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Abstract. In this paper, we present an experimental 

study of job scheduling algorithms in infrastructure as a 
service type in clouds. We analyze different system 
service levels which are distinguished by the amount of 
computing power a customer is guaranteed to receive 
within a time frame and a price for a processing time 
unit. We analyze different scenarios for this model. 
These scenarios combine a single service level with 
single and parallel machines. We apply our algorithms 
in the context of executing real workload traces 
available to HPC community. In order to provide 
performance comparison, we make a joint analysis of 
several metrics. A case study is given. 

Keywords. Cloud computing, infrastructure as a 

service, quality of service, scheduling. 

Evaluación del desempeño de 
servicios de infraestructura en nubes 

con restricciones de acuerdos de nivel 
de servicio (SLA) 

Resumen. En el presente artículo, mostramos un 
estudio experimental sobre  algoritmos de 
calendarización en servicios de infraestructura en 
nubes. Analizamos diferentes niveles de servicios que 
se distinguen por la cantidad de poder computacional 
que al usuario se le garantiza recibir dentro de un 
periodo de tiempo y el precio por unidad de 
procesamiento. Analizamos diferentes escenarios para 
este modelo. Estos escenarios combinan un único nivel 
de servicio en una sola máquina y en máquinas 
paralelas. Utilizamos nuestros algoritmos para la 
ejecución de muestras de cargas de trabajo reales 
disponibles para la comunidad de HPC. Con el fin de 
proveer una comparación en el desempeño, realizamos 
un análisis conjunto de varias métricas. Presentamos 
un caso de estudio.  

Palabras clave. Computación en nube, servicio de 

infraestructura en nube, calidad de servicio, 
calendarización. 

1 Introduction 

Infrastructure as a service type in clouds allows 
users to take advantage of computational power 
on-demand. The focus of this kind of clouds 
manages virtual machines (VMs) created by 
users to execute their jobs on the cloud 
resources. However, in this new paradigm, there 
are issues that prevent its widespread adoption. 
The main concern is its necessity to provide 
Quality of Service (QoS) guarantees [1]. 

The use of Service Level Agreements (SLAs) 
is a fundamentally new approach for job 
scheduling. In this approach, schedulers are 
based on satisfying QoS constraints. The main 
idea is to provide different levels of service, each 
addressing a different set of customers for the 
same services, in the same SLA, and establish 
bilateral agreements between a service provider 
and a service consumer to guarantee job delivery 
time depending on the selected level of service. 
Basically, SLAs contain information such as the 
latest finish time of the job, reserved time for job 
execution, number of CPUs required, and price 
per time unit. 

The shifting emphasis of the Grid and Clouds 
towards a service-oriented paradigm led to the 
adoption of SLA as a very important concept, but 
at the same time led to the problem of finding the 
stringent SLAs. 
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There has been significant amount of research 
on various topics related to SLAs: admission 
control techniques [2]; incorporation of the SLA 
into the Grid/Cloud architecture [3]; specifications 
of SLAs [4, 5]; usage of SLAs for resource 
management; SLA-based scheduling [6], SLA 
profits [7]; automatic negotiation protocols [8]; 
economic aspects associated with the usage of 
SLAs for service provision [9], etc. Little is known 
about the worst case efficiency of SLA scheduling 
solutions. There are only very few theoretical 
results on SLA scheduling, and most of them 
address real time scheduling with given 
deadlines.  

Baruah and Haritsa [10] discuss the online 
scheduling of sequential independent jobs on real 
time systems. They presented the algorithm 
ROBUST (Resistance to Overload By Using Slack 
Time) which guarantees a minimum slack factor 
for every task. The slack factor f of a task is 
defined as a ratio of its relative deadline to its 
execution time requirement. It is a quantitative 
indicator of the tightness of the task deadline. The 
algorithm provides an effective processor 
utilization (EPU) of (f-1)/f during the overload 
interval. He shows that given enough processors, 
on-line scheduling algorithms can be designed 
with performance guarantees arbitrarily close to 
that of optimal uniprocessor scheduling 
algorithms. 

A more complete study is presented in [11] by 
Schwiegelshohn et al. The authors theoretically 
analyze the single (SM) and the parallel machine 
(PM) models subject to jobs with single (SSL) and 
multiple service levels (MSL). Their analysis is 
based on the competitive factor which is 
measured as the ratio of the income of the 
infrastructure provider obtained via the scheduling 
algorithm to the optimal income. They provide 
worst case performance bounds of four greedy 
acceptance algorithms named SSL-SM, SSL-PM, 
MSL-SM, MSL-PM, and two restricted acceptance 
algorithms MSL-SM-R, and MSL-PM-R. All of 
them are based on adaptation of the preemptive 
EDD (Earliest Due Date) algorithm for scheduling 
jobs with deadlines. 

In this paper, we make use of IaaS cloud 
model proposed in [11]. To show practicability 
and competitiveness of the algorithms, we 
conduct a comprehensive study of their 

performance and derivatives using simulation. We 
take into account an important issue that is critical 
for practical adoption of the scheduling 
algorithms: we use workloads based on real 
production traces of heterogeneous HPC 
systems. 

We study two greedy algorithms: SSL-SM and 
SSL-PM. SSL-SM accepts every new job for a 
single machine if this job and all previously 
accepted jobs can be completed in time. SSL-PM 
accepts jobs considering all available processors 
in parallel machines. Key properties of SLA 
should be observed to provide benefits for real 
installations. Since SLAs are often considered as 
successors of service oriented real time paradigm 
with deadlines, we start with a simple model with 
a single service level on a single computer, and 
extend it to a single SLA on multiple computers. 

One of the most basic models of SLA provides 
relative deadline as a function of the job execution 
time with a constant service level parameter of 
usage. This model does not match every real 
SLA, but the assumptions are nonetheless 
reasonable. It is still a valid basic abstraction of 
SLAs that can be formalized and automatically 
treated. 

We address an online scheduling problem. 
The jobs arrive one by one and after the arrival of 
a new job the decision maker must resolve 
whether he rejects this incoming job or schedules 
it on one of the machines. The problem is online 
because the decision maker has to resolve it 
without information about the following jobs. For 
this problem, we measure the performance of the 
algorithms by a set of metrics which includes the 
competitive factor and the number of accepted 
jobs. 

2 Scheduling Model 

2.1 Formal Definition  

In this work, we consider the following model. A 
user submits jobs to a service provider, which has 
to guarantee some level of service (SL). Let 

1 2[ , ,..., ,..., ]i kS S S S S  be the set of service levels 

offered by the provider. For a given service level 

iS  the user is charged at a cost iu  per unit of 
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execution time depending on the urgency of the 

submitted job. 
 

max{ }max i
i

u u  denotes the 

maximum cost. 
The urgency of the job is denoted by the slack 

factor 1if  . The total number of jobs submitted 

to the system is
rn . Each job 

jJ  from the released 

job set 2[ , ,  , ]
rr i nJ J J J   is described by a tuple

( , , , )j j i jr p S d : its release date 0jr  , its 

execution time
jp , and the SL 

iS .  The deadline 

of each job 
jd  is calculated at the release of the 

job as 
j j i jd r f p   . The maximum deadline is 

denoted by max{ }max j
j

d d . The processing time 

of the job 
jp  becomes known at time

jr . Once the 

job is released, the provider has to decide, before 
any other job arrives, whether the job is accepted 

or not. In order to accept the job
jJ the provider 

should ensure that some machine in the system is 

capable of completing 
jJ  before its deadline. In 

the case of acceptance, further jobs should 

prevent that the job 
jJ  misses its deadline. Once 

a job is accepted, the scheduler uses some 
heuristic to schedule the job. Finally, the set of 

accepted jobs 
1 2[ , , , ]nJ J J J   is a subset of 

rJ  

where n is the number of jobs successfully 

accepted and executed.  

2.2 Metrics 

We used several metrics to evaluate the 
performance of our scheduling algorithms and 
SLAs. In contrast to traditional scheduling 
problems, the classic scheduling metrics such as 

maxC  become irrelevant in evaluating the system 

performance of systems scheduled through SLAs. 
One of the objective functions represents the 

goal of the infrastructure provider who wants to 

maximize his total income. Job 
jJ  with service 

level iS  generates income 
i ju p  in the case of 

acceptance and zero otherwise. The competitive 

factor 
 

i1

*
1

V A

n

jj

v

u p
c




 


 is defined as a ratio of 

total income generated by an algorithm to optimal 

income  
*

V A . Due to maximization of income, a 

larger competitive factor is better than a smaller 
one. Note that in our evaluation of experiments, 
we use the upper bound of the optimal income 

 
*

V̂ A  instead of the optimal income as we are, 

in general, not able to determine the optimal 
income. 

   
* *

1

V A V A m )ˆ in( , 
rn

max j max max

j

u p u d m


     

The first bound is the sum of the processing 
times of all released jobs multiplied by the 
maximum price per unit execution of all available 
SLAs. The second bound is the maximum 
deadline of all released jobs multiplied by the 
maximum price per unit execution value and the 
number of machines in the system. Due to our 
admission control policy, the system does not 
execute jobs whose deadline cannot be reached; 
therefore, this second bound is also an upper 
bound of the maximum processing time in which 
the system can execute work. 

In our experiments we analyze SSL-SM and 
SSL-PM algorithms, since only one SL is used; 

we do not take 
maxu  into account to calculate the 

competitive factor. We also calculate the number 
of rejected jobs and use it as a measure of the 
capacity of the system to respond to the incoming 
flow of jobs. Finally, we calculate the mean 
waiting time of the jobs within the system as 

1

1
MWT ( )

n

j

j

jp
n

c


  , where jc  is the 

completion time of the job j . 

 3 Experimental Setup 

3.1 Algorithms 

In our experiments, we use SSL-SM and SSL-PM 
algorithms based on the EDD (Earliest Deadline 
Deadline) algorithm, which gives priority to jobs 
according to their deadline. The jobs that have 
been admitted but not yet completed are 
introduced in a queue. The jobs are ordered in 
non-decreasing deadlines. For their execution, 
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jobs are taken from the head of the queue. When 
a new job is released, it is placed in the queue 
according to its deadline.  

EDD is an optimal algorithm for minimizing 
lateness in a single machine system. In our case, 
it corresponds to minimizing the number of 
rejected jobs. Gupta and Palin [12] showed that 
there cannot exist an algorithm with a competitive 

ratio greater than 1 (1/ )if ò  with 1m   

machines, and 0ò  is arbitrary small for the 

problem of allocating jobs on a hard real-time 
scheduling model in which a job must be 
completed if it was admitted for execution. They 
proposed an algorithm that achieves a 

competitive ratio of at least 1  (1 )/ if  and 

demonstrated that this is an optimal scheduler for 

hard real-time scheduling with m  machines. The 
admittance test also proposed by them consists in 
verifying that all the already accepted jobs whose 
deadline is greater than that of the incoming job 
will be completed before their deadline is met. 

3.2 Workload 

In order to evaluate the performance of SLA 
scheduling, we performed a series of experiments 
using traces of HPC jobs obtained from the 
Parallel Workloads Archive (PWA) [13] and the 
Grid Workloads Archive (GWA) [14].  

These traces are logs from real parallel 
computer systems, and they give us a good 
insight in how our proposed schemes will perform 
with real users. Predominance of low parallel jobs 
in real logs is well known. Even though some jobs 
in the traces require multiple processors, we 
consider that in our model the machines have 
enough capacity to process them, so we can 
abstract their parallelism. 

Since we assume that IaaS clouds are a 
promising alternative to computational centers, 
we can expect that workload submitted to clouds 
will have similar characteristics to the ones 
submitted to actual parallel and grid systems. In 
our log, we considered nine traces from DAS2 
(University of Amsterdam), DAS2 (Delft 
University), DAS2 (Utrecht University), DAS2 
(Leiden University), KTH, DAS2 (Vrije University), 
HPC2N, CTC, and LANL. Details of the log 

characteristics can be found in the PWA [13] and 
GWA [14]. 

To obtain valid statistical values, 30 
experiments within one week period were 
simulated for each SLA. We calculated job 
deadlines based on the real processing time of 
the jobs.  

4 Experimental Results 

4.1 Single Machine Model 

For the first set of experiments with a single 
machine system scheme, we performed 
experiments for 12 values of the slack factor: 1, 2, 
5, 10, 15, 20, 25, 50, 100, 200, 500 and 1000. 
Although we do not expect that a real SLA 
provides slack factors greater than 50, large 
values are important to study expected system 
performance when slack factors tend to infinity.  

Figures 1-5 show simulation results of SSL-SM 
algorithm. They present percentage of rejected 
jobs, total processing time of accepted jobs, mean 
waiting time, mean number of interruptions per 
job, and mean competitive factor. 

 

Fig. 1. Percentage of rejected jobs for SSL-SM 

algorithm 
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Figure 1 shows the percentage of rejected jobs 
for the SSL-SM algorithm. We see that the 
number of rejected jobs decreases while the slack 
factor increases. 

Large values of slack factor increase the 
flexibility to accept new jobs by delaying the 
execution of already accepted ones. In the case 
when a slack factor is equal to 1, the system 
cannot accept new jobs until the job in execution 
is completed. We observe that the percentage of 
rejected jobs with a slack factor of 1 is a bit lower 
than that with values of slack factor from 2 to 25. 
However, it does not mean that this slack factor 
allows the system to execute more computational 
work as we see in Figure 2. Figure 2 shows the 
total processing time of accepted jobs for the 
given slack factors. We see that the processing 
time increases as the slack factor increases, 
meaning that the scheduler is able to exploit the 
increased flexibility of the jobs. Figure 3 shows 
mean waiting time versus the slack factor. It 
demonstrates that an increase of total processing 
time causes an increase of waiting time. 

We also evaluate the mean number of 
interruptions per job; these results are showed in 
Figure 4. We see that for small slack factors the 

number of interruptions is greater than that for 
larger slack factors. Mean values are below 1 
interruption per job. Moreover, if a slack factor is 
more than 10, the number of interruptions per job 
is stable and vary between 0.2 and 0.3. This fact 
is important; keeping the number of interruptions 
low prevents the system overhead. 

Figure 5 shows the mean competitive factor. It 
represents the infrastructure provider objective to 
maximize his total income. Note that a larger 
competitive factor is better than a smaller one. 
When the slack factor is equal to 1, the 
competitive factor is 0.85. Once the slack factor is 
increased to 5, we obtain better competitive 
factors. When the slack factor is equal to 5, the 
mean competitive factor has its maximum value of 
0.94. Passing this point, the competitive factor 
decreases when the slack factor is equal to 200. 
We consider that at this point the deadlines of the 
jobs are much larger than their processing time. If 
the slack factor is between 200 and 500, the 
competitive factor is increased again because the 
maximum deadline gets close to the sum of 
processing times. 

When the deadline of all jobs tends to infinity, 
the completive factor is optimal as expected. 

 

Fig. 2. Total processing time for SSL-SM algorithm 

 

Fig. 3. Mean waiting time of jobs for SSL-SM algorithm 
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In a real cloud scenario, the slack factor can 
be dynamically adjusted in response to changes 
in the configuration and/or the workload. To this 

end, historical workload within a given time 
interval can be analyzed to determine an 
appropriate slack factor. The time interval for this 
adjustment should be set according to the 
dynamic characteristics of the workload and in the 
IaaS configuration. 

4.2 Multiple Machine Model 

In this section, we present the results of SSL-PM 
algorithm simulations on two and three machines. 
We plotted the SSL-SM results to analyze the 
change of the system performance when the 
number of machines varies. 

Figures 6-11 show the percentage of rejected 
jobs, total processing time of accepted jobs, mean 
waiting time, mean number of interruptions per 
job, efficiency and mean competitive factor. 

Figure 6 presents the percentage of rejected 
jobs. It can be seen that an increase of the 
number of machines has a limited effect on the 
acceptability of jobs when the slack factor is 
small. However, larger values of slack factor have 
greater impact on the number of accepted jobs. 
Figure 7 shows the total processing time of 
accepted jobs. The processing time is increased 

 

Fig. 6. Percentage of rejected jobs for SSL-PM 

algorithm 

 

Fig. 4. Mean number of interruptions per job for SSL-

SM algorithm 

 

Fig. 5. Mean competitive factor of SSL-SM algorithm 
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as more machines are added to the system. 
However, doubling and tripling the processing 
capacity do not cause the same increase in the 
processing time. This effect can be clearly seen 
when the slack factor is large. We conclude that 
an increase in the processing capacity will be 
more effective with smaller slack factors. Figure 8 
shows the mean waiting time when slack factor 

varies. We see that an increase of the total 
processing time, as a result of larger slack 
factors, also causes an increase of waiting time. 
Additionally, adding more machines to the system 
makes the increase of the mean waiting time less 
significant. 

Figure 9 shows the mean number of 
interruptions per job. We see that an increase of 
the number of machines increases the number of 
interruptions. This increase is not considerable, 
and is stabilized as the slack factor is increased. 
The number of interruptions is maximal with a 
slack factor of 2 for all three models. Figure 10 
shows the execution efficiency. This metric 
indicates the relative amount of useful work which 
the system executes during the interval between 
the release time of the first job and the completion 
of the last job. 

We see that a decrease of efficiency, at least 
with moderate slack factors, mainly depends on 
the number of machines. Figure 11 presents the 
competitive factor while the slack factor varies. 
We see that for the two and three machine 
system configuration the maximum competitive 
factor is obtained with a slack factor of 2. As we 
already mentioned, in the case of a single 
machine configuration the best competitive 

 

Fig. 9.  Mean number of interruption for SSL-PM 

algorithm 

 

Fig. 7. Total processing time for SSL-PM algorithm 
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factors are obtained with a slack factor of 2 and 5. 
We can also observe that when the slack factor is 
increased, the competitive factor is decreased. 
This happens until the slack factor becomes large 
enough to create a significant difference between 
job deadlines and their processing times. This is 

clearly seen when the slack factor is 200 for a 
single machine configuration, and 100 for two and 
three machines. 

In the cases of two and three machines 
configuration, for the slack factor greater than 
500, the competitive factor almost reached the 
optimal value. 

4.3 Execution Costs 

In the IaaS scenario, cloud providers offer 
computer resources to customers on a pay-as-
you-go basis. The price per time unit depends on 
the services selected by the customer. This 
charge depends not only on the price the user is 
willing to accept, but also on the cost of the 
infrastructure maintenance. 

In order to estimate this charge, we propose a 
tariff function that depends on the slack factor. 
We first take into account that the provider needs 
to recover the maintenance cost from the 
execution of jobs. We assume that the provider 
pays a flat rate for the use/maintenance of the 
resources.  

The total maintenance cost of job processing 

( )tco  can be calculated using the expression

 

Fig. 10. Execution efficiency for SSL-PM algorithm 

 

Fig. 11. Competitive factor for SSL-PM algorithm 
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1
 

rn

jj

u

p
u m

m


 


. The cost per time unit uco  

can be calculated as 

1

t

u

jj

n

co
co

p





, where 

1

rn

j

j

p


  is the sum of processing times of all 

released jobs, 
uu  is the price per unit of 

maintenance,  m is the number of machines, and 

1

n

j

j

p


  is the sum of processing times reached 

by the algorithm. We consider that uu  is equal to 

8.5 cents per hour, which is the price that Amazon 
EC2 charges for a small processing unit [15].  

Figure 12 shows the execution cost per hour 
when the slack factor varies. As it can be seen, 
the cost of processing jobs with a small slack 
factor is larger than the execution of jobs with a 
looser slack factor. Moreover, the costs are larger 
if fewer machines are used. The reason is that a 
system with less machines and a small slack 
factor rejects most of the jobs within a given 
interval, so the execution is costly. Therefore, 
configurations that execute more jobs have lower 
costs per execution time unit. Clear profit is 
generated if cost per time unit is incremented. 

5 Conclusions and Future Work 

The use of Service Level Agreements (SLAs) is a 
fundamentally new approach for job scheduling. 
According to this approach, scheduling is based 
on satisfaction of QoS constraints. The main idea 
is to provide different levels of service, each 
addressing a different set of customers. While a 
large number of service levels leads to high 
flexibility for customers, it also produces a 
significant management overhead. Hence, a 
suitable tradeoff must be found and adjusted 
dynamically, if necessary. While theoretical worst 
case IaaS scheduling models begin to emerge, 
fast statistical techniques applied to real data are 
effective as have been shown empirically. 

In this paper, we presented an experimental 
study of two greedy acceptance algorithms, 
namely, SSL-SM and SSL-PM, with known worst 
case performance bounds. They are based on the 
adaptation of the preemptive EDD algorithm for 
job scheduling with different service levels on 
different number of machines. 

Our study results in several contributions. 
Firstly, we identified several service levels to 
make scheduling decisions with respect to job 
acceptance; secondly, we considered and 
analyzed two test cases on a single machine and 
on parallel machines; thirdly, we estimated the 
cost function for different service levels; then, we 
showed that the slack factor can be dynamically 
adjusted in response to changes in the 
configuration and/or the workload. To this end, 
the past workload within a given time interval can 
be analyzed to determine an appropriate slack 
factor. The time interval for this adaptation 
depends on the dynamics of the workload 
characteristics and IaaS configuration. 

Though our model of IaaS is simplified, it is still 
a valid basic abstraction of SLAs that can be 
formalized and treated automatically. 

 
In this paper, we explored only a few scenarios 

of using SLAs. The IaaS clouds are usually large 
scale and vary significantly. It is not possible to 
satisfy all QoS constraints from the service 
provider perspective if a single service level is 
used. Hence, a balance between the number of 
service levels and the number of resources needs 
to be found and adjusted dynamically. A system 
can have several specific service levels (e.g., 
Bronze, Silver, Gold) and algorithms to keep the 
system with QoS specified in SLA. However, 
further study of algorithms for multiple service 
classes and the resource allocation algorithms is 
required to assess their actual efficiency and 
effectiveness. This will be the subject of future 
work to achieve a better understanding of service 
levels in IaaS clouds. Moreover, other scenarios 
of the problem with different types of SLAs and 
workloads with a combination of jobs with and 
without SLA still need to be addressed. Also, as 
future work, we will consider the elasticity of slack 
factors in order to increase profit while providing 
better QoS to users.  
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