
Computación y Sistemas Vol. 17 No.3, 2013 pp. 401-411
ISSN 1405-5546

Performance Evaluation of Infrastructure as Service Clouds
with SLA Constraints

Anuar Lezama Barquet
1
, Andrei Tchernykh

1
, and Ramin Yahyapour

2

1
 Computer Science Department, CICESE Research Center, Ensenada, BC,

Mexico

2
 GWDG – University of Göttingen, 37077 Göttingen,

Germany

{alezama, chernykh}@cicese.edu.mx, ramin.yahyapour@gwdg.de

Abstract. In this paper, we present an experimental

study of job scheduling algorithms in infrastructure as a
service type in clouds. We analyze different system
service levels which are distinguished by the amount of
computing power a customer is guaranteed to receive
within a time frame and a price for a processing time
unit. We analyze different scenarios for this model.
These scenarios combine a single service level with
single and parallel machines. We apply our algorithms
in the context of executing real workload traces
available to HPC community. In order to provide
performance comparison, we make a joint analysis of
several metrics. A case study is given.

Keywords. Cloud computing, infrastructure as a

service, quality of service, scheduling.

Evaluación del desempeño de
servicios de infraestructura en nubes

con restricciones de acuerdos de nivel
de servicio (SLA)

Resumen. En el presente artículo, mostramos un
estudio experimental sobre algoritmos de
calendarización en servicios de infraestructura en
nubes. Analizamos diferentes niveles de servicios que
se distinguen por la cantidad de poder computacional
que al usuario se le garantiza recibir dentro de un
periodo de tiempo y el precio por unidad de
procesamiento. Analizamos diferentes escenarios para
este modelo. Estos escenarios combinan un único nivel
de servicio en una sola máquina y en máquinas
paralelas. Utilizamos nuestros algoritmos para la
ejecución de muestras de cargas de trabajo reales
disponibles para la comunidad de HPC. Con el fin de
proveer una comparación en el desempeño, realizamos
un análisis conjunto de varias métricas. Presentamos
un caso de estudio.

Palabras clave. Computación en nube, servicio de

infraestructura en nube, calidad de servicio,
calendarización.

1 Introduction

Infrastructure as a service type in clouds allows
users to take advantage of computational power
on-demand. The focus of this kind of clouds
manages virtual machines (VMs) created by
users to execute their jobs on the cloud
resources. However, in this new paradigm, there
are issues that prevent its widespread adoption.
The main concern is its necessity to provide
Quality of Service (QoS) guarantees [1].

The use of Service Level Agreements (SLAs)
is a fundamentally new approach for job
scheduling. In this approach, schedulers are
based on satisfying QoS constraints. The main
idea is to provide different levels of service, each
addressing a different set of customers for the
same services, in the same SLA, and establish
bilateral agreements between a service provider
and a service consumer to guarantee job delivery
time depending on the selected level of service.
Basically, SLAs contain information such as the
latest finish time of the job, reserved time for job
execution, number of CPUs required, and price
per time unit.

The shifting emphasis of the Grid and Clouds
towards a service-oriented paradigm led to the
adoption of SLA as a very important concept, but
at the same time led to the problem of finding the
stringent SLAs.

402 Anuar Lezama Barquet, Andrei Tchernykh, and Ramin Yahyapour

Computación y Sistemas Vol. 17 No.3, 2013 pp. 401-411
ISSN 1405-5546

There has been significant amount of research
on various topics related to SLAs: admission
control techniques [2]; incorporation of the SLA
into the Grid/Cloud architecture [3]; specifications
of SLAs [4, 5]; usage of SLAs for resource
management; SLA-based scheduling [6], SLA
profits [7]; automatic negotiation protocols [8];
economic aspects associated with the usage of
SLAs for service provision [9], etc. Little is known
about the worst case efficiency of SLA scheduling
solutions. There are only very few theoretical
results on SLA scheduling, and most of them
address real time scheduling with given
deadlines.

Baruah and Haritsa [10] discuss the online
scheduling of sequential independent jobs on real
time systems. They presented the algorithm
ROBUST (Resistance to Overload By Using Slack
Time) which guarantees a minimum slack factor
for every task. The slack factor f of a task is
defined as a ratio of its relative deadline to its
execution time requirement. It is a quantitative
indicator of the tightness of the task deadline. The
algorithm provides an effective processor
utilization (EPU) of (f-1)/f during the overload
interval. He shows that given enough processors,
on-line scheduling algorithms can be designed
with performance guarantees arbitrarily close to
that of optimal uniprocessor scheduling
algorithms.

A more complete study is presented in [11] by
Schwiegelshohn et al. The authors theoretically
analyze the single (SM) and the parallel machine
(PM) models subject to jobs with single (SSL) and
multiple service levels (MSL). Their analysis is
based on the competitive factor which is
measured as the ratio of the income of the
infrastructure provider obtained via the scheduling
algorithm to the optimal income. They provide
worst case performance bounds of four greedy
acceptance algorithms named SSL-SM, SSL-PM,
MSL-SM, MSL-PM, and two restricted acceptance
algorithms MSL-SM-R, and MSL-PM-R. All of
them are based on adaptation of the preemptive
EDD (Earliest Due Date) algorithm for scheduling
jobs with deadlines.

In this paper, we make use of IaaS cloud
model proposed in [11]. To show practicability
and competitiveness of the algorithms, we
conduct a comprehensive study of their

performance and derivatives using simulation. We
take into account an important issue that is critical
for practical adoption of the scheduling
algorithms: we use workloads based on real
production traces of heterogeneous HPC
systems.

We study two greedy algorithms: SSL-SM and
SSL-PM. SSL-SM accepts every new job for a
single machine if this job and all previously
accepted jobs can be completed in time. SSL-PM
accepts jobs considering all available processors
in parallel machines. Key properties of SLA
should be observed to provide benefits for real
installations. Since SLAs are often considered as
successors of service oriented real time paradigm
with deadlines, we start with a simple model with
a single service level on a single computer, and
extend it to a single SLA on multiple computers.

One of the most basic models of SLA provides
relative deadline as a function of the job execution
time with a constant service level parameter of
usage. This model does not match every real
SLA, but the assumptions are nonetheless
reasonable. It is still a valid basic abstraction of
SLAs that can be formalized and automatically
treated.

We address an online scheduling problem.
The jobs arrive one by one and after the arrival of
a new job the decision maker must resolve
whether he rejects this incoming job or schedules
it on one of the machines. The problem is online
because the decision maker has to resolve it
without information about the following jobs. For
this problem, we measure the performance of the
algorithms by a set of metrics which includes the
competitive factor and the number of accepted
jobs.

2 Scheduling Model

2.1 Formal Definition

In this work, we consider the following model. A
user submits jobs to a service provider, which has
to guarantee some level of service (SL). Let

1 2[, ,..., ,...,]i kS S S S S be the set of service levels

offered by the provider. For a given service level

iS the user is charged at a cost iu per unit of

Performance Evaluation of Infrastructure as Service Clouds with SLA Constraints 403

Computación y Sistemas Vol. 17 No.3, 2013 pp. 401-411
ISSN 1405-5546

execution time depending on the urgency of the

submitted job.

max{ }max i
i

u u denotes the

maximum cost.
The urgency of the job is denoted by the slack

factor 1if  . The total number of jobs submitted

to the system is
rn . Each job

jJ from the released

job set 2[, , ,]
rr i nJ J J J  is described by a tuple

(, , ,)j j i jr p S d : its release date 0jr  , its

execution time
jp , and the SL

iS . The deadline

of each job
jd is calculated at the release of the

job as
j j i jd r f p   . The maximum deadline is

denoted by max{ }max j
j

d d . The processing time

of the job
jp becomes known at time

jr . Once the

job is released, the provider has to decide, before
any other job arrives, whether the job is accepted

or not. In order to accept the job
jJ the provider

should ensure that some machine in the system is

capable of completing
jJ before its deadline. In

the case of acceptance, further jobs should

prevent that the job
jJ misses its deadline. Once

a job is accepted, the scheduler uses some
heuristic to schedule the job. Finally, the set of

accepted jobs
1 2[, , ,]nJ J J J is a subset of

rJ

where n is the number of jobs successfully

accepted and executed.

2.2 Metrics

We used several metrics to evaluate the
performance of our scheduling algorithms and
SLAs. In contrast to traditional scheduling
problems, the classic scheduling metrics such as

maxC become irrelevant in evaluating the system

performance of systems scheduled through SLAs.
One of the objective functions represents the

goal of the infrastructure provider who wants to

maximize his total income. Job
jJ with service

level iS generates income
i ju p in the case of

acceptance and zero otherwise. The competitive

factor
 

i1

*
1

V A

n

jj

v

u p
c




 


 is defined as a ratio of

total income generated by an algorithm to optimal

income  
*

V A . Due to maximization of income, a

larger competitive factor is better than a smaller
one. Note that in our evaluation of experiments,
we use the upper bound of the optimal income

 
*

V̂ A instead of the optimal income as we are,

in general, not able to determine the optimal
income.

   
* *

1

V A V A m)ˆ in(,
rn

max j max max

j

u p u d m


   

The first bound is the sum of the processing
times of all released jobs multiplied by the
maximum price per unit execution of all available
SLAs. The second bound is the maximum
deadline of all released jobs multiplied by the
maximum price per unit execution value and the
number of machines in the system. Due to our
admission control policy, the system does not
execute jobs whose deadline cannot be reached;
therefore, this second bound is also an upper
bound of the maximum processing time in which
the system can execute work.

In our experiments we analyze SSL-SM and
SSL-PM algorithms, since only one SL is used;

we do not take
maxu into account to calculate the

competitive factor. We also calculate the number
of rejected jobs and use it as a measure of the
capacity of the system to respond to the incoming
flow of jobs. Finally, we calculate the mean
waiting time of the jobs within the system as

1

1
MWT ()

n

j

j

jp
n

c


  , where jc is the

completion time of the job j .

 3 Experimental Setup

3.1 Algorithms

In our experiments, we use SSL-SM and SSL-PM
algorithms based on the EDD (Earliest Deadline
Deadline) algorithm, which gives priority to jobs
according to their deadline. The jobs that have
been admitted but not yet completed are
introduced in a queue. The jobs are ordered in
non-decreasing deadlines. For their execution,

404 Anuar Lezama Barquet, Andrei Tchernykh, and Ramin Yahyapour

Computación y Sistemas Vol. 17 No.3, 2013 pp. 401-411
ISSN 1405-5546

jobs are taken from the head of the queue. When
a new job is released, it is placed in the queue
according to its deadline.

EDD is an optimal algorithm for minimizing
lateness in a single machine system. In our case,
it corresponds to minimizing the number of
rejected jobs. Gupta and Palin [12] showed that
there cannot exist an algorithm with a competitive

ratio greater than 1 (1/)if ò with 1m 

machines, and 0ò is arbitrary small for the

problem of allocating jobs on a hard real-time
scheduling model in which a job must be
completed if it was admitted for execution. They
proposed an algorithm that achieves a

competitive ratio of at least 1 (1)/ if and

demonstrated that this is an optimal scheduler for

hard real-time scheduling with m machines. The
admittance test also proposed by them consists in
verifying that all the already accepted jobs whose
deadline is greater than that of the incoming job
will be completed before their deadline is met.

3.2 Workload

In order to evaluate the performance of SLA
scheduling, we performed a series of experiments
using traces of HPC jobs obtained from the
Parallel Workloads Archive (PWA) [13] and the
Grid Workloads Archive (GWA) [14].

These traces are logs from real parallel
computer systems, and they give us a good
insight in how our proposed schemes will perform
with real users. Predominance of low parallel jobs
in real logs is well known. Even though some jobs
in the traces require multiple processors, we
consider that in our model the machines have
enough capacity to process them, so we can
abstract their parallelism.

Since we assume that IaaS clouds are a
promising alternative to computational centers,
we can expect that workload submitted to clouds
will have similar characteristics to the ones
submitted to actual parallel and grid systems. In
our log, we considered nine traces from DAS2
(University of Amsterdam), DAS2 (Delft
University), DAS2 (Utrecht University), DAS2
(Leiden University), KTH, DAS2 (Vrije University),
HPC2N, CTC, and LANL. Details of the log

characteristics can be found in the PWA [13] and
GWA [14].

To obtain valid statistical values, 30
experiments within one week period were
simulated for each SLA. We calculated job
deadlines based on the real processing time of
the jobs.

4 Experimental Results

4.1 Single Machine Model

For the first set of experiments with a single
machine system scheme, we performed
experiments for 12 values of the slack factor: 1, 2,
5, 10, 15, 20, 25, 50, 100, 200, 500 and 1000.
Although we do not expect that a real SLA
provides slack factors greater than 50, large
values are important to study expected system
performance when slack factors tend to infinity.

Figures 1-5 show simulation results of SSL-SM
algorithm. They present percentage of rejected
jobs, total processing time of accepted jobs, mean
waiting time, mean number of interruptions per
job, and mean competitive factor.

Fig. 1. Percentage of rejected jobs for SSL-SM

algorithm

1 5 10 20 50

97.6

97.8

98

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

Percentage of Rejected Jobs
(detail)

SLA
f

%
R

J

Performance Evaluation of Infrastructure as Service Clouds with SLA Constraints 405

Computación y Sistemas Vol. 17 No.3, 2013 pp. 401-411
ISSN 1405-5546

Figure 1 shows the percentage of rejected jobs
for the SSL-SM algorithm. We see that the
number of rejected jobs decreases while the slack
factor increases.

Large values of slack factor increase the
flexibility to accept new jobs by delaying the
execution of already accepted ones. In the case
when a slack factor is equal to 1, the system
cannot accept new jobs until the job in execution
is completed. We observe that the percentage of
rejected jobs with a slack factor of 1 is a bit lower
than that with values of slack factor from 2 to 25.
However, it does not mean that this slack factor
allows the system to execute more computational
work as we see in Figure 2. Figure 2 shows the
total processing time of accepted jobs for the
given slack factors. We see that the processing
time increases as the slack factor increases,
meaning that the scheduler is able to exploit the
increased flexibility of the jobs. Figure 3 shows
mean waiting time versus the slack factor. It
demonstrates that an increase of total processing
time causes an increase of waiting time.

We also evaluate the mean number of
interruptions per job; these results are showed in
Figure 4. We see that for small slack factors the

number of interruptions is greater than that for
larger slack factors. Mean values are below 1
interruption per job. Moreover, if a slack factor is
more than 10, the number of interruptions per job
is stable and vary between 0.2 and 0.3. This fact
is important; keeping the number of interruptions
low prevents the system overhead.

Figure 5 shows the mean competitive factor. It
represents the infrastructure provider objective to
maximize his total income. Note that a larger
competitive factor is better than a smaller one.
When the slack factor is equal to 1, the
competitive factor is 0.85. Once the slack factor is
increased to 5, we obtain better competitive
factors. When the slack factor is equal to 5, the
mean competitive factor has its maximum value of
0.94. Passing this point, the competitive factor
decreases when the slack factor is equal to 200.
We consider that at this point the deadlines of the
jobs are much larger than their processing time. If
the slack factor is between 200 and 500, the
competitive factor is increased again because the
maximum deadline gets close to the sum of
processing times.

When the deadline of all jobs tends to infinity,
the completive factor is optimal as expected.

Fig. 2. Total processing time for SSL-SM algorithm

Fig. 3. Mean waiting time of jobs for SSL-SM algorithm

1 5 10 20 50

2

4

6

8

10

12

14

16

x 10
6

Total Processing Time
(detail)

SLA
f

se
co

n
d

s

1 5 10 20 50
0

2

4

6

8

10

12

x 10
5

Mean Waiting Time
(detail)

SLA
f

se
co

n
d

s

406 Anuar Lezama Barquet, Andrei Tchernykh, and Ramin Yahyapour

Computación y Sistemas Vol. 17 No.3, 2013 pp. 401-411
ISSN 1405-5546

In a real cloud scenario, the slack factor can
be dynamically adjusted in response to changes
in the configuration and/or the workload. To this

end, historical workload within a given time
interval can be analyzed to determine an
appropriate slack factor. The time interval for this
adjustment should be set according to the
dynamic characteristics of the workload and in the
IaaS configuration.

4.2 Multiple Machine Model

In this section, we present the results of SSL-PM
algorithm simulations on two and three machines.
We plotted the SSL-SM results to analyze the
change of the system performance when the
number of machines varies.

Figures 6-11 show the percentage of rejected
jobs, total processing time of accepted jobs, mean
waiting time, mean number of interruptions per
job, efficiency and mean competitive factor.

Figure 6 presents the percentage of rejected
jobs. It can be seen that an increase of the
number of machines has a limited effect on the
acceptability of jobs when the slack factor is
small. However, larger values of slack factor have
greater impact on the number of accepted jobs.
Figure 7 shows the total processing time of
accepted jobs. The processing time is increased

Fig. 6. Percentage of rejected jobs for SSL-PM

algorithm

Fig. 4. Mean number of interruptions per job for SSL-

SM algorithm

Fig. 5. Mean competitive factor of SSL-SM algorithm

1 5 10 20 50
92

93

94

95

96

97

98

99

100

Percentage of Rejected Jobs
(detail)

SLA
f

%
R

J

One machine

Two machines

Three machines

1 5 10 20 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Mean Number of Interruptions per Job
(detail)

SLA
f

In
te

rr
u

p
ti
o

n
s
/J

o
b

1 100 200 500 1000

0.4

0.5

0.6

0.7

0.8

0.9

1
Competitive Factor

SLA
f

c
V

Performance Evaluation of Infrastructure as Service Clouds with SLA Constraints 407

Computación y Sistemas Vol. 17 No.3, 2013 pp. 401-411
ISSN 1405-5546

as more machines are added to the system.
However, doubling and tripling the processing
capacity do not cause the same increase in the
processing time. This effect can be clearly seen
when the slack factor is large. We conclude that
an increase in the processing capacity will be
more effective with smaller slack factors. Figure 8
shows the mean waiting time when slack factor

varies. We see that an increase of the total
processing time, as a result of larger slack
factors, also causes an increase of waiting time.
Additionally, adding more machines to the system
makes the increase of the mean waiting time less
significant.

Figure 9 shows the mean number of
interruptions per job. We see that an increase of
the number of machines increases the number of
interruptions. This increase is not considerable,
and is stabilized as the slack factor is increased.
The number of interruptions is maximal with a
slack factor of 2 for all three models. Figure 10
shows the execution efficiency. This metric
indicates the relative amount of useful work which
the system executes during the interval between
the release time of the first job and the completion
of the last job.

We see that a decrease of efficiency, at least
with moderate slack factors, mainly depends on
the number of machines. Figure 11 presents the
competitive factor while the slack factor varies.
We see that for the two and three machine
system configuration the maximum competitive
factor is obtained with a slack factor of 2. As we
already mentioned, in the case of a single
machine configuration the best competitive

Fig. 9. Mean number of interruption for SSL-PM

algorithm

Fig. 7. Total processing time for SSL-PM algorithm

Fig. 8. Mean waiting time for SSL-PM algorithm

1 5 10 20 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Mean Number of Interruptions per Job
(detail)

SLA
f

In
te

rr
u

p
ti
o

n
s
/J

o
b

One machine

Two machines

Three machines

1 100 200 500 1000
0

2

4

6

8

10

12
x 10

7 Total Processing Time

SLA
f

s
e

c
o

n
d

s

One machine

Two machines

Three machines

1 5 10 20 50
0

1

2

3

4

5

6

7

8

9
x 10

5

Mean Waiting Time
(detail)

SLA
f

s
e

c
o

n
d

s

One machine

Two machines

Three machines

408 Anuar Lezama Barquet, Andrei Tchernykh, and Ramin Yahyapour

Computación y Sistemas Vol. 17 No.3, 2013 pp. 401-411
ISSN 1405-5546

factors are obtained with a slack factor of 2 and 5.
We can also observe that when the slack factor is
increased, the competitive factor is decreased.
This happens until the slack factor becomes large
enough to create a significant difference between
job deadlines and their processing times. This is

clearly seen when the slack factor is 200 for a
single machine configuration, and 100 for two and
three machines.

In the cases of two and three machines
configuration, for the slack factor greater than
500, the competitive factor almost reached the
optimal value.

4.3 Execution Costs

In the IaaS scenario, cloud providers offer
computer resources to customers on a pay-as-
you-go basis. The price per time unit depends on
the services selected by the customer. This
charge depends not only on the price the user is
willing to accept, but also on the cost of the
infrastructure maintenance.

In order to estimate this charge, we propose a
tariff function that depends on the slack factor.
We first take into account that the provider needs
to recover the maintenance cost from the
execution of jobs. We assume that the provider
pays a flat rate for the use/maintenance of the
resources.

The total maintenance cost of job processing

()tco can be calculated using the expression

Fig. 10. Execution efficiency for SSL-PM algorithm

Fig. 11. Competitive factor for SSL-PM algorithm

Fig. 12. Execution cost per hour

1 100 200 500 1000
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Execution efficiency

SLA
f

E
ffi

ci
e

n
cy

One machine

Two machines

Three machines

1 100 200 500 1000
0.4

0.5

0.6

0.7

0.8

0.9

1
Competitive Factor

SLA
f

c
V

One machine

Two machines

Three machines

1 5 10 20 50
0

1

2

3

4

5

6

7

Execution cost per hour
(detail)

SLA
f

U
S

D

One machine

Two machines

Three machines

Performance Evaluation of Infrastructure as Service Clouds with SLA Constraints 409

Computación y Sistemas Vol. 17 No.3, 2013 pp. 401-411
ISSN 1405-5546

1

rn

jj

u

p
u m

m


 


. The cost per time unit uco

can be calculated as

1

t

u

jj

n

co
co

p





, where

1

rn

j

j

p


 is the sum of processing times of all

released jobs,
uu is the price per unit of

maintenance, m is the number of machines, and

1

n

j

j

p


 is the sum of processing times reached

by the algorithm. We consider that uu is equal to

8.5 cents per hour, which is the price that Amazon
EC2 charges for a small processing unit [15].

Figure 12 shows the execution cost per hour
when the slack factor varies. As it can be seen,
the cost of processing jobs with a small slack
factor is larger than the execution of jobs with a
looser slack factor. Moreover, the costs are larger
if fewer machines are used. The reason is that a
system with less machines and a small slack
factor rejects most of the jobs within a given
interval, so the execution is costly. Therefore,
configurations that execute more jobs have lower
costs per execution time unit. Clear profit is
generated if cost per time unit is incremented.

5 Conclusions and Future Work

The use of Service Level Agreements (SLAs) is a
fundamentally new approach for job scheduling.
According to this approach, scheduling is based
on satisfaction of QoS constraints. The main idea
is to provide different levels of service, each
addressing a different set of customers. While a
large number of service levels leads to high
flexibility for customers, it also produces a
significant management overhead. Hence, a
suitable tradeoff must be found and adjusted
dynamically, if necessary. While theoretical worst
case IaaS scheduling models begin to emerge,
fast statistical techniques applied to real data are
effective as have been shown empirically.

In this paper, we presented an experimental
study of two greedy acceptance algorithms,
namely, SSL-SM and SSL-PM, with known worst
case performance bounds. They are based on the
adaptation of the preemptive EDD algorithm for
job scheduling with different service levels on
different number of machines.

Our study results in several contributions.
Firstly, we identified several service levels to
make scheduling decisions with respect to job
acceptance; secondly, we considered and
analyzed two test cases on a single machine and
on parallel machines; thirdly, we estimated the
cost function for different service levels; then, we
showed that the slack factor can be dynamically
adjusted in response to changes in the
configuration and/or the workload. To this end,
the past workload within a given time interval can
be analyzed to determine an appropriate slack
factor. The time interval for this adaptation
depends on the dynamics of the workload
characteristics and IaaS configuration.

Though our model of IaaS is simplified, it is still
a valid basic abstraction of SLAs that can be
formalized and treated automatically.

In this paper, we explored only a few scenarios

of using SLAs. The IaaS clouds are usually large
scale and vary significantly. It is not possible to
satisfy all QoS constraints from the service
provider perspective if a single service level is
used. Hence, a balance between the number of
service levels and the number of resources needs
to be found and adjusted dynamically. A system
can have several specific service levels (e.g.,
Bronze, Silver, Gold) and algorithms to keep the
system with QoS specified in SLA. However,
further study of algorithms for multiple service
classes and the resource allocation algorithms is
required to assess their actual efficiency and
effectiveness. This will be the subject of future
work to achieve a better understanding of service
levels in IaaS clouds. Moreover, other scenarios
of the problem with different types of SLAs and
workloads with a combination of jobs with and
without SLA still need to be addressed. Also, as
future work, we will consider the elasticity of slack
factors in order to increase profit while providing
better QoS to users.

410 Anuar Lezama Barquet, Andrei Tchernykh, and Ramin Yahyapour

Computación y Sistemas Vol. 17 No.3, 2013 pp. 401-411
ISSN 1405-5546

References

1. Garg, S.K., Gopalaiyengar, S.K., & Buyya, R.
(2011). SLA-based Resource Provisioning for

Heterogeneous Workloads in a Virtualized Cloud
Datacenter. 11th international conference on
Algorithms and Architectures for parallel
processing (ICA3PP'11), Melbourne, Australia,
371–384.

2. Wu, L., Garg, S.K., & Buyya, R. (2011). SLA-

based admission control for a Software-as-a-
Service provider in Cloud computing environments.
11th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid 2011),
Newport Beach, CA., USA, 195–204.

3. Patel, P., Ranabahu, A., & Sheth, A. (2009).

Service Level Agreement in Cloud Computing
(Technical Report). Ohio Center of Excellence in
Knowledge-enabled Computing.

4. Andrieux, A., Czajkowski, K., Dan, A., Keahey,
K., Ludwig, H., Nakata, T., Pruyne, J., Rofrano,
J., Tuecke, S., & Xu, M. (2004). Web services

agreement specification (WS-Agreement), (GFD-
R-P.107). Global Grid.

5. Review and summary of cloud service level
agreements. (s.f.). Retrieved from
http://www.ibm.com/developerworks/cloud/library/cl
-rev2sla.html.

6. Wu, L., Garg, S.K., & Buyya, R. (2011). SLA-

Based Resource Allocation for Software as a
Service Provider (SaaS) in Cloud Computing
Environments. 11

th
 IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing
(CCGrid 2011), Newport Beach, CA,USA, 195–
204.

7. Freitas, A.L., Parlavantzas, N., & Pazat, J.L.
(2011). Cost Reduction Through SLA-driven Self-

Management. Ninth IEEE European Conference
on Web Services (ECOWS), Lugano, Switzerland,
117–124.

8. Silaghi, G.C., Şerban, L.D., & Litan, C.M. (2010).

A Framework for Building Intelligent SLA
Negotiation Strategies under Time Constraints.
Economics of Grids, Clouds, Systems, and
Services, Lecture Notes in Computer Science,
6296, 48–61.

9. Macías, M., Smith, G., Rana, O., Guitart, J., &
Torres, J. (2010). Enforcing Service Level

Agreements Using an Economically Enhanced
Resource Manager. Economic Models and
Algorithms for Distributed Systems, Autonomic
Systems, 109–127.

10. Baruah, S.K. & Haritsa, J.R. (1997). Scheduling
for overload in real-time systems. IEEE
Transactions on Computers, 46(9), 1034–1039.

11. Schwiegelshohn, U. & Tchernykh, A. (2012).

Online Scheduling for Cloud Computing and
Different Service Levels. IEEE 26th International
Parallel and Distributed Processing Symposium
Workshops, Shanghai, China, 1067–1074.

12. Gupta, B.D. & Palis, M.A. (2001). Online real-time

preemptive scheduling of jobs with deadlines on
multiple machines. Journal of Scheduling, 4(6),
297–312.

13. D. Feitelson (2008). Parallel Workloads Archive.
Algorithms and Architectures for.

14. Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu,
C., Wolters, L., & Epema, D.H. (2008). The Grid

Workloads Archive. Future Generation Computer
Systems, 24(7), 672–686.

15. Amazon Services. (2013). Precios deAmazon
EC2 Retrieved from
http://aws.amazon.com/ec2/pricing/.

Anuar Lezama Barquet
obtained a degree in
Electric and Electronic
Engineer from the National
Autonomous University of
Mexico (UNAM). He
received his M.S. in
Computer Science from the
CICESE Research Center
in 2012. His interests

include parallel computing, scheduling, and cloud
computing.

Andrei Tchernykh is a
researcher at the Computer
Science Department, CICESE
Research Center, Ensenada,
Baja California, Mexico. From
1975 to 1990 he was with the
Institute of Precise Mechanics
and Computer Technology of
the Russian Academy of
Sciences (Moscow, Russia).

He received his Ph.D. in Computer Science in
1986. In CICESE, he is a coordinator of the
Parallel Computing Laboratory. He is a member
of the National System of Researchers of Mexico

Performance Evaluation of Infrastructure as Service Clouds with SLA Constraints 411

Computación y Sistemas Vol. 17 No.3, 2013 pp. 401-411
ISSN 1405-5546

(SNI), Level II. He leads a number of national and
international research projects. He served as a
program committee member of several
professional conferences and a general co-chair
for international conferences on Parallel
Computing Systems. His main research interests
include scheduling, load balancing, adaptive
resource allocation, scalable energy-aware
algorithms, green grid and cloud computing, eco-
friendly P2P scheduling, multi-objective
optimization, scheduling in real time systems,
computational intelligence, heuristics, meta-
heuristics, and incomplete information processing.

Ramin Yahyapour is executive
director of the GWDG
University of Göttingen. He has
done research in Clouds, Grid
and Service-oriented
Infrastructures for several
years. His research interests
are in resource management.

He is a steering group member and on the Board
of Directors in the Open Grid Forum. He has
participated in several national and European
research projects. Also, he is a scientific
coordinator of the FP7 IP SLA@SOI and was a
steering group member in the CoreGRID Network
of Excellence.

Article received on 22/02/2013; accepted 01/08/2013.

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V06-5046M26-9&_user=3918225&_coverDate=10%2F31%2F2010&_rdoc=1&_fmt=full&_orig=search&_origin=search&_cdi=5638&_sort=d&_docanchor=&view=c&_searchStrId=1563519990&_rerunOrigin=scholar.google&_acct=C000061775&_version=1&_urlVersion=0&_userid=3918225&md5=a2329bfe4101dd2c56b158b6128d21b0&searchtype=a#bbio19

