
adaptations since different agents might be in the
same cell. At this macro-simulation level, crowds
mostly follow a general flow; only certain agents
have to be simulated as such and most crowd
movement can be simulated as fluids. We can
use Lattice Boltzmann Method (LBM), which is a
method for solving the Navier-Stokes equations
using Lattice Gas Cellular Automata. It consists of
discretizing the dominion into a set of connected
sites (the lattice or mesh), with state variables
defined at each site and update rules, based on
local and neighbor information (collision and
streaming). The generic LBM simulation algorithm
follows the following steps:

 Each particle travels in a discrete direction.
This is the discretization of velocity space.

 At each time step, the particles move along
their assigned directions toward the next
lattice point: they are streamed (Fig. 9 top).

 If more than one of these particles arrive
simultaneously at the same lattice point, a
collision rule is applied, redistributing the
particles such that the conservation laws
(Navier-Stokes for mass and momentum) are
satisfied (Fig. 9 bottom).

We implemented LBM in CUDA as Single
Component Single Phase (SCSP):

foreach time step do
CalculateMacroscopicVariables()
DetermineNewEquilibriumDF()
Collide()
ProcessBoundaries()
Stream()

End

Readers can find a detailed explanation of the
algorithm in [21]. Implementation results of the
algorithm for a Lattice of 1024x1024 cells the
iteration time was 90.3 ms in a Nvidia Geforce
GTX 560m GPU.

4 Level of Detail

Rendering many characters is a must for crowds.
In what follows we explore several methods for
level of detail that allow rendering crowds with
many characters.

4.1 Uniform Crowd Impostor LOD

Impostor-based LOD in the GPU and instancing
allows real time rendering of large crowds of

Fig. 9. Lattice-Boltzmann operations: stream (top),
collision (bottom)

Fig. 10. LBM simulation without (top) and with (bottom)
solid boundaries

GPU Generation of Large Varied Animated Crowds 373

Computación y Sistemas Vol. 17 No.3, 2013 pp. 365-380
ISSN 1405-5546

similar characters. In Fig. 11 one can see a
texture with images the same character in several
poses and different camera angles. This is the
impostor texture. When the character is far
enough from the camera, instead of displaying the
character’s geometry, we display the image of the
character closest in pose and camera angle.

4.2 Varied crowd discrete LOD

For varied crowd visualization, using impostors is
too expensive, thus we do discrete LOD and View
Frustum Culling in the GPU. In Fig. 12, this
method is outlined. First, all necessary
initializations are performed on the CPU. These

include loading information stored on disk (e.g.,
animation frames and polygonal meshes) and
information generated as a preprocess (e.g.,
character positions) or in runtime (e.g., camera
parameter updates).

This information is used on the GPU to
calculate the characters’ new positions, do view
frustum culling, and assign a specific level of
detail (LOD) for each character and for level of
detail sorting and character rendering. The
following is a brief description of each stage.

Populating the Virtual Environment and
Behavior. In these stages we specify the initial
positions of all the characters, how they will move
through the virtual environment and how they will
interact with each other. The result is a set of
updated character positions.

View Frustum Culling and Level of Detail
Assignation. In this stage we use the characters’
positions to identify which characters will be
culled. Additionally, we assign a proper LOD
identifier to the characters’ positions inside the
view frustum according to their distance to the
camera.

Level of Detail Sorting. The output of the View
Frustum Culling and Level of Detail Assignation
stage is a mixture of positions with different
LODs. In this stage we sort each position
according to its LOD identifier into appropriate

Fig. 11. Impostor images and process

Fig. 12. Discrete LOD in GPU

374 Isaac Rudomin, Benjamín Hernández, Oriam de Gyves…

Computación y Sistemas Vol. 17 No.3, 2013 pp.365-380
ISSN 1405-5546

buffers such that all the characters’ positions in a
buffer have the same level of detail.

Animation and Draw Instanced. In this stage
we will use each sorted buffer to draw the
appropriate LOD character mesh using
instancing. Instancing allows us to translate the
characters across the virtual environment and add
visual and geometrical variety to the individuals
that are part of the crowd.

4.3 Point-based LOD

Applying the GPU for discrete LOD and view
frustum culling calculation results in a very small
time penalty (~ 0.39 ms) [22]. Nevertheless, this
approach is limited for the rendering step.
Drawing the characters using polygons as their
geometrical representation takes a considerable
amount of resources in modern GPUs. It has
been shown [23] that alternative rendering
methods, such as hierarchical point-based
methods (Fig. 13 top), improve rendering
performance.

Our point-based LOD approach consists in
using a point-based system combined with a
hybrid hierarchical skeleton structure that allow us
to create varied animated crowds, as well as to
reduce rendering costs. The system takes as
input any given model vertex, normal and UV
parameterization to generate a hierarchical
skeleton structure based on octrees (Fig. 13
bottom). To create that skeleton, containing
volumes are calculated for every limb in the
model. This way data from individual parts of the
model are stored and can be used for rendering
and animation. For rendering, each limb’s data is
reduced to create a point sample with fewer
points; this was done on four levels, the last two
levels have a single point that represents the
whole limb and a single point for the whole
character, respectively.

For animation, the process is the same, as the
animation of the joints is applied to vertices or
points on the appropriate limbs at any level of the
associated octree, making it possible to animate
any given character. For lower levels of detail,
animations can be reduced by only the most
important limbs, such as the whole legs or arms.

The system is divided into three stages. The
first stage holds the highest level of detail: models

are fully rendered using the complete geometry,
as well as tessellation and displacement
mappings for better rendering results. This is
expensive and resource-consuming, so only very
few models are selected within the crowd to be
rendered at the first stage. The second stage is
the result of using the octree structure: this
process gives as a result different point samples
for each model. In the last stage the world is
divided in tiles and a quadtree is made with these
tiles as leaves: agents in tiles or their quadtree
parents that are far away from viewer are blended
together to reduce the required rendering
resources. Animation and collision avoidance
computations can be skipped in these tiles.

5 Texture-Based Characters

Current character modeling and animation
techniques require a great amount of work and
time. If we want to model and animate each
character of a crowd made of hundreds of
characters, the artist must design or scan each
model, rig each character, specify the source of
the animation for each character (motion capture,
forward kinematics, inverse kinematics, video
sequences, among others) and render each
character. We propose a better approach and
have developed texture-based methods for
modeling, rigging, skinning and animating varied
crowds. These methods require the generation of
a family of characters which has the same UV
parameterization, and then a small set of textures
is needed for rigging, skinning and animating a
crowd made of thousands of characters.

5.1 Generation of Diversity

As crowds increase in complexity and size, more
assets such as meshes and textures need to be
designed and created; body templates alleviate
the need to create more assets. Our approach
consist in generation of crowds of characters
visually and geometrically different using body-
part templates which are combined together.
These body-part templates or basis meshes
represent a specific part of a body such as the
head, torso, arms, or legs; these basis meshes
and their textures were extracted from a character

GPU Generation of Large Varied Animated Crowds 375

Computación y Sistemas Vol. 17 No.3, 2013 pp. 365-380
ISSN 1405-5546

data set. Then by combining the basis meshes
and their textures, we generate families of novel
characters according to specific features (sex,
ethnicity, complexion or clothing) given by the
user (Fig. 14 top).

Following Blanz’ approach [24] where all facial
models share the same parameterization space
and thus form a subspace of morphable models,
our character dataset and the character family
generated from them also have this feature. The
advantages of having this feature are explained in
the next paragraph and following subsections.

To improve the visual variety of our characters
we use a manual generated texture called
anatomy image which is a gray scale image were
brighter areas represent high levels of fat and
darker areas represent low levels of fat, so we are
able to generate different body complexities from
skinny to obese characters (Fig. 14 bottom). The
first advantage of having the family in full
correspondence is that we can apply this anatomy
image in different characters indistinctly thus
eliminating the possibility of having one character
for each character of the crowd.

5.2 Texture Space Rigging

The animation of characters is usually done
through the use of a skeleton, which is an
articulated structure of segments and joints
combined with information detailing how the
surface geometry of the figure is bound to that
structure. This is a time consuming process of
animating a character, since an experienced artist

Fig. 13. Point rendering vs geometric models (top left).

Hierarchical skeleton structure based on octrees (top
right). Different Levels of Detail and coding (middle).
Scene rendered using complete system (bottom)

Fig. 14. Generation of Diversity (GOD): templates,
fat/muscle displacement maps, results

Fig. 15. Left. Joint texture. Right. Joint texture and its

correspondence with the character texture
parameterization

376 Isaac Rudomin, Benjamín Hernández, Oriam de Gyves…

Computación y Sistemas Vol. 17 No.3, 2013 pp.365-380
ISSN 1405-5546

can spend several hours in this process.
Therefore, conventional techniques can’t be used
to animate a crowd made of hundreds or
thousands of different characters. Our alternative
is to take advantage of the UV parameterization
of the characters. If all of them have the same UV
coordinates, and rigging and skinning information
is stored in textures which correspond to that UV
parameterization, we can reuse these textures in
all the characters.

Fig. 15 (left) shows a texture used to calculate
a skeleton of a character. Each joint area (dark
zones) has a unique ID representing a body joint;
notice that this texture must be in correspondence
with the character’s texture parameterization
(Fig.15 right). To obtain the 3D pivot points for
character’s limb rotation, which when connected
will conform the skeleton, the computation of the

centroid at each joint area is performed by
selecting and averaging all the vertices belonging
to a given joint area.

As mentioned earlier, texture-based rigging
can be transported from one model to another if
texture parameterization is the same in both
cases, i.e., between characters of the same family
(Fig. 16).

5.3 Texture Space Skinning

The next step in character animation consists in
specifying how the character’s mesh will be
attached to the skeleton, this process is called
skinning. The idea behind this is to specify weight
values used to modify the character mesh
according to the skeleton pose with a reduced
amount of artifacts that appear at joint sections.
Thus, we encode these weights, which can be
generated using authoring tools such as Maya,
into a texture (Fig. 17 top).

Finally, the rigging is completed with animation
key frames. Key frames can be generated via
motion capture, forward kinematics, inverse
kinematics, video sequences, among others. Our
current implementation uses forward kinematics

Fig. 18. Modeling clothing

Fig. 17. Blending maps for skinning. Skinning two

characters with aligned parameterizations: matching
poses allow animation transfer

GPU Generation of Large Varied Animated Crowds 377

Computación y Sistemas Vol. 17 No.3, 2013 pp. 365-380
ISSN 1405-5546

(computation of the position and orientation of
character’s end effector as a function of its joint

angles) to generate a pose. Each pose is a set of
local transformation matrices which specify
rotations on each articulation, while an animation
clip is a set of poses.

Using texture-based methods as described
previously allows us to transfer animations
straightforwardly between characters which share
the same UV mapping (Fig. 17 bottom), thus
material and computational resources are
reduced.

6 Clothing

In a spirit similar to that of image space skinning,
we can also add clothing. We can model cloths as
a system of mass and springs and the user
overlays the desired model on the texture
parameterization, aligned with the major body
features. After this, as shown in Fig. 18, a sparse
geometry image is used, which is obtained by
sampling the model’s original mesh, then it is
compared against the garment texture and
interpolated to obtain a smooth geometry image,
also using a sewing image. The system can
reconstruct the complete model mesh by iterating
physics simulation:

 Physical forces applied to all masses in the
system,

 Integrate system to solve for positions,

 Satisfy spring constraints,

 Resolve collisions with character (ellipsoids
can be used to make this efficient).

7 Conclusions, Ongoing Work

We have been doing GLSL/CUDA data
parallelism one GPU/thread per agent on a single
node. The idea is that one can apply similar
methods on GPU clusters and HPC for larger
scale problems. Such systems scale up almost
linearly by using multiple nodes.

One could use MPI and subdivide the world

into 2D or 3D areas, exchange data in the borders
between neighbors, as it can be seen in Fig.19.

In [25] a better architecture is proposed:
subdivide into (2D/3D) areas, with interchange of
buffers at borders, areas manage their own

Fig. 19. MPI regions and interchange of information

Fig. 20. MPI & Cameras, combining partial renders for
parallel rendering

378 Isaac Rudomin, Benjamín Hernández, Oriam de Gyves…

Computación y Sistemas Vol. 17 No.3, 2013 pp.365-380
ISSN 1405-5546

agents, while manager distributes areas to each
worker to maintain load balance. Other
approaches add separate managers for cameras
[26], as can be seen in Fig. 20 top.

For parallel rendering, one would need to run
OpenGL on each node and do partial renderings,
to be combined for achieving final visualization
results. There are several ways to do this and
each of them has pros and cons. An illustration
can be seen in Fig. 20 bottom.

However, in view of the latest developments
such as the new family of mobile multicore
chipsets and GPU-based cloud gaming platforms,
the pieces are almost there for this kind of
architecture to work.

Acknowledgements

This work has been partially funded by
CONACyT-BSC postdoctoral fellowship; SNI-
54067; “Agentes virtuales y Robóticos en
Ambientes de Realidad Dual”, Tecnológico de
Monterrey research initiative. We would also like
to thank Nvidia for hardware donations used in
some of these algorithms.

References

1. Reynolds, C.W. (1987). Flocks, herds and
schools: A distributed behavioral model. 14

th

Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH’87), Anaheim,
California, 25–34.

2. Helbing, D. & Molnar, P. (1995). Social force
model for pedestrian dynamics. Physical review E,
51 (5), 4282–4286.

3. Helbing, D., Farkas, I., & Vicsek, T. (2000).

Simulating dynamical features of escape panic.
Nature, 407(6803), 487–490.

4. Van Den Berg, J., Lin, M., & Manocha, D. (2008).

Reciprocal velocity obstacles for real-time multi-
agent navigation. 2008 IEEE International
Conference on Robotics and Automation,
Pasadena, CA, USA, 1928–1935.

5. Guy, S.J., Chhugani, J., Curtis, S., Dubey, P.,
Lin, M., & Manocha, D. (2010). PLEdestrians: a
least-effort approach to crowd simulation. 2010
ACM SIGGRAPH/Eurographics Symposium on

Computer Animation (SCA’10), Madrid, Spain,
119–128.

6. Jund, T., Kraemer, P., & Cazier, D. (2012). A
unified structure for crowd simulation. Computer
Animation and Virtual Worlds, 23(3-4), 311–320.

7. Tecchia, F., Loscos, C., Conroy, R., &
Chrysanthou, Y. (2001). Agent Behaviour

Simulator (ABS): A Platform for Urban Behaviour
Development. First International Game Technology
Conference. Hong Kong, China.

8. Treuille, A., Cooper, S., & Popović, Z. (2006).
Continuum crowds. 33

rd
 International Conference

and Exhibition on Computer Graphics and
Interactive Techniques (ACM SIGGRAPH '06),
Boston, USA, 1160–1168.

9. Millan, E., Hernandez, B., & Rudomin, I. (2007).

Large crowds of autonomous animated characters
using fragment shaders and level of detail.
ShaderX5: Advanced Rendering Techniques (501–
510), Boston, MA: Charles River Media.

10. Moussaïd, M., Helbing, D., & Theraulaz, G.
(2011). How simple rules determine pedestrian
behavior and crowd disasters. Proceedings of the
National Academy of Sciences of the United States
of America, 108(17), 6884–6888.

11. Ondřej, J., Pettré, J., Olivier, A.H., & Donikian,
S. (2010). A synthetic-vision based steering

approach for crowd simulation. Special Interest
Group on Computer Graphics and Interactive
Techniques Conference (SIGGRAPH 2010), Los
Angeles, CA., USA, Article No. 123.

12. Zhou, S., Chen, D., Cai, W., Luo, L., Low,
M.Y.H., Tian, F., Tay, V.S.H., Ong, D.W.S., &
Hamilton, B.D. (2010). Crowd modeling and
simulation technologies. ACM Transactions on
Modeling and Computer Simulation, 20(4), Article
20.

13. Cormen, T.H., Leiserson, C.E., Rivest, R.L.,
&Stein, C. (2001). Introduction to Algorithms (2

nd

ed.). Cambridge, Mass.: MIT Press.

14. Blue, V.J., Embrechts, M.J., & Adler, J.L. (1997).

Cellular automata modeling of pedestrian
movements. IEEE International Conference on
Systems, Man, and Cybernetics, 3, Orlando, FL,
2320–2323.

15. Zhang, S., Li, M., Li, F., Liu, A., & Cai, D. (2011).

A simulation model of pedestrian flow based on
geographical cellular automata. 19th International
Conference on Geoinformatics, Shanghai, China,
1–5.

16. Zhiqiang, K., Chongchong, Y., Li, T., & Jingyan,
W. (2011). Simulation of evacuation based on
multi-agent and cellular automaton. 2011

GPU Generation of Large Varied Animated Crowds 379

Computación y Sistemas Vol. 17 No.3, 2013 pp. 365-380
ISSN 1405-5546

International Conference on Mechatronic Science,
Electric Engineering and Computer, Jilin, China,
550–553.

17. Bian, C., Chen, D., & Wang, S. (2010). Velocity

field based modelling and simulation of crowd in
confrontation operations. 16

th
 International

Conference on Parallel and Distributed Systems,
Shanghai, China, 646–651.

18. Pettré, J., Grillon, H., & Thalmann, D. (2008).

Crowds of moving objects: Navigation planning
and simulation. 35

th
 International Conference and

Exhibition on Computer Graphics and Interactive
Techniques (SIGGRAPH 2008), Los Angeles, CA,
USA, Article No. 54.

19. Ju, E., Choi, M.G., Park, M., Lee, J., Lee, K.H., &
Takahashi, S. (2010). Morphable crowds. ACM
Transactions on Graphics, 29(6), Article 40.

20. Banerjee, B., Abukmail, A., & Kraemer, L.
(2008). Advancing the layered approach to agent-
based crowd simulation. 22

nd
 Workshop on

Principles of Advanced and Distributed Simulation,
Roma, Italy, 185–192.

21. Sukop, M.C. & Thorne Jr., D.T. (2006). Lattice
Boltzmann Modeling: An Introduction for
Geoscientists and Engineers. Berlin; New York:
Springer.

22. Hernández, B. & Rudomin, I. (2011). A rendering

Pipeline for Crowds. GPU Pro 2: Advanced
Rendering Techniques (369–384). Natick, Mass.:
AK Peters.

23. Rusinkiewicz, S. & Levoy, M. (2000). QSplat: a

multiresolution point rendering system for large
meshes. 27

th
 Annual Conference on Computer

Graphics and Interactive Techniques (SIGGRAPH
'00), New Orleans, Louisiana, USA, 343–352.

24. Blanz, V. & Vetter, T. (1999). A morphable model
for the synthesis of 3D faces. 26

th
 Annual

Conference on Computer Graphics and Interactive
Techniques, Los Angeles, CA, USA, 187–194.

25. Vigueras, G., Lozano, M., Perez, C., & Orduña,
J.M. (2008). A Scalable Architecture for Crowd

Simulation: Implementing a Parallel Action Serve,
37

th
 International Conference on Parallel

Processing, Portland, OR, 430–437.

26. Vigueras, G., Lozano, M., & Orduña, J.M. (2011).

Workload balancing in distributed crowd
simulations: the partitioning method. The Journal
of Supercomputing, 58(2), 261–269.

27. Mu, Y., Yan, S., Liu, Y., & Huang, T. (2008).

Discriminative local binary patterns for human
detection in personal album. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR
2008), Anchorage, AK, 1–8.

Isaac Rudomin recieved his
Ph.D. from University of
Pennsylvania. He is currently a
senior researcher at the
Barcelona Supercomputing
Center, Spain. He is a member of
the National System of

Researchers of Mexico, Level I. He was a full-
time professor at the Monterrey Institute of
Technology, State of Mexico campus
(Tecnológico de Monterrey, campus Estado de
México) from 1991 to 2012. His research interests
are human and crowd simulation, animation and
visualization, human-computer Interaction and
high performance computing.

Benjamín Hernández recieved
his Ph.D. from the Monterrey
Institute of Technology, State of
Mexico campus (Tecnológico de
Monterrey, campus Estado de
México). He currently holds a
post-doctoral research fellowship

at the Barcelona Supercomputing Center, Spain,
on leave from his position as a full-time professor
at the Monterrey Institute of Technology, Mexico
City campus. He is a member of National
System of Researchers of Mexico, Candidate
Level. His research interests are at the
intersection of real-time simulation, animation
and visualization of crowds, human computer
interaction and parallel computing on GPUs. He
has also advised postgraduate theses in these
fields.

Oriam de Gyves is a Ph.D.
student specializing in Computer
Science and particularly in
Computer Graphics, at the
Monterrey Institute of
Technology, State of Mexico
campus (Tecnológico de

Monterrey, campus Estado de México). He
studies and does research of behaviors for crowd
simulation using General Purpose Computation
in Graphics Processing Units. His research
interests include simulation, behavior and
visualization of real-time crowds, as well as
parallel computing on GPUs.

380 Isaac Rudomin, Benjamín Hernández, Oriam de Gyves…

Computación y Sistemas Vol. 17 No.3, 2013 pp.365-380
ISSN 1405-5546

Leonel Toledo is a Ph.D. student
at the Monterrey Institute of
Technology, State of Mexico
campus (Tecnológico de
Monterrey, campus Estado de
México). He made a research
interchange visit working on crowd

simulation at the Barcelona Supercomputing
Center, Spain. He has been a half-time Professor
at the Monterrey Institute of Technology, State of
Mexico campus, since 2011 and his research
interests include crowd simulation, animation,
visualization, and rendering.

Ivan Rivalcoba is a doctoral
student at the Monterrey Institute of
Technology, State of Mexico
campus (Tecnológico de
Monterrey, campus Estado de
México). His thesis focuses on

computer vision algorithms for the study of crowd
behavior. Besides, he works as an IT Professor at

Gustavo A. Madero Institute of Technology. He
made a research interchange visit working in
computer vision at the Barcelona Supercomputing
Center, Spain. His research interests also include
computer vision and feature descriptors for
human detection.

Sergio Ruiz is a software
engineer at the Monterrey
Institute of Technology, Mexico
City campus (Tecnológico de
Monterrey, campus Ciudad de
México). Currently, he is a Ph.D.
student at the same institution;

his research area is path planning for simulated
crowds proposing a thesis entitled “A hybrid
method for macro and micro simulation of crowd
behavior”. He is currently on a research
interchange visit working on crowd simulation at
the Barcelona Supercomputing Center, Spain.

Article received on 01/02/2013; accepted on 10/08/2013.

