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Abstract. In this paper, we postulate a new 
decomposition theorem of a matrix A into two matrices, 
namely, a lower triangular matrix M, in which all entries 
are determinants, and an upper triangular matrix U 

whose entries are also in determinant form. From a 
well-known theorem on the pivot elements of the 
Doolittle-Gauss elimination process, we deduce a 
corollary to obtain a diagonal matrix D. With it, we scale 

the elementary lower triangular matrix of the Doolittle-
Gauss elimination process and deduce a new 
elementary lower triangular matrix. Applying this linear 
transformation to A by means of both minimum and 

complete pivoting strategies, we obtain the determinant 
of A as if it had been calculated by means of a Laplace 

expansion. If we apply this new linear transformation 
and the above pivot strategy to an augmented matrix 
(A|b), we obtain a Cramer’s solution of the linear 

system of equations. These algorithms present an  3nO  

computational complexity when   nRbA,   on hybrid 

GPU-accelerated multicore systems. 

Keywords. New LU theorem, Cramer rule, Gauss 

elimination, Laplace expansion, determinants, GPU, 
multicore systems. 

Una nueva descomposición LU 
calculada en sistemas multi-core 

acelerados con GPU 

Resumen. En este trabajo se postula un Nuevo 

Teorema de Descomposición de una Matriz A en dos 
matrices: una Matriz triangular inferior M, cuyas 
entradas son todas expresadas en forma de 
determinantes, y una matriz triangular superior U cuyas 
entradas están también expresadas en forma de 
determinantes. A partir de un muy conocido Teorema 
sobre los elementos pivotales del proceso de 
eliminación de Doolittle-Gauss, deducimos un corolario 

para obtener una Matriz Diagonal D. Usando esta 
matriz, escalamos la Matriz Elemental Triangular 
Inferior obtenida durante el proceso de eliminación de 
Doolittle-Gauss y deducimos una Nueva Matriz 
Elemental Triangular Inferior. Aplicando esta 
transformación lineal a la matriz A, por medio de una 
estrategia de pivoteo total, se obtiene el determinante 
de A como si hubiera sido calculado a través de la 
Expansión de Laplace. Si aplicamos esta nueva 
transformación lineal y la estrategia de pivoteo 
anteriormente mencionada a la matriz aumentada (A|b) 
obtenemos la solución de la Regla de Cramer aplicada 
a un Sistema de Ecuaciones Lineales. Estos algoritmos 

presentan una complejidad computacional  3nO

cuando   nRbA,  se calcula en Sistemas Multi-Core 

Acelerados con GPU. 

Palabras clave. Nuevo teorema LU, regla de Cramer, 

eliminación de Gauss, expansión de Laplace, 
determinantes, GPU, sistemas Multi-Core. 

1 Introduction 

A Linear System of Equations (LSE) can be 
defined as a set of m equations with n unknowns 
represented by a matrix A, a vector b and an 

unknown vector x, namely, Ax b . Many 

methods have been proposed to solve such linear 
equations. A famous one is Cramer’s rule, where 
each component of the solution is determined as 
the ratio of two determinants. 

When trying to solve a system of n equations 
using Cramer’s rule, one needs to compute n+1 
determinants, each of order n. If these are 
computed in a straightforward way, using the 
Laplace expansion, the solution to the linear 
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system takes    1 ! 1n n n   multiplications, plus a 

similar number of additions. Although Cramer´s 
rule possesses a fundamental theoretical 
importance, it may result impractical in 
computations. It is for that reason that this method 
is seldom recommended [1, 6]. Cramer´s rule has 
at least one attractive property: it computes every 
element of the solutions independently. For this 
reason, it can be a practical method for some 
special linear systems on parallel computers [7]. 

There are much better ways to compute 
determinants. In this paper, we propose a new 
method that renders it possible to solve a linear 
system in about the same time as it takes to 
compute one determinant. 

Another approach, with a certain mathematical 
appeal but considerable computational pitfalls, 
finds the solution to a linear system of equations 

using the inverse matrix 
1

A


. However, in virtually 
every application, it is unnecessary and 
inadvisable to compute the inverse matrix 
explicitly. The inverse matrix method requires 
more arithmetic and produces a less accurate 
answer. Therefore, neither of the above methods 
is recommended [8]. 

The Gaussian Transformation (GT) for solving 
an LSE has proved to be the best option for most 
practical applications. The new transformation 
proposed here can be obtained from it. In the next 
section we briefly review this topic. 

2 LU-Matricial Decomposition with GT 
Notation and Definitions 

The problem of solving a linear system of 

equations bAx   is central to the field of matrix 
computation. There are several ways to perform 
the elimination process necessary for its matrix 
triangulation. We will focus on the Doolittle-Gauss 
elimination method: application of the algorithm of 
choice when A is square, dense, and 
unstructured. 

Let us assume that nxn
RA  is nonsingular 

and that we wish to solve the linear system 
bAx  . Here we show how for exact arithmetic, 

partial pivoting and column interchanges, some 
Gauss transformations 1n1 M,...,M   can almost 

always be found such that UAMM,...,M 121n   is 

upper triangular [9]. The original bAx   problem 

is then equivalent to the upper triangular system 

  bMM,...,MUx 121n  which can be solved 

through back-substitution. 

Suppose then, that nxn
RA and that for some 

k<n we have determined the Gauss 

transformations nxn
1k1 RM,...,M   such that  
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where 1)(k
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  is an upper triangular matrix. 
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and akk
k( ) 1 0 ,  

then the multiplicators 
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with 0kka ,  are well defined. 

So, we obtain what follows. 

Definition. An elementary lower triangular 
matrix of order n and index k is a matrix of the 
form [10] 

T
knk meIM   (3) 

where 
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In general, an elementary lower triangular 
matrix has the above form. 

The computational significance of elementary 
lower triangular matrices is that they can be used 
to introduce zero components into a vector.  
Thus, 
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The matrix kM is said to be a GT. The vector 

m is referred to as the Gauss vector. The 
components of m are known as multipliers. 

Then it follows that 
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where 
(k)

11A
 is an upper triangular matrix. 

This process illustrates the k-th step of the 
decomposition process, in which we used 
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We find the final expression for the 
decomposition process as 
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In general, forward elimination consists of n-1 
steps. At the k-th step, multiples of the k-th 
equation are subtracted from the remaining 
equations to eliminate the k-th variable. If the 

pivot element )(

,

k

kka  is null or “small”, it is advisable 

to interchange equations before this is done 
through P, a permutation matrix that records the 
row exchanges as detailed below. 

2.1 LU Decomposition Theorem 

Using the above expression, the following can be 
established [11]: 

Theorem. Let kA  denote the leader or main 

sub-matrix (k x k ) of nxn
RA . If kA  is non-

singular for k=1,...,n  , then there exists a lower 

triangular matrix nxn
RL  and an upper triangular 

matrix nxn
RU  so that A=PLU. Furthermore,

.,...,1...11 nkuu kk kA  

3 Derivation of a New Linear 
Transformation 

In the previous section we have defined an 
elementary lower triangular matrix of order n and 

index k as T
knk meIM  . We shall find that the 

above expression and the next theorem, whose 
proof can be found in [10, 11], are useful. 

Theorem. The pivot elements ),...,1(
)(

, nka
k

kk   

are nonzero if and only if the leading principal 

submatrices ),...,1( nk kA  are non-singular.  

On this basis, the following can be stated. 
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Corollary. Let 
nxn

RA be a matrix with 

),...,1( nk kA  non-singular leading principal sub-

matrices. Then, there exists a unique diagonal 

matrix for k=1 )1(
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where )(

,

k

kka  and 
)(

1,1

k

kka   are the pivot elements. 

Now, if we scale the matrix 
kM  with that 

diagonal matrix, we obtain 
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and, once simplified, it can be re-expressed as 
presented in (11). 

By using this new transformation and applying  
the elimination process to a matrix A, all of whose 
entries are integers, all  intermediate results are 
integers too, forming a number ring [12], since 
they are obtained through additions and products. 

Thus, 
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The products of these results times the factor 

)(
1,1

1
k
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are integers too, because previously, in 

the 1k  step of the elimination process, such 

results had been multiplied by 
)(

1,1

k

kka  .This 

multiplication process leads to a simplification of 
the final result. 

We can re-express this linear transformation as 

)1(
)1(

00 a . 

3.1 New Decomposition Theorem through 
Determinants 

Using any of the above expressions, one can 
state the following theorem. 
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M is a lower triangular matrix all of whose 

components are determinants, and MAU   also 

has all components in determinant form. 
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Furthermore, nnu ,A  

Proof.  It follows from induction on n. For n=1 

the theorem is trivially true since 1 '
1MM  and 

11a MAU . For the induction step 
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The last row of the matrix M multiplied by the 
last column of the matrix A is equivalent to 
Laplace expansion of A taking out the last 

column. Then we have A33u . 
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111 m ; 2121 am   ; 
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and 



























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
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




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,11,1131211
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...00

...0
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MAU  (20) 

 
where  

1111 au   ; 1212 au   ; 1313 au  ;

1,11,1   nn au ; nn au ,1,1  ; 

2221

1211

22
aa

aa
u  ;

2321

1311

23
aa
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u  ; 
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



 
n

n
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n

n

n
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u
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333231

232221
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u   
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




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n

n

n

n
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u

n

n

n

n
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u

,33231

,22221

,11211

,3 
 

(21) 

 

The Laplace expansion of sub-matrix 1n1,nA 

taking out the last column is equivalent to 
multiplication of the (n-1)-th row of the matrix M 
by the (n-1)-th column of A. Then we have 

1n1,nA  1,1 nnu  and 

1,13,12,11,1

1,3333231

1,2232221

1,1131211

1,1
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.....
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




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nnnnn

n

n

n

nn
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aaaa

aaaa
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u
 

(22) 

In a similar way, we have 

nnnnn

n

n

n
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u
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,3333231

,2232221

,1131211
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.....

.....
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...
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...



 
 

(23) 

Finally, taking the last row of M multiplied by 
the last column of A we have 

nnnnn

n

n

n

nn

aaaa

aaaa

aaaa

aaaa

u

,3,2,1,

,3333231

,2232221

,1131211

,

...

.....

.....

.....

...

...

...


 

(24) 

 

Now, if M is the new transformation, then we 
obtain 




1

1nk

'

kMM ; MAU   (25) 

In order to solve the linear system of equations 
bAx  , we have 
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MbUx

MbMAx




 (26) 

We can use the “backward process” and solve 
the linear system of equations using only 
determinants. 

For a matrix A with floating point entries, this 
process requires floating point multiplications; the 
number of multiplications is 

     
1

3

4

32

12

6

121 3







n
nnnnnn

 (27) 

3.2 New Decomposition Theorem with 
Determinants and Total Pivoting 

Gauss elimination in real numbers is unstable due 
to the possibility of finding arbitrarily small pivots. 
This process can be alleviated, however, by 
exchanging rows during the elimination. In our 
case, we exchange a row or column in a similar 
way to the Gauss process only when a particular 
pivot is zero. The following theorem is given 
without proof. 

Theorem. Let 
nxn

RA . Suppose that the 

New Transformation 
'

1k
'
1 MM  , row 

permutation matrices 1k1 PPP   and column 

permutation matrices 1k1 ΠΠΠ   have been 

determined such that

1k11
'
11k

'
1k ...ΠAΠPMPMU   . Then, the 

Upper Matrix U is obtained from  PAΠ  without 
exchanging any rows or columns and 

MPAΠU  . Furthermore, if exch ≡ the 

number of row exchanges plus the number of 

column exchanges, we have    nn

exch
u ,1A . 

3.3 Matrix L and U 

Now, although it is not strictly necessary, should 
we wish to obtain the matrix L, then the elements 
of the matrices L=( lij) and U=( uij ) can be 
computed starting from the following formulas: 

1, 1, 1,...,k ku a k n   

,1

,1

1,1

2,...,
j

j

a
l j n

u
   

1

1 1

1

; ,..., ; 2
j

jk jk js sk j j

s

u a l u u k j n j


 



 
    
 



1

1

1
; ,..., ; 2

k

jk jk js sk

skk

l a l u j k n k
u





 
    

 


 

(28) 

4 Test Problems and Numerical 
Results 

We use the combinatorial matrix [13] whose 
mathematical expression is: 

A y x i j

i j b

ny x

ny x

ij ij

ij

 


 


   

   



































 



; ;

;

.

.

.

;

1

0
 

(29) 

and whose determinant and adjoint matrix are 
expressed as 

 
 

  




















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








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







.

)1(...

......

......

......

...)1(

...)1(

)(

222

222

222

1

nxxyxyx

yxnxxyx

yxyxnxx

A

nyxxA

nnn

nnn

nnn

Adj

n

 

(30) 

This section presents the performance data for 
the algorithm of the new decomposition described 
in Section 3, indicating the result obtained with 
the last value of the diagonal of the lower matrix 
which represents the determinant. The results are 
given in Figure 1. 
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4.1 Tests with Mathematica Software and PC 
HP Pavilion Quadcore 

The numerical tests for GT on an array of size 
1020x1020 and 1,2  yx  yielded the expected 

result of 1021 with a CPU time of 2.371 seconds 
and the number of processors used was 4. 
Version 8 of Mathematica software was used. 
Another test for GT on an array of size 
1430x1430 and 1,2  yx   yielded the expected 

result of 1431 with a CPU time of 5.32 seconds. 
The architecture used for this example is a 

quad-core Intel (R) Core (TM) i7 CPU 
Q720@1.60GHz , installed memory(RAM):  6.00 
GB, system type: 64-bit Operating System, 
model: HP Pavilion dv7 Notebook PC. 

4.2 Tests with GNU Octave Software and 
Cluster Beowolf Supermicro 

The Det() routine yielded the expected result of 
1021, with a CPU time of 0.830 seconds and the 
number of processors used was 1. Version 3.0.5 
of software GNU Octave on OpenMP was used, 
and the other result obtained was 1431, with a 
CPU time of 2.3 seconds. 

Another test for GT on an array of size 

1500x1500 and 1,2  yx   yielded the expected 

result of 1501.218, with a CPU time of 0.173 
seconds and the number of processors used was 
1. ACML-SGESVof software optimized routine for 
AMD processors was used. 

These examples were obtained on a cluster 
Beowolf Supermicro, with 7 nodes with 4 AMD 
Quad-core each one = 7 x16 = 112 cores; 32 Gb 
RAM by Node = 224 Gb; OS Linux (a free version 
Red Hat) CentOS 5. Clusters were connected by 
2 networks: Gigabit and Infiniband (20Gb). 

4.3 Tests with Version 1 of Code Programmed 
in C lenguage on a GeForce GTX 480 with 
CUDA Driver Version 3.2 

The numerical tests for GT on an array of size 

1020x1020 and 1,2  yx  yielded the expected 

result of 1021, with a CPU time of 0.119 seconds 
and the number of processors used was 480. 

Version 1 of code programmed in C language 
software was used. Another test with an array of 
size 1430x1430 and 1,2  yx yielded the 

expected result of 1431, with a CPU time of 0.323 
seconds. 

These examples were obtained on a GeForce 
GTX 480 with CUDA Driver Version 3.20, 480 
Cores, total amount of global memory 1609 GB, 
Clock rate 1.40 GHz, SINGLE PRECISION, on a 
platform Linux Debian 6.0. 

Besides, we also used the library routine 
CULAS: SGESV to compare its efficiency in 
calculation, and the results presented in Fig. 1 
were obtained with the CPU time of 1 second. 

4.4 Tests with Version 1 of Code Programmed 
in C Language on a Tesla C2050 with 
CUDA Driver Version 4.20 

Finally, we used the examples described 
previously in a Tesla C2050 with CUDA Driver 
Version 4.20, 448 CUDA cores, total amount of 
global memory 2817 GB, clock rate 1.15 GHz, 
SINGLE PRECISION, and obtained the expected 
result of 1021, with a CPU time of 0.001 seconds. 

Version 1 of code programmed in C language 
on a platform Linux Ubuntu™ version 11.04 was 
used. Another test with an array of size 

1430x1430 and 1,2  yx  yielded the expected 

result of 1431, with a CPU time of 0.001 seconds. 

 

Fig. 1. The obtained results 

mailto:Q720@1.60GHz
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5 Conclusions 

In this paper we introduced a new theorem on 
decomposition into determinants of matrix A and 
new linear transformations expressed as 
Equations 11, 12 and 28.  

The majority of simultaneous linear equation 
systems can also be solved with these new linear 
tranformations. The result is Cramer-type 

solutions of O n( )
3

. This fact is new. 

We also proposed a modified Doolittle-Gauss-
LU-Decomposition in two versions: the first one 
was applied to matrix A and the second one to 
the augmented matrix (A|b). 

The first one is a new algorithm to compute 

determinants in exact form if and only if n
IA , 

and the second is a new LU elimination process 
to solve linear system of equations in parallel 
massive form using multicore systems with 
accelerated GPU [14]. 

Finally, when referring to Cramer’s rule, it was 
affirmed by G. Strang [15] that: “…Thus each 
component of x is a ratio of two determinants, a 
polynomial of degree n divided by another 
polynomial of degree n. This fact might have been 
recognized from Gauss elimination, but it never 
was”. This is made evident in the present paper. 
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