
Computación y Sistemas Vol. 17 No.3, 2013 pp. 381-390
ISSN 1405-5546

A Parallel PSO Algorithm for a Watermarking Application on a GPU

Edgar García Cano
1
 and Katya Rodríguez

2

1
 Posgrado en Ciencia e Ingeniería de la Computación,

Universidad Nacional Autónoma de México,
Mexico

2
 Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas,

Universidad Nacional Autónoma de México,
Mexico

eegkno@gmail.com, katya@uxdea4.iimas.unam.mx

Abstract. In this paper, a research about the usability,

advantages and disadvantages of using Compute
Unified Device Architecture (CUDA) is presented,
implementing an algorithm based on populations called
Particle Swarm Optimization (PSO) [5]. In order to test
the performance of the proposed algorithm, a hide
watermark image application is put into practice. The
PSO is used to optimize the positions where a
watermark has to be inserted. This application uses the
insertion/extraction algorithm proposed by Shieh et al.
[1]. This algorithm was implemented for both sequential
and CUDA architectures. The fitness function—used in
the optimization algorithm—has two objectives: fidelity
and robustness. The measurement of fidelity and
robustness is computed using Mean Squared Error
(MSE) and Normalized Correlation (NC), respectively;
these functions are evaluated using Pareto dominance.

Keywords. Parallel particle swarm optimization,

watermarking, CUDA, image security.

Algoritmo paralelo PSO para una
aplicación de marcas de agua

en un GPU

Resumen. En este artículo se presenta una

investigación de la usabilidad, ventajas y desventajas
de usar Compute Unified Device Architecture (CUDA)
implementando un algoritmo basado en poblaciones,
Optimización por Cúmulo de Partículas (PSO) [5]. Para
probar el rendimiento del algoritmo propuesto, se
realizó la implementación de una aplicación de marcas
de agua ocultas. El PSO es usado para optimizar las
posiciones donde la marca de agua debe ser insertada.
Esta aplicación usa el algortimo de inserción/extracción
propuesto por Shieh et al. [1]. El algortimo completo fue
implementado para las arquitecturas secuenciales y

CUDA. La función de optimización —usada en el
algoritmo de optimización— es la unión de dos
objetivos: fidelidad y robustez. La medición de la
fidelidad y robustez es procesada usando el Error
Cuadrático Medio (MSE) y la Correlación de
Normalización (NC) respectivamente; estas funciones
son evaluadas usando dominancia de Pareto.

Palabras clave. Optimización por cúmulo de partículas

en paralelo, marcas de agua, CUDA, seguridad en
imágenes.

1 Introduction

The digital age introduced a new way to share
information (files, audio, video, image, etc.), and
there is no guarantee that someone else may use
it without authorization, that is why watermarking
appeared as an innovative way to protect
information.

Digital watermarking is presented when a
pattern is inserted in an image, video or audio file,
it helps to copyright the information in the files. In
the case of image watermarking, it is divided in
two groups: visible and invisible watermarks.

A visible watermark is a visible semi-
transparent text or image overlaid on the original
image. It allows the original image to be viewed
but still provides copyright protection by marking
the image as its property. Visible watermarks are
more robust against image transformation
(especially if one uses a semi-transparent
watermark placed over the whole image). Thus

mailto:eegkno@gmail.com

382 Edgar García Cano and Katya Rodríguez

Computación y Sistemas Vol. 17 No.3, 2013 pp. 381-390
ISSN 1405-5546

they are preferable for strong copyright protection
of intellectual property in digital format [2].

An invisible watermark is an embedded image
that cannot be perceived with human eyes. Only
electronic devices (or specialized software) can
extract the hidden information to identify the
copyright owner. Invisible watermarks are used to
mark a specialized digital content (text, images or
even audio content) to prove its authenticity [2].
Evolutionary computation, a subfield of Artificial
Intelligence, uses models based on populations to
solve optimization problems. Basically, these
models were inspired by the mechanisms of
natural evolution. Another set based on biological
models and classified as bioinspired algorithms
includes Ant Colony and Swarm-based
algorithms. These are a different way to solve
problems based on the behavior of animals or
systems whose evolution lasts for centuries.

In recent years, new and cheaper technologies
such as CUDA architecture have emerged with
the concept of massive parallelism for general-
purpose problems. The advantage of this
technology is that every person with a personal
computer has the possibility of taking advantage
of the massive parallelism to accelerate
procedures.

The process of watermarking can be applied to
copyright any sort of digital information. In some
fields like financial banking, it is necessary to
perform a process involving a big quantity of
information as soon as possible. On one hand,
this is a reason to look for a new and cheaper
technology such as CUDA to accelerate the
process. On the other hand, the need to improve
the watermarking process against modifications
such as cropping, rotation, flipping, scaling,
changing colors, etc., was the reason to use an
optimization process. The idea of using PSO as
an optimization algorithm comes forward owing to
the fact that it has few parameters to adjust.

The rest of the paper is organized as follows.
Section 2 offers an explanation of how the
watermarking algorithm works and the metrics
used to evaluate the watermarked image quality.
In Section 3, an overview of the PSO algorithm is
presented. Section 4 shows the optimization
algorithm used in this work. In Section 5, tests
and results are presented and analyzed. Finally, a
discussion concerning advantages and

disadvantages of using GPUs as a technology to
implement algorithms based on populations is
presented.

2 Methods

With a vast volume of information flowing on the
Internet, watermarking is widely used to protect
the information authenticity. The need to copyright
a huge quantity of digital files spending the less
possible amount of time and avoiding information
loss were the reasons to propose the use of an
algorithm for watermarking —Shieh algorithm—,
Particle Swarm Optimization as an optimizer, and
finally a GPU —based in CUDA architecture— to
accelerate the process.

2.1 The Watermarking Algorithm

Shieh et al. [1] have proposed an algorithm to
insert and extract watermark based on Discrete
Cosine Transformation (DCT). This
transformation is used due to the fact that it is not
necessary to have the original cover to extract the
watermark. Dealing with a huge number of
images, it would be very expensive to store all
cover images for the watermark extraction. Figure
1 shows an adjustment of the Shieh algorithm
used in this work.

Once the original image is loaded in memory
and after the DCT, the ratio values are calculated
using DC and AC coefficients. Next step
calculates the relation between the image content
and the embedding frequency bands (polarities).
Then, the watermark image is inserted in the
selected bands of each 8x8 block. Quantization is
used as an attack to the watermarked image, and
it is necessary for the optimization process.
Finally IDCT is computed and the watermarked
image is obtained (see [3] for more details about
the CUDA implementation).

2.1.1 Watermarking Metrics

In order to evaluate the performance of a
watermark algorithm to hide the information,
some metrics have been proposed. The
watermark algorithm has to be capable to hide the
mark data and to prevent distortions of the image.
In order to propose a simpler way to measure the

A Parallel PSO algorithm for a Watermarking Application on a GPU 383

Computación y Sistemas Vol. 17 No.3, 2013 pp. 381-390
ISSN 1405-5546

fitness and the robustness spending the shortest
time possible, the MSE and the NC were used.

 Watermark Fidelity. Fidelity represents the
similarity of the watermarked image with the
original image. Thus, mean squared error
(see Equation 1) was utilized to measure
fidelity. It ought to be close to zero to have a
good correspondence between the non-
watermarked and the watermarked image.

 ()

∑ ∑ () ()

 (1)

 Watermark Robustness. Robustness
represents the resistance of the watermark
against attacks (compression, rotation,
scaling, among others) done on the
watermarked image. The normalized
correlation NC (see Equation 2) is used to
measure robustness. It applies the logical
operation exclusive disjunction, also called
exclusive or. Bitwise operations are faster
therefore, reduce the runtime. The NC value
must be close to zero between the original
watermark (W) and the extracted watermark
(W’), to prevent a watermark image
information loss.

∑ ∑ [() ()]

 (2)

The exclusive or calculation is shown in
Table1.

The NC and the MSE are computed for each
8x8 block as shown in Fig. 2. This was carried out
with the purpose of dividing, as much as possible,
the data in GPU. When measuring the MSE in
each block, just 64 comparisons are necessary,
they are executed at the “same time” in the other
blocks. In the sequential process, 512x512
evaluations one after another are needed for a
512x512 image size. The same case was applied
for the NC: instead of being calculated for the
whole image (as in the sequential form), it was
computed for each block.

Fig. 1. Watermarking algorithm

Fig. 2. Block organization to calculate MSE and NC

Table 1. Exclusive OR

W W’ Output

0 0 0

0 1 1

1 0 1

1 1 0

384 Edgar García Cano and Katya Rodríguez

Computación y Sistemas Vol. 17 No.3, 2013 pp. 381-390
ISSN 1405-5546

2.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a
population-based stochastic optimization
technique developed by Eberhart and Kennedy in
1995 inspired by social behavior of bird flocking or
fish schooling [10].

PSO shares many similarities with evolutionary
computation techniques such as Genetic
Algorithms (GA). The system is initialized with a
population of random solutions and searches for
optima by updating iterations. However, unlike
GA, PSO has no evolution operators such as
crossover and mutation. In PSO, potential
solutions, called particles, fly through the problem
space by following the current optimum particles.
It has been successfully applied to many
problems in several fields such as biomedicine [7]
and energy conversion [4]. Image analysis is one
of the most frequent applications and it is
performed for biomedical images [9], microwave
imaging [6, 8], among others.

2.2.1 Basic PSO Algorithm

Each particle keeps track of its coordinate in the
problem space, which is associated with the best
solution (fitness) achieved so far (this fitness
value is stored). This value is called pbest.
Another “best” value that is tracked by the particle
swarm optimizer is the best value, obtained so far
by any particle in the neighborhood of a given
particle. This location is called lbest. When the
particle takes all the population as its topological
neighbors, the best value is a global best and is
called gbest.

At each time step, the PSO concept consists
of changing the velocity (acceleration) of each
particle toward its lbest and gbest locations.
Acceleration is weighted by a random term, with
separate random numbers being generated for
acceleration toward lbest and gbest locations.

After finding the two best values (lbest and
gbest), the particle i updates its velocity and
position with Equations 3 and 4, where i = 1, 2,
3…NS.

 ()

 () (() ())

 (
 () ())

(3)

 () () () (4)

ϕ1 and ϕ2 are positive constants called
acceleration coefficients, NS is the total number
of particles in the “swarm”, r1 and r2 are random
vectors, each component is generated within
[0,1], and g represents the index of the best
particle in the neighborhood. The other vectors
Xi=[x1, x2,…, xiD] ≡ position of the i-th particle; Vi =
[v1, v2,…,viD] ≡ velocity of the i-th particle; Bi ≡
best historical value for the i-th particle found, Bi

g

≡ best value found for the i-th particle in the
neighborhood [5]. For details about the CUDA
implementation see [3].

2.3 The Optimization Algorithm

The objective of optimization is to find the best
frequency band set to insert the watermark within
the image. Different frequency bands are tested
through the iterations of the algorithm finding out
the best solution. At the end of the execution the
application has as results the watermarked image
and a matrix with the whole best positions
(frequency bands) to insert the complete
watermark.

The algorithm in charge of doing the
watermark optimization is the PSO, and at the
same time it uses Pareto dominance to evaluate
the fitness function through the MSE (fidelity) and
NC (robustness). This process is detailed as
follows.

1. Using the DCT idea to split the image in 8x8
blocks, each block is used as a swarm. An
image of 512x512 has 4096 blocks; hence

Algorithm 1. Basic PSO Algorithm

1: Initialize particles population
2: while do not get the max number of iterations or

the optimal solution do
3: Calculate the fitness for each particle i
4: Update Bi if pbest is better than the last one
5: Calculate Big i of the neighbors
6: for each particle i do
7: Calculate Vi according to 3
8: Update Xi according to 4
9: Update best global solution (gbest)
10: end for
11: end while

A Parallel PSO algorithm for a Watermarking Application on a GPU 385

Computación y Sistemas Vol. 17 No.3, 2013 pp. 381-390
ISSN 1405-5546

each block will be a swarm. The number of
particles by swarm is specified as a
configuration parameter of the algorithm.

2. Each particle has a position vector. The
vector size depends on the number of
watermark bits used to be inserted in each
block of the image. If the watermark size is
128x128 and if it is divided uniformly into
4096 blocks of the image, then 4 bits are
inserted in each block. Each position
corresponds to a band in the 8x8 block where
the watermark bits are inserted.

At the beginning, all the swarms are initialized
randomly (each swarm must have the same
particle number). If 4 bits are to be inserted, 4
bands are required, and then 4 random numbers
must be created between 1 and 63. This means
that each particle will consist of 4 bands (position
vectors).

If each swarm has 5 particles, every particle

has a set of 4 bands used to originate 5 different
solutions. To generate solution 1, all the particles
with index 1 are taken from every swarm and
joined; to generate solution 2; all the particles with
index 2 are taken from every swarm and joined,
and so on. This procedure is shown in Fig. 3.

3. After the insertion and extraction operations,
the MSE (see Equation 1) and the NC (see
Equation 2) are calculated. Based on MSE
and NC, the fitness value is estimated.

4. One of the particles must be selected as the
best global. Among the best options
generated, one of them is chosen to be the
best global. To choose the local best, the
particle is considered to add up the MSE and
the NC. If the new value is closer to zero than
the old one, the new particle replaces the old
one; otherwise the old one continues in the
process.

5. In the last step, the velocity and the new
position of the particles are calculated
according to Equations 3 and 4. This
generates the new bands and new iteration
begins. Fig. 4 shows the whole algorithm.

Fig. 4. The optimization algorithm

Fig. 3. Generation of solutions taking particles P1 and

P2 from the different swarms, bands B1, B2, B3 and B4
generate the corresponding solution

386 Edgar García Cano and Katya Rodríguez

Computación y Sistemas Vol. 17 No.3, 2013 pp. 381-390
ISSN 1405-5546

3 Test and Results

All tests were executed on two different servers
with the features shown in Tables 2 and 3.

In order to test the implementations, Fig. 5
shows the original image used in the algorithm
and Fig. 6 shows the watermark image. For the
experiments, the size of the images is 515x512
and they are in gray scale.

3.1 Results of the Algorithm

Tables 4 and 5 show the runtime of the
watermarking optimization. Parts A and B show
five experiments with different number of
iterations using the sequential and CUDA
versions. These experiments were performed to
compare the amount of time used for the
algorithm and the quality of the results based on
the idea that the operations executed in the GPU
must be faster than the ones computed in the
CPU.

Part C of Tables 4 and 5 show the runtime for
the sequential implementation with 10 and 30

iterations, but without random number generation.
This was made to compare CUDA runtime and
check if CUDA implementation is faster than the
sequential implementation without random
numbers generation.

Using random numbers in the sequential
version produced a remarkable difference in time.
The use of those numbers consumes a big
quantity of time due to its necessity to spend time
in the CPU to generate different numbers. For the
sequential version, random numbers are
generated using the C function drand48 that
returns a pseudo-random number in the range
[0.0,1.0). On the GPU, random numbers are
generated using a library called curand.

In the case of the GPU (Part D of Tables 4 and
5), random numbers are generated directly in the
constant GPU memory; there is no need to
transfer them from the host to the device. This is
why the difference, in terms of runtime, between
the option with random numbers and the option
without random numbers in CUDA is minimal.

Reviewing the values (Tables 4 and 5) of the
initial fitness and the final fitness, it is noteworthy
that the sequential version gives better results
than the ones obtained from the GPU. For all the
cases, the runtimes indicate that GPU is faster
than CPU, even when all data have been loaded
or when static numbers in the CPU version are
used. Thus, it is possible to set up that, at least
for this version of the application, if the user wants
a good optimization for the watermarking, the
sequential version must be used. However, if the
user needs a quick approximation, the GPU
version must be applied (for other results see [3]).

Table 2. CPU server features

Server name Cores CPU type

Uxdea 8
Intel Xeon E5620 @

2.4GHz

Geogpus 8
Intel Xeon E5677 @

3.47GHz

Table 3. GPU server features

Server name Cores GPU

Uxdea 240 Tesla C1060

Geogpus 240 Tesla C1060

Fig. 5. Original image (Barbara)

Fig. 6. Watermark image (© 2012

BancTec, Inc., All rights reserved)

A Parallel PSO algorithm for a Watermarking Application on a GPU 387

Computación y Sistemas Vol. 17 No.3, 2013 pp. 381-390
ISSN 1405-5546

Table 4. Runtime for PSO on Geogpus

10 Iterations

A
Sequential
(min)

Initial
fitness

Final fitness

CUDA (s) Initial fitness Final fitness

1 53.7133 3.0079 0.24625 6.8422 5.3136 4.9884

2 53.6950 5.7397 0.27473 6.6205 0.66101 0.33551

3 53.6600 2.9303 0.25068 6.6103 0.82102 0.50254

4 53.6517 3.5922 0.27855 6.6197 15.315 14.716

5 53.6433 4.2929 0.2387 6.6786 1.9163 1.5937

 53.6727 6.6743

30 Iterations

B
Sequential
(min)

Initial
fitness

Final fitness

CUDA (s) Initial fitness Final fitness

1 161.35 2.4226 0.21096 18.126 1.7282 1.324

2 160.6917 3.4672 0.2026 18.516 0.78431 0.39118

3 160.635 5.8846 0.23375 18.081 0.81376 0.40794

4 161.075 3.1447 0.19965 18.397 1.6347 1.2302

5 161.35 3.3854 0.19588 18.113 1.4422 1.0504

 161.0203 18.2466

Sequential no random numbers

C 10 Iterations
Initial
fitness

Final fitness

30 Iterations Initial fitness Final fitness

1 26.228 4.7199 0.22448 72.8140 26.167 0.223

2 26.108 5.1654 0.29945 72.6400 6.8238 0.23352

3 26.208 2.4494 0.2621 72.8590 7.7055 0.21568

4 26.279 10.571 0.26432 72.7310 1.9816 0.20543

5 26.167 6.073 0.20027 73.0250 2.9215 2.9215

 26.1980 18.2466

CUDA no random numbers

D 10 Iterations
Initial
fitness

Final fitness

30 Iterations Initial fitness Final fitness

1 6.5794 2.8593 2.5458 17.7430 1.1509 0.75917

2 6.5145 1.2957 0.97485 17.9710 7.8518 7.215

3 6.6214 0.82386 0.49934 17.8740 0.85486 0.47526

4 6.6271 5.2253 4.8637 17.6850 5.6334 5.2352

5 9.8096 2.321 1.996 17.0650 0.49091 0.1239

 7.2304 17.6676

388 Edgar García Cano and Katya Rodríguez

Computación y Sistemas Vol. 17 No.3, 2013 pp. 381-390
ISSN 1405-5546

Table 5. Runtime for PSO on Uxdea

10 Iterations

A
Sequential
(min)

Initial
fitness

Final fitness

CUDA (s)
Initial
fitness

Final fitness

1 75.0933 4.7145 0.288 17.696 2.429 2.1085

2 75.1300 11.316 0.3058 17.754 0.9868 0.64933

3 75.1467 5.4008 0.254 17.744 0.85646 0.53621

4 75.1433 3.1818 0.2784 17.626 2.1421 1.8232

5 75.0767 3.1201 0.2568 17.696 3.9049 3.6015

 75.1180 17.7032

30 Iterations

B Sequential (min)
Initial
fitness

Final fitness

CUDA (s) Initial fitness Final fitness

1 225.3833 3.8861 0.22232 48.535 0.70031 0.30285

2 225.1 4.0846 0.20906 48.635 1.4996 1.1144

3 225.2667 2.5326 0.20198 48.794 2.0107 1.6072

4 224.8833 3.3661 0.2154 48.597 6.3867 5.4775

5 225.3833 4.4556 0.21926 48.757 0.67997 0.28269

 225.2033 48.6636

Sequential no random numbers

C 10 Iterations
Initial
fitness

Final fitness

30 Iterations Initial fitness Final fitness

1 36.363 6.3162 0.24992 100.54 3.3363 0.21798

2 36.664 3.0594 0.2729 100.64 2.3531 0.22367

3 36.289 3.2031 0.26768 100.5 8.4095 0.20502

4 36.302 2.9081 0.25941 100.59 3.1055 0.20916

5 36.404 3.902 0.32894 100.51 5.426 0.22008

 36.4044 100.556

CUDA no random numbers

D 10 Iterations
Initial
fitness

Final fitness

30 Iterations Initial fitness Final fitness

1 17.347 1.041 0.72842 47.8740 0.66338 0.26873

2 17.395 1.2237 0.90721 47.9710 7.859 7.255

3 17.59 5.0348 4.1984 47.9920 2.8143 2.4339

4 17.462 5.149 4.8263 47.8480 4.5469 4.1704

5 17.577 1.1466 0.8309 48.1320 0.8529 0.46197

 17.4742 47.9634

A Parallel PSO algorithm for a Watermarking Application on a GPU 389

Computación y Sistemas Vol. 17 No.3, 2013 pp. 381-390
ISSN 1405-5546

4 Conclusions

Since there is no standard configuration for the
blocks, threads or memory treatment in the GPU,
it is necessary to make analysis and design of the
procedures involved in a particular application to
take advantage of parallelism. In order to use
parallel programing in a GPU, it is necessary to
shift from sequential to parallel thinking and to
learn how to divide a huge problem into small
ones (divide and conquer), attempting to obtain
the best performance. For example, in the
calculation of the NC, only 4 threads were
required to perform comparison, but in the case of
the MSE 64, threads working at the “same time”
were used. Therefore, the configuration of the
blocks and threads for an application on a GPU
must be carefully analyzed.

Different options to implement the PSO were
analyzed, but the version that uses as much
swarms as the number of blocks to divide an
image in the DCT was implemented. The idea
was to divide a big problem into smaller ones,
which suited the parallel paradigm. As it has been
established, there is no standard configuration in
CUDA architecture, so the accordance between
configuration and the need of the function was
achieved. The PSO has to evaluate two vectors:
velocity and position. Position depends on
velocity that is why velocity is to be computed
first. If there are 4096 swarms—4096 blocks—
and each swarm has five particles, then each of
them needs to update the velocity vector. The
number of operations to be calculated in a CPU is
4096 (swarms) * 5 (particles) * 1 (operation) =
20480 operations one after another. In the case of
the same operations on the GPU, the same
20480 operations are executed, but the difference
is that there are 4096 swarms with 5 threads
working in parallel computing one operation,
hence there are 20480 threads working at the
same time. If one thread in the CPU spends 1
second per operation, the runtime will be 20480 s,
but in the case of the GPU there are 20480
threads working at the same time, and they spend
1 second to finish the calculus. In the last
example, the speed of the processor is not
considered, neither CPU nor GPU, nor the
upload/download of the data to/from the GPU.

The velocity vector needs random numbers to
be calculated (see Equation 1). In order to
generate random numbers, a library called curand
was used. This library is useful because it is easy
to generate a lot of numbers in a short time; the
problem comes with the memory. If there is a big
quantity of these numbers generated and held in
global memory, there might be a shortage of
space to store other data. In one iteration of the
PSO, two random numbers are used to calculate
the velocity value. If there are 4096 blocks with 5
particles each, 40960 random numbers for
iteration are needed. There is another type of
memory on the GPU, the constant memory. This
memory is loaded in the GPU but it cannot be
changed. This memory was considered to store
the random numbers because they do not modify
its value on the execution of the calculation of the
velocity value.

Another feature that has to be considered
(from GPU to GPU) is the processor velocity. This
is evident in the experiments because the
Geogpus server is faster than the Uxdea server.

The analysis done in the present work shows
that the use of CUDA helps to improve the
performance of the application and that an
algorithm based on population can be
implemented in it, as long as the developer is
aware of the features of this technology.

5 Future Work

The first phase of this project is focused on the
implementation with the elemental CUDA features
of a basic algorithm based on population;
however, the CUDA architecture may be better
exploited. The second phase will be focused on a
combination of other CUDA features, such as
streams, page locked memory and mapped
memory. The aim of the third phase is to improve
operations on the CPU and MPI to distribute tasks
(in this case different swarms) in a cluster by
mixing other technologies, such as Open MP.

Acknowledgements

The first author, postgraduate student in
Computer Science and Engineering at the

390 Edgar García Cano and Katya Rodríguez

Computación y Sistemas Vol. 17 No.3, 2013 pp. 381-390
ISSN 1405-5546

National University of Mexico, expresses his
gratitude to the support received from CONACYT
(scholarship number 37617). The authors also
express their gratitude to the support received
from PAPIIT (project number 109011).

References

1. Chin-Shiuh, S., Hsiang-Cheh, H., Feng-Hsing,
W., & Jeng-Shyang, P. (2004). Genetic

watermarking based on transform-domain
techniques. Pattern Recognition, 37(3), 555–565.

2. ByteScout (s.f.). Retrieved from
http://bytescout.com/.

3. García, E.E. (2012). A parallel bioinspired

watermarking algorithm on a GPU. MSc thesis,
Universidad Nacional Autónoma de México,
México, D.F.

4. Heo, J.S., Lee, K.Y., & Garduno-Ramirez, R.
(2006). Multiobjective control of power plants

using particle swarm optimization techniques.
IEEE Transactions on Energy Conversion, 21(2),
552–561.

5. Mohemmed, A., Johnston, M., & Zhang, M.
(2009). Particle swarm optimization based multi-
prototype ensembles. 11th Annual conference on
Genetic and evolutionary computation
(GECCO’09), Montreal, Canada, 57–64.

6. Donelli, M. & Massa, A. (2005). Computational

approach based on a particle swarm optimizer for
microwave imaging of two dimensional dielectric
scatterers. IEEE Transactions on Microwave
Theory and Techniques, 53(5), 1761–1776.

7. Selvan, S.E., Xavier, C.C., Karssemeijer, N.,
Sequeira, J., Cherian, R.A., & Dhala, B.Y.
(2006). Parameter estimation in stochastic

mammogram model by heuristic optimization
technique. IEEE Transactions on Information
Technology in Biomedicine, 10(4), 685–695.

8. Huang, T. & Mohan, A.S. (2007). A microparticle

swarm optimizer for the reconstruction of
microwave images. IEEE Transactions on
Antennas and Propagation, 55(3), 568–576.

9. Wachowiak, M.P., Smolikova, R., Yufeng, Z.,
Zurada, J.M., & Elmaghraby, A.S. (2004). An

approach to multimodal biomedical image
registration utilizing particle swarm optimization.
IEEE Transactions on Evolutionary Computation,
8(3), 289–301.

10. Kennedy, J. & Eberhart, R. (1995). Particle

swarm optimization. IEEE International

Conference on Neural Networks, Perth, Australia,
4, 1942–1948.

Edgar García Cano
received his Bachelor
degree in Computer
Engineering, and
Master’s degree in
Computer Science from
the National University of
Mexico (UNAM) ,
specializing in parallel

programing and evolutionary computing. He
worked as a teacher and IT consultant in the
Engineering Faculty at UNAM for eight years.
Currently, he is completing his Doctoral studies at
the École de technologie superieure in Montreal,
Canada.

Katya Rodríguez received
her Bachelor degree in
Computer Engineering from
the National University of
Mexico in 1994. She
obtained her Ph.D. from the
University of Sheffield in
1999. She is currently a
researcher at the Institute of

Applied Mathematics and Systems Engineering,
National University of Mexico. She has published
a number of papers in international journals and
conferences and has been a member of the
Technical Program Committee for Conferences
related to Evolutionary Computation. Her
research interests are evolutionary and bio-
inspired algorithms, multi-objective optimization
and its applications in diverse fields.

Article received on 20/01/2013; accepted on 11/08/2013.

http://bytescout.com/

