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Abstract. This paper presents an application of
meta-heuristics to fault diagnosis. The idea behind this
application is to develop methods for fault diagnosis
that should be robust, sensitive and with an adequate
computational cost. Applications of meta-heuristics are
possible based on the formulation of fault diagnosis
as an optimization problem. The results indicate
the suitability of the use of meta-heuristics for fault
diagnosis. In particular, this study shows an application
of meta-heuristic termed Differential Evolution to
diagnosing a DC Motor benchmark. This allowed
developing a new variant of Differential Evolution,
namely, Differential Evolution with Particle Collision. This
new algorithm was validated with some benchmark
functions for continuous optimization, showing that it
over-performed the behavior of Differential Evolution.

Keywords. Differential evolution, meta-heuristics, fault
diagnosis, particle collision, robustness, sensitivity.

Un enfoque al diagnóstico de fallos
aplicando meta heurı́sticas: nueva
variante del algoritmo Evolución

Diferencial

Resumen. Este trabajo presenta un estudio de la
aplicación de meta heurı́sticas al diagnóstico de fallos,
con el fin de desarrollar métodos que sean robustos
ante perturbaciones, sensibles ante fallos incipientes y

con adecuado costo computacional. La aplicación de
las mismas es posible a partir de la formulación del
diagnóstico de fallos como un problema de optimización.
Los resultados indican la factibilidad del uso de meta
heurı́sticas. En este estudio se aplicó la meta heurı́stica,
Evolución diferencial al diagnóstico de fallos en el
sistema de prueba Motor CD. El estudio permitió
desarrollar un nuevo algoritmo que se ha llamado
Evolución diferencial con colisión de partı́culas. Este
fue validado con funciones de prueba de optimización
continua mostrando su superioridad sobre Evolución
diferencial.

Palabras clave. Colisión de partı́culas, diagnóstico de
fallos, evolución diferencial, meta heurı́sticas, robustez
sensibilidad.

1 Introduction

Fault Diagnosis (FDI) includes detection, isolation
and identification of faults that can eventually
affect a system [6, 12]. Faults should be quickly
diagnosed in order to take further decisions in
order to avoid economic losses as well as damages
to human capital or environment.

FDI methods are generally divided into two
groups: model-based methods [6, 12, 21, 26] and
non-model-based methods [27]. The quantitative
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model-based methods make use of an analytical
or computational model of the system. The
great variety of proposed model-based methods
is brought down to a few basic concepts such as
parity space, observer approach, and parameters
identification or estimation approach [6, 21].

Due to disturbances that can be affecting the
system, FDI methods can constantly produce false
alarms. The FDI methods that handle this situation
in an appropriate way are called robust [6, 12, 21].
Furthermore, in order to gain in robustness, many
methods lose capability for diagnosing incipient
faults. This is called lack of sensitivity. Thus, for a
successful design of FDI methods it is required to
achieve an adequate balance between robustness
and sensitivity, as well as a computational cost that
allows diagnosing online processes [6, 21, 22].

Despite the fact that many robust and
sensitive FDI methods have been developed,
the development of new FDI methods is still
considered as an open problem [21, 22].

A detailed description of each model-based
approach and their limitations can be found in
[6, 21, 30]. It is recognized that observer scheme
and parity space do not always allow isolation of
actuator faults [30]. For non-linear models, the
complexity of the design of observer increases
while it is necessary to build an exact model of the
system for parity space [15, 30].

Parameter estimation approach requires the
knowledge of relationships between such
parameters and physical coefficients of the
system, as well as the influence of the faults
on these coefficients [12]. This approach
does not provide a good diagnosis for sensor
faults. Furthermore, it usually demands a high
computing time, which makes it unfeasible for most
situations [30].

Recent studies have shown that with the use
of soft computing techniques, FDI methods with
appropriate characteristics can be obtained [15,
29, 30]. Within them, Neural Networks and
Fuzzy Logic achieve the greatest number of
applications to the FDI. In contrast, application of
meta-heuristics to optimization has not been widely
studied in FDI area [29, 30], and most of such
applications are related to non-model-based FDI
methods [13, 28, 29, 30].

It is also known that FDI methods based on
observers or parity space put a lot of effort in
generation of robust and sensitive residual which
is related to the detection part. Thus, the residual
generation is highly dependent on the model that
describes the system [6, 12].

Considering reported applications of
meta-heuristics to other problems that also deal
with environments under disturbances, as well as
uncertainties on models or measurements [2, 14],
this article shows an application of meta-heuristics
to the development of FDI methods which do not
need to invest a lot of effort in generation of robust
and sensitive residuals.

In this study, we considered the algorithm
called Differential Evolution (DE) [23, 20] which
has been successfully applied in other areas
of engineering [14] subject to disturbances and
noisy environments. This algorithm has not been
previously applied to FDI like other meta-heuristics
such as Genetic Algorithms, Particle Swarm
Optimization or Ant Colony Optimization [6, 13, 19,
28, 31], but it has received recognition due to its
simpler structure and better results in comparison
with other methods [5]. Our study also allowed the
development of Differential Evolution with Particle
Collision (DEwPC) method. DEwPC is a new
variant of DE that modifies its Selection operator
based on the scheme of another meta-heuristic,
Particle Collision Algorithm [2]. DEwPC was
validated for continuous optimization problems.

The main contributions of this article can be
summarized as follows: study of application of
meta-heuristics for developing robust and sensitive
FDI methods, and development of a new variant
DEwPC for improving the computational cost
required by DE. The viability of the proposal is
demonstrated by diagnosing simulation data from
a DC Motor [6].

This article is organized as follows. In Section 2,
the main aspects related to FDI are introduced. In
Section 3, the algorithm of DE is briefly described.
DEwPC is presented in Section 4. Section 5 details
the case study, DC Motor benchmark. In Section
6, the experimental methodology is explained.
Section 7 shows the results. Finally, we give some
concluding comments and remarks.
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2 FDI as an Optimization Problem

In FDI methodologies, there are three kinds of
faults, depending on the part of the system that
they directly affect: actuator faults, process faults
and sensor faults [6, 8, 12].

Faults affecting the system may eventually
change one or several parameters in the model
that describes it. FDI based on model parameters
is divided into two steps. The first is meant for
estimation of the model parameters vector θ(t).
The second is meant for detecting and isolating
faults based upon known relationships between
the model parameters, physical coefficients of the
system, and faults [12].

The main drawback of this approach is that fault
isolation may become extremely difficult when the
model parameters do not uniquely correspond to
those of the system. In such cases, it is usually
difficult to distinguish a fault from a change in the
parameters vector θ(t) [12]. It should be also
pointed out that detection of faults in sensors and
actuators is possible but rather complicated [30].

Instead of estimating the model parameters
vector θ(t), let’s consider faults in a model explicitly.
This approach is widely used in other model-based
FDI methods such as Diagnostic Observer or
Parity Space [6, 8].

In the case of a SISO (single input single output)
system in a closed loop that is described by
a Linear Time Invariant (LTI) model in transfer
function, the model can be represented as [6, 12]

y(s) = Gyw(s)w(s) +Gyfu(s)fu(s) +

Gyfy (s)fy(s) +Gyfp(s)fp(s) (1)

where w(s) ∈ R is the reference signal of
the control system, fp, fa, fy ∈ R are faults in
process, actuator and output sensor, respectively.
The transfer function Gyw(s) represents the
dynamics of the system while Gyfu(s), Gyfp(s) and
Gyfy (s) are the transfer functions that represent
the faults in the actuator, process and sensor,
respectively [6].

This proposed approach considers estimation of
the faulty parameters vector θf = [fu fy fp]

T .
Estimation of θf allows diagnosing the system. It

can be obtained from the minimization of the sum
of the squares of output errors:

min F (θ̂f ) =

I∑
t=1

[
y(θf , t)− ŷ(θ̂f , t)

]2
s.t θf(min) ≤ θ̂f ≤ θf(max) (2)

where I is the number of sampling instants, ŷ(θ̂f , t)
is the estimated vector output in each instant of
time and it is obtained from the model (1); y(θ̂f , t)
is the output vector measured by the sensors at the
same time instant t.

For solving this optimization problem in (2), we
apply meta-heuristics due to the fact that they have
shown to be robust in other areas of application.

3 Differential Evolution

Differential Evolution (DE) was proposed in 1995
for optimization problems [23]. DE is based
on three operators: Mutation, Crossover and
Selection [20, 23] in similarity to Genetic Algorithm
(GA) [10].

These operators are based on vector operations.
This is the main difference comparing with GA.
This difference provides DE with a more simple
structure and computational implementation than
GA. Two other most important advantages of DE
are speed and robustness [20, 23].

The algorithm generates at each iteration
Iter a new population of Z feasible solutions
X1
Iter,X

2
Iter, ...,XZ

Iter at each iteration. For that
purpose the three operators are applied on the
current population. This mechanism can be
summarized with the notation

DE/Xδ
Iter−1/γ/λ (3)

where γ indicates the number of pairs of solutions
to be used for perturbations of the current solution
Xδ
Iter−1; λ represents the distribution function to be

used during the crossover. In this work we applied
the scheme DE/Xbest/2/bin, bin being a notation
for a binomial distribution function. Mutation is
described by

X̂z
Iter = Xbest + Cscal(X

α1

Iter−1 −
Xα3

Iter−1 +Xα2

Iter−1 −X
α4

Iter−1) (4)
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where Xbest,Xα1

Iter−1,Xα2

Iter−1,Xα3

Iter−1,Xα4

Iter−1 ∈
Rn are solutions of the current population and Cscal
is a parameter called Scaling factor. On the other
hand, the Crossover and Selection operator can be
described as

— Crossover:

x̂z(Iter)n =

{
x̂z(Iter)n if qrand ≤ Ccross
xδ(Iter−1)n otherwise

(5)
where x̂z(Iter)n are components of the vector
X̂z
Iter; 0 ≤ Ccross ≤ 1 is another parameter

called Crossover factor ; and qrand is a random
number generated by means of a distribution
represented by λ.

— Selection: the vector Xz
Iter, which will be part

of the new population, is selected following the
rule:

Xz
Iter =

{
X̂z
Iter if F (X̂z

Iter) ≤ F (Xδ
Iter−1)

Xδ
Iter−1 otherwise

(6)

A general description of the algorithm for DE is
given in Fig. 1.

Data: Z, MaxIter, Ccross, Cscal
Result: Xbest

Generate an initial population of Z solutions;
Select best solution Xbest;
for Iter = 1 to Iter = MaxIter do

Apply Mutation;
Apply Crossover ;
Apply Selection;
Update Xbest;
Verify stopping criteria;

end
Solution: Xbest

Fig. 1. Algorithm of DE

Some modifications over the original version
of DE have been made in order to improve its
ability for escaping from local minimum. The more
successful variants of DE are focused on variations
of Mutation operator and the self-adaptation of
parameters Ccross and Cscal [1, 4, 16, 17, 25, 32,

33, 34]. DE has also been hybridized with other
meta-heuristics [11].

4 New Algorithm: Differential Evolution
with Particle Collision

The new Differential Evolution with Particle
Collision algorithm (DEwPC) has the objective to
improve the performance of DE based on the
incorporation of some ideas from Particle Collision
Algorithm (PCA) [2, 18, 20].

PCA is inspired on the interaction of particles
inside a nuclear reactor [2, 7, 18, 20]. It is
a recent algorithm with successful application to
other problems in engineering [2] and it has been
extended to a population based version [3].

DEwPC keeps the same structure as Mutation
and Crossover operators in DE, while introducing
a modification in the Selection operator. This
modification adds a new parameter MaxIterc with
the objective to improve the capacity of DE for
escaping from local minimum.

The new Selection operator takes the ideas
of Absorption and Scattering from PCA. The
adaptation of this operator to DEwPC has been
called Selection with Absorption - Scattering with
probability and it has been established as follows:

Selection with Absorption - Scattering with
probability

— If F (X̂z
Iter) ≤ F (Xδ

Iter−1) then operator
Absorption is applied to X̂z

Iter.

— If F (X̂z
Iter) > F (Xδ

Iter−1) then operator
Scattering with probability is applied to X̂z

Iter.

The Absorption and Scattering with probability
operators are represented in Figs 2 and 3,
respectively.

In Fig. 4 the algorithm DEwPC is also
represented. Small Search operator indicates a
small stochastic perturbation around a solution.
Search indicates a stochastic perturbation around
a solution [20].
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Data: X̂Iter

Result: XIter

XIter = X̂Iter;
SmallSearch(XIter,MaxIterc);

Fig. 2. Absorption Operator

Data: X̂Iter,F (Xbest)
Result: XIter

Compute F (X̂Iter);
Compute pr(Iter) = 1− F (Xbest)

F (X̂Iter)
;

if rand < pr(Iter) then
XIter = X̂Iter;
Search(XIter,MaxIterc);
else;
XIter = XIter−1;

end

Fig. 3. Scattering with probability Operator

4.1 Validation of DEwPC

In order to validate our proposal DEwPC for
continuous optimization problems, five test
functions have been considered. They are taken
from the inventory of functions recommended in
the literature [5, 24]. A comparison against DE
was made.

The test functions used in this article are F1
Shifted Sphere Function, F2 Shifted Schwefel’s
Problem 1.2; F4 Shifted Schwefel’s Problem 1.2
with Noise in Fitness; F6 Shifted Rosenbrock’s
Function and F7 Shifted Rotated Griewank’s
Function without Bounds [9, 24]. The experiments
and evaluation criteria follow the indications
recommended in [24].

— Experiment A. The stopping criteria are
the maximum number of evaluations of the
objective function Evalmax = 10000n or the
maximum error ErrTer = 10−8. The following
quantities are separately computed for each
problem:

Data: Ccross, Cscal, Z, MaxIter, MaxIterc
Result: Xbest

Generate an initial population of Z solutions;
Select best solution Xbest;
for Iter = 1 to Iter = MaxIter do

Apply Mutation;
Apply Crossover ;
for j = 1 to j = Z do

if rand < 0.7 then
Apply Absorption-Scattering with
probability to X̂(j)

Iter;
else;
Apply Selection to X̂(j)

Iter;
end

end
Update Xbest;
Verify stopping criteria;

end
Solution: Xbest

Fig. 4. Algorithm for DEwPC

– Success Rate, SR = EE
ET : EE being the

number of successful runs and ET the
total number of runs.

– Success Performance, SP =
¯EvalEE

SR ,
where ¯EvalEE is the average of the
number of function evaluations for
successful runs.

A successful run is understood as a run
during which the algorithm achieves the fixed
accuracy level ErrTer within Evalmax.

— Experiment B. We considered Evalmax
as the only one stopping criterion.
Different values were established:
Evalmax = 100n, 1000n, 10000n, respectively.
The final error was determined for each case.

For each test function the algorithms were run 25
times, for each experiment. This number allows
getting statistically valid conclusions concerning
the evaluations of algorithms [5, 9, 24].

In the experiments, we considered n = 10 or
n = 30. In order to suggest values for the
parameters of DEwPC, some experiments with
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different sets of values for Z and MaxIterc were
made. We considered only these parameters since
we are interested in decreasing the computational
cost. For that reason we decreased the size
of population Z, with respect to DE, and made
MaxIterc dependent on Z. We are also interested
in making Z dependent on the size of the
problem n.

In Table 1, a different sets of values are shown.
In all cases, the parameters Ccross = 0.9 and
Cscal = 0.5 were kept constant. DE parameters
were assigned the values recommended in [20,
23].

Table 1. Set of values for DEwPC parameters

Set Z MaxIterc
1 10n 0.3Z
2 10n 0.2Z
3 10n 0.1Z
4 5n 0.3Z
5 5n 0.2Z
6 5n 0.1Z
7 2n 0.3Z
8 2n 0.2Z
9 2n 0.1Z

Concerning function F6, it is well known that
the global optimum is inside a long, narrow,
parabolic shaped valley. To search the valley
is trivial but convergence to the global optimum
is difficult. Hence this problem is often used
in assessing the performance of the optimization
algorithms. Therefore, this function was used for
establishing the set of values of DEwPC throughout
the experiments.

In Figs 5 and 6 we show a comparison of the
results from minimization of function F6 for n = 10
and n = 30, respectively, for the sets of values
in Table 1. In all cases Evalmax = 10000n was
considered as a stopping criterion. For Sets 1, 2
and 3, which have the higher values for Z, the error
is not proportional to the increase in MaxIterc. In
this case, Set 3 is closer to DE. The results are
better for Cases 4, 5 and 6, which have a half of the
recommended population in DE, and these results
were obtained with MaxIterc = 0.2Z. The best
result was observed for Set 5.

Fig. 5. Final error obtained in the minimization of F6,
n = 10

Fig. 6. Final error obtained in the minimization of F6,
n = 30

The values for the parameters in DE and DEwPC
that were set during the experiments are shown
in Table 2. On the other hand, the values for the
DEwPC parameters were those corresponding to
Set 5. The values for the parameters of DEwPC
as a function of the problem dimension n are also
shown in Table 2.

Table 2. Parameter values for DE and DEwPC

alg Z Cscal Ccross MaxIterc
DE 10n 0.5 0.9 —–
DEwPC 5n 0.5 0.9 0.2Z

4.1.1 Results of Experiment A

In Tables 3 and 4 we present a summary of the
evaluation criteria, for n = 10 and n = 30,
respectively. Furthermore, the normalized SP
with respect to the best, SPbest, between both
algorithms is given. In the case when some of
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the indicators cannot be computed due to a lack
of successful runs, it is marked by means of ’—–’
and the average of the final error is put in brackets.

Table 3 shows that the DEwPC algorithm, for n =
10, has the best SP in four out of five cases; in
the left case no one of both algorithms achieved
successful runs. In this case the final error of DE
was higher than the final error of DEwPC.

Table 3. Comparison between SR and SP , n = 10

fun SR SP SP/SPbest
DE
F1 100 23148 1.41
F2 100 24312 1.26
F4 100 42700 1.34
F6 84 61031 1.02
F7 0 —– [0.2737]
DEwPC
F1 100 16431 1
F2 100 19363 1
F4 100 31826 1
F6 92 59828 1
F7 0 —– [0.0643]

Table 3 shows that for function F6, the SR
achieved by DEwPC is better than the SR of
DE. This indicates that the new Selection operator
provides DEwPC with a better local search
capability and better searching diversity.

In Table 4, the results for the case n = 30 are
presented. DEwPC achieved successful runs in
four out of the five test functions while DE achieved
successful runs only in two of the cases. These
results allow concluding that in a more complex
search space (with higher dimension), our proposal
DEwPC allows reaching better results than DE.
In other words, the modification in the Selection
operator provides DEwPC with a more effective
way to avoid staying in a local minimum.

4.1.2 Results of Experiment B

The results of the experiments for functions F4, F6
and F7 are shown in Figs 7, 8 and 9. We have
chosen these functions for representing the results
due to the fact that they describe functions with
noise or are multimodal functions, in other words,

Table 4. Comparison between SR and SP , n = 30

fun SR SP SP/SPbest
DE
F1 100 252560 1.46
F2 100 114744 1.01
F4 0 —– [441.3]
F6 0 —– [300.0]
F7 0 —– [0.109]
DEwPC
F1 100 172752 1
F2 100 113600 1
F4 4 6405000 1
F6 0 —– [25.87]
F7 56 460960 1

they represent more complex sceneries within the
five functions. It can be observed that the final error
of DEwPC is always lower than the final error of
DE, no matter the dimension.

Fig. 7. Error achieved by DE and DEwPC (Experiment
B, F4, n = 10 and n = 30)

Furthermore, the Wilcoxon’s test showed that the
error achieved by DEwPC, when the algorithm has
executed the 10% of the maximum number of the
objective function evaluations, is lower than the
error achieved by DE under the same conditions
with p-value p = 0.0020.

The results indicate the suitability of our proposal
DEwPC. Furthermore, the results show that
DEwPC over-performs DE.

Susana
Cuadro de texto
An Approach to Fault Diagnosis Using Meta-Heuristics:a New Variant …11

Susana
Cuadro de texto
Computación y Sistemas Vol. 18 No. 1, 2014 pp. 5-17
ISSN 1405-5546
http://dx.doi.org/10.13053/CyS-18-1-2014-015



Fig. 8. Error achieved by DE and DEwPC (Experiment
B, F6, n = 10 and n = 30)

Fig. 9. Error achieved by DE and DEwPC (Experiment
B, F7, n = 10 and n = 30)

5 DC Motor

DC Motor control system DR300 [6] is a
benchmark for FDI. The system is formed by
a permanent magnet that is coupled to a DC
generator. The main function of this generator is
to simulate the effect of a fault that results when
a load torque is applied to the axis of the motor.
The speed is measured by a tachometer that feeds
the signal to a PI (proportional-integral controller)
speed controller. Fig. 10 shows a block diagram
for the DC Motor control system AMIRA DR300.

5.1 Mathematical Model

For this study, the internal current loop formed
by the DC Motor and the tachometer has been
considered as a single block that is the process
to be controlled. The block diagram of the closed
loop is formed by the process and the PI controller,
see Fig. 10. The parameters of the laboratory DC
Motor DR300 are reported in Table 3.1 from [6].

Fig. 10. Block diagram of the DC Motor control system
AMIRA DR300

This analysis considers that the system can be
affected by three additive faults fu, fp and fy. Fault
fu represents a fault in actuator and it is modeled
as a deviation of the control signal. Fault fp
represents a fault in the process itself due to a load
torque applied to the axis of the motor. Fault fy
represents a fault in the measurement of the motor
speed. The dynamics of the control system in the
open loop is described in frequency domain by

UT (s) = Gyu(s)UC(s) +Gyfp(s)fp(s) (7)

Gyu(s) =
8.75

(1 + 1.225s)(1 + 0.03s)(1 + 0.005s)
(8)

Gyfp(s) = − 31.07

s(1 + 0.005s)
(9)

where the voltage UT (volts) is the controlled
variable; UC (volts) is the control signal; Gyu(s)
represents the dynamics of the process in the open
loop and Gyfp(s) is the transfer function of fault fp.

The transfer function of the PI speed controller is

Gc(s) =
UC(s)

E(s)
= 1.96 +

1.6

s
(10)
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Considering the other faults which may affect the
system, the equation that describes it by means of
the closed loop transfer function is

UT (s) = Gyw(s)Uref (s) +Gyfu(s)fu(s)

+Gyfp(s)fp(s) + Gyfy (s)fy(s) (11)

where Uref is the voltage reference.

For this study, the faults were considered to be
time invariant and the following restrictions were
established:

fu, fy ∈ R : −1Volts ≤ fu, fy ≤ 1Volts
fp ∈ R : 0 Nm ≤ fp ≤ 1 Nm (12)

5.2 Simulation of DC Motor Benchmark

Simulations of the closed loop of the speed
control system were made. In all test cases it
was considered that the system is affected by a
noise within 2% up to 8% of magnitude. The
addition of noise has the objective to simulate more
realistic conditions. Noise affecting the systems
is one of the recognized causes of a wrong
diagnosis and leads to the necessity of robust
FDI methods. All implementations were made in
MATLAB R2008a. The speed reference is 3000
rpm. This corresponds to 15 Volts.

5.3 FDI Proposal Based on Estimation of
Faults with DE and DEwPC: DC Motor

Direct estimations of faults allow diagnosing the
system. These estimations can be obtained by the
solution of a minimization problem:

min F (f̂) =

I∑
t=1

[
UT (t)(f)− ÛT (t)(f̂)

]2
s.t fu, fy ∈ R : −1Volts ≤ fu, fy ≤ 1Volts

fp ∈ R : 0 Nm ≤ fp ≤ 1 Nm (13)

where ÛT (t)(f̂) are computed based on the model
from equation (11) and Laplace antitransform.

6 Experimental Methodology

With the aim of analyzing the merit of the
diagnosis based on faults estimation with DE
and DEwPC, three aspects were considered:
robustness, sensitivity and computational cost.

With this goal in mind, many faulty situations
were considered. For analyzing the characteristics
of the diagnosis, the numerical experiments were
divided into two parts:

— First Part. Robust Performance: for an
analysis of robustness. Situations with
multiple faults are considered and the output
of the system is corrupted with up to 8%
level noise. The faulty situations that were
considered are shown in Table 5 (Cases 1 up
to 4).

— Second Part. Sensitive Performance: for
an analysis of sensitivity. Here we study
the diagnosis of faulty situations that include
simple and incipient faults (see Cases 6-8 in
Table 5 ); as well as multiple and incipient
faults (see Case 5 in Table 5 ). All
measurements are corrupted with up to 8%
level noise.

Table 5. Faulty situations in numerical experiments

Case fu fy fs
1 0.87 -0.2 0.53
2 -0.27 0.96 0
3 0.63 0 0.29
4 0 0.47 0.86
5 -0.08 0.09 0.2
6 0.15 0 0
7 0 -0.1 0
8 0 0 0.12

— Implementation of DE and DEwPC:
the parameters were set following the
recommendations in Table 2. The stopping
criteria were MaxIter = 100 or F (θ̂f ) ≤ 0.1.
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7 Results

In Tables 6 and 7, the results of estimations of the
faults described in cases from Table 5 are shown.
In most cases the most accurate estimations are
achieved by DEwPC. This was expected taking
into consideration the results of a comparison
with standard test functions between these two
algorithms, see Section 3.

Table 6. Results of faults estimations with DEwPC

Case f̂u f̂y f̂s
1 0.8644 -0.189 0.549
2 -0.299 0.957 0.0011
3 0.6304 0.020 0.3001
4 0.0016 0.4683 0.8675
5 -0.0801 0.092 0.204
6 0.150 0.006 0.0041
7 0.0004 -0.14 0.002
8 0.0005 -0.0051 0.1226

Table 7. Results of faults estimations with DE

Case f̂u f̂y f̂s
1 0.8836 -0.167 0.5603
2 -0.2984 0.958 -0.07
3 0.6427 0.095 0.3834
4 0.0067 0.4551 0.8826
5 -0.084 0.085 0.199
6 0.1427 0.01 -0.0084
7 0.0017 -0.085 0.0059
8 0.007 0.0083 0.1102

On the other hand, in all cases for which one
of the faults were not affecting the system (Cases
2-4, 6-8), the diagnosis provides false alarms (see
estimations in Tables 6 and 7). The algorithms
should estimate 0 values but in no cases this value
was achieved. Instead, values such as

∣∣∣f̂i∣∣∣ ≤
0.1 were obtained but they are not small enough
for deciding that these faults are not affecting the
system. In such situations we adopted a two steps
alternate procedure:

— When the algorithm reaches its stopping
criteria, and any of the faults has value

∣∣∣f̂i∣∣∣ ≤

0.1, then fix the other faults and execute the
algorithm again, but only for estimating the
faults such that

∣∣∣f̂i∣∣∣ ≤ 0.1.

The results after applying the alternate
procedure are shown in Table 8. It was applied
only in DEwPC due to its better results during the
other faults’ estimations. The results indicate that
estimations are closer to zero.

Table 8. Results after applying the alternate procedure

Case f̂u f̂y f̂s
2 —- 0.00002 0.000107
3 0.00009 —- 0.0002
4 0.00005 -0.00001 —-
6 —– 0.00001 0.00009
7 0.0003 —– 0.00002
8 0.00001 -0.00006 —-

Abbreviations in tables 6- 8 are f̂u, f̂p, f̂y
for average of estimations of faults fu, fp, fy,
respectively. The computational effort of the
algorithm is analyzed based on the number
of objective function evaluations. Comparisons
between the DE and DEwPC are based on the
Wilcoxon’s test [5, 9].

In order to compare the diagnosis taking the
computational cost as a criterion, Figs 11 and
12 represent the average number of evaluations
of the objective function. The results indicate
that DEwPC requires a lower number of function
evaluations than DE. This implies a lower
processing time than DE.

8 Conclusions

This article presents an application of
meta-heuristics to FDI, after formulating it as an
optimization problem. Furthermore, we propose a
new algorithm called DEwPC which was validated
for continuous optimization problems. The
validation of DEwPC for continuous optimization
problems showed that DEwPC allows obtaining
statistically better results than DE, especially
in a noise environment or a complex search
space. The last characteristic is desirable for FDI
methods.
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Fig. 11. Comparison between the numbers of
evaluations of the objective function achieved by DE and
DEwPC (Cases 1-4 from Table 5)

Another attractive property of DEwPC is that
it does not introduce complex operations into
the original DE framework. The only difference
from the original DE is the introduction of a new
Selection operator. Thus, it is also simple and
easy to implement like the original DE. Therefore,
DEwPC is as simple as DE, but allows decreasing
the number of function evaluations for achieving a
fixed accuracy.

The results of the numerical experiments with
DC Motor benchmark indicate the suitability of
meta-heuristics for obtaining robust and sensitive
diagnosis. The use of meta-heuristics in FDI
avoids spending efforts for generating robust
residuals which are dependent on the kind of
model that describes the system. The application
of meta-heuristics and their hybridization
or combination also allows decreasing the
computational cost, which means a lower
diagnosis time. This a desirable condition for
online processes. In this case DEwPC achieved
better results than DE.
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