
Traffic Flow Estimation Using Ant Colony Optimization Algorithms

Antonio Bolufé-Röhler1, Juan Manuel Otero Pereira1, and Sonia Fiol-González1
1 Facultad de Matemática y Computación, Universidad de la Habana,

Cuba

{bolufe, otero, s.fiol}@matcom.uh.cu

Abstract. Simulation and optimization of traffic
flows in a city or province allow the
implementation of correct developing strategies
and help the decision making process when using
and distributing resources such as mass transit.
This estimation can be modeled as a bifurcated
multi-commodity network flow problem, where the
general flow distribution is dictated by Wardrop’s
principles. In this paper two different Ant Colony
Optimization algorithms are presented for solving
this problem. The proposed algorithms are tested
with real-life traffic demand in the Havana city.
The obtained results are compared to those
provided by classical algorithms, showing that the
new ant colony algorithms provide good results as
well as low running times.

Keywords. Non-linear optimization,
metaheuristics, traffic problem, logistics,
simulation.

Algoritmos de optimización basados
en colonias de hormigas para la
estimación de flujos de tráfico

Resumen. La estimación de flujos de tráfico
permite implementar buenas estrategias de
desarrollo, a la vez que ayuda en el proceso de
toma de decisiones cuando se controlan y
distribuyen recursos claves como el transporte
masivo. La distribución de tráfico puede ser
modelada como un problema de Flujo de Costo
Mínimo para Múltiples Bienes. Para su solución,
la Optimización de Colonia de Hormigas provee
un marco de trabajo prometedor. En la presente
investigación se presentan dos nuevos algoritmos
basados en Colonias de Hormigas, los mismos se
aplican a instancias reales del problema de
estimación de flujo en Ciudad de La Habana. Los

resultados alcanzados se comparan con los
provistos por algoritmos clásicos, mostrando la
efectividad del método propuesto.

Palabras clave. Optimización no-lineal,
metaheurísticas, problema de tráfico, logística,
simulación.

1 Introduction

It is possible to simulate the behavior of a system
through the optimization of a model that
accurately predicts it; such simulation allows
analyzing the system’s responses to different
events and decisions. In this case study, we are
concerned with the prediction of traffic flow
distribution in the Havana city. As a result of
optimizing a flow problem, it will be possible to
simulate different decision making strategies for
such scenarios as optimum semaphore
distribution and synchronization, efficient
selection of mass transit routes, or infrastructure
development.

For this purpose we have different maps of the
city roads, the biggest of them has over 8000
edges, representing the road sections, and 2000
nodes representing the intersection between the
streets. The map's nodes are partitioned into
zones, representing different districts or
neighborhoods of the city; an estimation of the
traffic demand between these zones is also
known.

The problem to solve is finding an optimal flow
distribution between these zones; we formalize
the optimality assumption in our case study by
Wardrop's principles [1]. The flow distribution
dictated by Wardrop's principles state that the
journey times in all routes actually used are equal
to, or less than, those which would be

Computación y Sistemas Vol. 18 No. 1, 2014 pp. 37-50
ISSN 1405-5546

DOI: 10.13053/CyS-17-4-2013-017

38 Antonio Bolufé-Röhler, Juan Manuel Otero Pereira, and Sonia Fiol-González

experienced on any unused route. Assuming that
the system will lean toward such a minimum free
energy status, or equilibrium, it is possible to
model the flow prediction as a Minimum Cost
Multi-commodity Network Flow Problem
(MCMNF) with a non-linear objective function.
The commodities are associated with the flow
running in each direction of every pair of zones.
For every commodity there exist multiple source
and sink nodes, i.e., the traffic moving from a
zone to another can begin at any node of the
starting zone and culminate at any node of the
destination zone.

The MCMNF with a non-linear function and
integer flow values is a well-known NP-hard
optimization problem for which some heuristic and
approximation algorithms have been developed.
Nevertheless, state of the art is not yet fully
satisfactory when facing large real-world
optimization problems. In recent years,
metaheursitics have demonstrated their ability to
solve this kind of complex real-world problems. In
particular, the Ant Colony Optimization (ACO)
metaheuristic has proved to be specially fitted to
deal with the kind of dynamism that exists in
similar problems, such as traffic assignment and
data routing.

In this paper, two new ACO algorithms are
presented for solving the MCMNF problem. Both
algorithms use a specially designed data structure
as construction graph for the ants.

This paper is organized as follows. Section 2
describes two formulations used in the literature
to model the MCMNF problem. Section 3
presents a brief introduction to state of the art. In
Section 4 a first approach to the problem and the
p-shortest path data structure are presented. In
Sections 5, 6 and 7, the ant algorithms and a
post-optimization method are explained. The rest
of the paper provides the results and conclusions
of this study.

2 Mathematical Model

The MCMNF problem is defined on a directed
graph 𝐺 = (𝑉;𝐸) associated to the roads network,
with |𝑉| = 𝑛 and |𝐸| = 𝑚 . Additionally to the 𝑛
network nodes, other 𝑧 dummy nodes are added
to connect all the nodes belonging to a same

zone; every ordered pair of distinct zones defines
a commodity. Using the dummy nodes it is
possible to associate a single source-sink pair of
nodes (𝑠𝑘; 𝑡𝑘) to each of the 𝐾 = 𝑧 (𝑧 − 1)
commodities. Thus, the problem’s objective
function can be modeled as in (1), with
constraints (2), (3) and (4):

min 𝑐�𝑓𝑖𝑗� = �
𝑑𝑖𝑠𝑡𝑖𝑗𝑓𝑖𝑗
𝑢𝑖𝑗 − 𝑓𝑖𝑗(𝑖,𝑗∈𝐸)

 (1)

subject to

0 ≤ 𝑓𝑖𝑗 ≤ 𝑢𝑖𝑗 (2)

�𝑓𝑖𝑗𝑘

𝑗∈𝑉

= 0 𝑖 ∈ 𝑉, 𝑖 ≠ 𝑠𝑘, 𝑡𝑘 , (3)

�𝑓𝑠𝑘𝑗
𝑘

𝑗∈𝑉

= �𝑓𝑖𝑡𝑘
𝑘

𝑗∈𝑉

= 𝑑𝑘 𝑘 ∈ 𝐾 (4)

where 𝑑𝑖𝑠𝑡𝑖𝑗, 𝑓𝑖𝑗 and 𝑢𝑖𝑗 are the distance, running
flow and an upper bound of the theoretical
capacity of the road section (𝑖 ; 𝑗), respectively.
The traffic demand for commodity k is
represented by dk; while fij, and fijk are the total
flow and the flow for commodity k on edge (𝑖; 𝑗),
respectively. Constraint (2) establishes a limit on
the total flow that can traverse a given edge, while
constraints (3) and (4) guarantee flow
conservation and demand satisfaction,
respectively.

The previous model is known as a node-arc
formulation. An alternative way to represent the
problem is the arc-path formulation. The arc-path
formulation is equivalent to the previous one, but
is obtained by providing for each commodity the
set of all paths connecting the source node 𝑠𝑘
with the sink node 𝑡𝑘. In this formulation the
constraints are expressed as

� 𝜙𝑝 = 𝑑𝑘
𝑝∈Φ𝑘

 𝑘 ∈ 𝐾 , (5)

𝑓𝑖𝑗 = �𝛿𝑖𝑗
𝑝𝜙𝑝 ≤ 𝑢𝑖𝑗

𝑝∈Φ

 (𝑖, 𝑗) ∈ 𝐸 (6)

Computación y Sistemas Vol. 18 No. 1, 2014 pp. 37-50
ISSN 1405-5546
http://dx.doi.org/10.13053/CyS-18-1-2014-017

Traffic Flow Estimation Using Ant Colony Optimization Algorithms 39

where 𝛷 is the set of all possible paths and 𝛷𝑘 is
those paths used to transport commodity 𝑘. The
flow running over path 𝑝 is represented by 𝜙𝑝, and
𝛿𝑖𝑗
𝑝 is a constant equal to 1 if arc (𝑖; 𝑗) belongs to

path 𝑝 and 0 otherwise. In this alternative model
an exhaustive enumeration of all paths for every
(𝑠𝑘; 𝑡𝑘) pair is assumed. For medium or big
networks this assumption is numerically
intractable since the number of paths growths
exponentially with the problem dimensions.
Therefore, in practice many algorithms dealing
with this formulation restrict the number of paths
considered between every source-sink pair, or
include some iterative path generation
procedure [2].

3 Previous Work

Various network or transportation problems can
be modeled as non-linear multi-commodity flow
problems, therefore, a vast collection of
algorithms can be found in the literature on this
topic. If the flow values can be real numbers, then
algorithms based on classical mathematical
programming methods such as feasible direction,
cutting planes and sub-gradient methods can be
used [2, 3]. Another practical approach is to
approximate the objective function by a linear or
piecewise linear function [4]. A combination of
metaheuristics with mathematical programming
(matheuristics) has also been successfully
applied to the MCMNF problem [5].

On the other hand, if the flow values are
integers, then the MCMNF becomes an NP-hard
problem. In such case, the Ant Colony
Optimization (ACO) provides an appropriate
framework to deal with this kind of complex real-
life optimization problems. The non-linear
MCMNF problem is characterized by an inherent
dynamic structure given by the application of
Wardrop’s principles.

Because of the internal representation based
on pheromone trails, which needs to be updated
and not reconstructed as the instance and its
autocatalytic ability change, ACO systems are
specially fitted to deal with this kind of dynamism.
This hypothesis is supported by the results of
ACO algorithms applied to complex network
optimization problems such as the dynamic

routing wavelength assignment [6], the non-
bifurcated linear MCMNF [7], and the traffic
assignment problem [8].

Recent works also show that the use of ACO
algorithms can be effective when reducing
response time and pocket loss in computer
networks [9], as well as increasing sustainability
in supply chains of transportation systems [10]. A
new ACO algorithm called ‘Redundant Link
Avoidance (RLA) algorithm’ is proposed in [9]. By
removing redundant links in the merged routes,
this algorithm improves the results provided by
ACO based multi-path routing methodology. The
solutions provided by RLA allow to tackle
problems such as network burst, overloading and
traffic merging. In [10] an ant colony algorithm is
built based on a multi-objective approach in order
to find Pareto-optimal solutions. These solutions
aim to increase sustainability without sacrificing
economic objectives. The proposed algorithm is
analyzed using a case of transportation in
Europe.

The results reported in [8] show the
theoretical and practical advantages obtained
when applying a correctly designed ACO
algorithm to traffic flow optimization and
simulation problems. This paper extends those
results by presenting new algorithms and insights.

4 Shortest Path Sub-Graph Structure

The first attempt to develop an ant based
algorithm for the MCMNF problem was applied to
the arc-node formulation, i.e., the algorithm was
directly executed over the network graph. In that
algorithm a number of ants were sent
simultaneously at each origin node 𝑠𝑘 with a
respective sink node 𝑡𝑘 as destination. Each ant
represented a group of vehicles having the same
origin and destination. However, this approach
was not effective; the main reason was the
inability of the ants to find short paths between
the zones.

The rules determining the ants’ movements
were similar to the ACS algorithm [11] and the
trail update were inspired by the work in [8]. The
heuristic information represented such physical
road attributes as length and capacity, while the
pheromone trail modeled the congestion of the

Computación y Sistemas Vol. 18 No. 1, 2014 pp. 37-50
ISSN 1405-5546

http://dx.doi.org/10.13053/CyS-18-1-2014-017

40 Antonio Bolufé-Röhler, Juan Manuel Otero Pereira, and Sonia Fiol-González

roads. The heuristic information was computed a
priori using the Dijkstra algorithm, labeling every
node with the traveling time of the uncongested
shortest path to every destination. The trail was
updated locally and globally. As every ant moved
toward its destination, the pheromone trail was
decreased, with the idea of making the path less
desirable to other ants due to the flow increase
during the solution construction. When a solution
was obtained, the trail was globally updated
proportionally to the solution quality; trail
evaporation was also performed.

Despite this algorithm seems to be
theoretically correct, in practice several difficulties
arise during its application. The ants tend to
ramble before arriving to their destination, and
although the flow was fairly distributed through
different paths, those paths were not the shortest
ones. Two main reasons explain this behavior:
the first one is a relatively small difference in the
heuristic information values between two nodes
that have a common adjacent node. For example,
for a node 𝑛 which is adjacent to 𝑛1 and 𝑛2, the
heuristic information for a specific destination 𝑘 of
these two nodes is quite similar. Even if the step
from 𝑛 to 𝑛1 directly nears the destination zone k
and the step from 𝑛 to 𝑛2 goes in the opposite
direction, the difference between the heuristic
information for 𝑛1 and 𝑛2 is comparatively small.
This is driven by the fact that the distances
between two intersections in a city are usually
small in comparison to the total distance to be
travelled, as illustrated in Fig. 1. When a
stochastic selection rule is applied to choose the
next movement for an ant located in 𝑛, then there
exists a high probability that a wrong decision is
made.

The trail update is the second fact that causes
a poor decision making process. During the
solution construction process several ants are
send for every (𝑠𝑘; 𝑡𝑘) pair until the flow demand
is satisfied. As these ants move from their source
to their destination, the pheromone trail is locally
updated and decreased. This trail update
guaranties a good flow distribution among
different paths, but reinforces the possibility of
choosing the node 𝑛2 instead of 𝑛1 for an ant
located at 𝑛. This may happen when the step from
node 𝑛 to 𝑛1 is repeatedly selected by other ants
during the same solution. On the other hand, if

the local trail update is not applied, or instead of
decreasing the trail is increased, then the ants'
routes converge over the shortest paths between
every pair of zones which leads to a poor flow
distribution, augmenting the flow congestion on
the used paths and therefore the time of all
journeys.

After this experience, and to overcome the
arising difficulties, the ant algorithm was applied
to the arc-path formulation. The basic idea is to
preselect a set of promising paths between every
pair of zones and establish them as the only
possible routes. This approach better reflects
what happens in the real life when a driver faces
the task of determining a route.

From the algorithmic point of view, the arc-
path formulation prevents the ants from making a
wrong decision which could lead to unnecessary
long tours, and at the same time allows the use of
the pheromone trail as a mechanism for
distributing the flow through different paths. This
approach leads to better computational results,
although it restricts the original solution space and
the ants’ ability to adapt to the environment.

Fig. 1. Distances from adjacent street intersections
(n1 and n2) to a destination point (n3)

Computación y Sistemas Vol. 18 No. 1, 2014 pp. 37-50
ISSN 1405-5546
http://dx.doi.org/10.13053/CyS-18-1-2014-017

Traffic Flow Estimation Using Ant Colony Optimization Algorithms 41

To overcome these new drawbacks, a special
data structure was designed to be used as a
construction graph of the ant algorithm.
Therefore, the ants won't move on the original
network graph but on what will be called the p-
shortest path sub-graph structure, denoted as
𝐺𝑝. As its name indicates, this structure is a
collection of 𝑧 different sub-graphs, 𝐺𝑝 =
�𝐺1

𝑝 , 𝐺2
𝑝 , … ,𝐺𝑧

𝑝�. The sub-graph 𝐺𝑖
𝑝 will include

those vertex and edges from the original network
that belong to some of the p-shortest paths
between any of the 𝑧 zones and the zone 𝑖; 𝑝 is a
parameter of the algorithm that determines the
number of preselected paths (presented results
used 𝑝 = 20).

Independently of the starting zone, an ant
heading toward zone 𝑖 will move only over the
links belonging to the sub-graph 𝐺𝑖

𝑝. For any pair
of zone (𝑗 ; 𝑖) there will exist at least 𝑝 different
paths connecting zone 𝑗 with the zone 𝑖 in 𝐺𝑖

𝑝.
The maximum number of paths will depend on the
amount of intersections between the p-shortest
paths heading to 𝑖.

The p-shortest path sub-graph structure is a
practical way to restrict the number of paths
considered between every source-sink pair. At the
same time using it as the construction graph
allows a flexible implementation of the arc-path
approach, since the path used by an ant is not
selected beforehand from a fixed set of paths, but
constructed as the ant moves over the
correspondent 𝐺𝑖

𝑝 sub-graph.

4.1 Construction of the Shortest Path Sub-
Graph Structure

For the construction of the 𝐺𝑖
𝑝sub-graphs two

different methods were tested. The first method
used the Eppstein algorithm to find the p-shortest
paths between each pair of origin-destiny nodes
[13]. The computational complexity of this
methods is 𝑂(𝑚 + 𝑛𝑙𝑜𝑔 𝑛 + 𝑝𝑛), with 𝑛 = |𝑉|
and 𝑚 = |𝐸|. The second method obtained the
shortest paths by repeatedly applying the Dijkstra
algorithm, after each run of which the cost of the
edges belonging to the resulting paths were
penalized multiplying their cost by a factor 𝛹,
which is a parameter. The cost function
associated to the edges was 𝑐𝑜𝑠𝑡(𝑖, 𝑗) =

 𝑑𝑖𝑠𝑡𝑖𝑗/𝑢𝑖𝑗 where 𝑑𝑖𝑠𝑡𝑖𝑗 is the distance and 𝑢𝑖𝑗 is
the theoretical capacity of the road section (𝑖, 𝑗).
Since the Dijkstra algorithm needs to be executed
𝑝 times, the computational complexity of this
method is 𝑂(𝑝 𝑚 𝑙𝑜𝑔𝑛). In both methods, once all
the shortest paths toward zone 𝑖 where computed
(independently of the starting zone), they were
merged into the 𝐺𝑖

𝑝 sub-graph.
In practice, the running time needed by both

methods to construct the p-shortest path sub-
graph structure were similar, however, the graph
obtained using the Dijkstra algorithm leads to
better solutions during optimization. This result
was driven by the fact that the paths obtained
through the penalized Dijkstra method were more
diverse than the actual p-shortest paths provided
by the Eppstein method. Fig shows the “shortest”
paths provided by each method.

When implementing the p-shortest path sub-
graph structure it is not necessary to actually
have the 𝑘 sub-graphs as independent data
structure. Instead, it is enough to have, for each
node, a routing table indicating the set of edges
that can be followed to reach each of the
destination zones. When a new path is added to a
given sub-graph, it is enough to update, for each
of its vertex, the set of available edges in the
routing tables.

Fig. 2. Shortest paths provided by the methods
based on the Eppstein and Dijkstra algorithms

Computación y Sistemas Vol. 18 No. 1, 2014 pp. 37-50
ISSN 1405-5546

http://dx.doi.org/10.13053/CyS-18-1-2014-017

42 Antonio Bolufé-Röhler, Juan Manuel Otero Pereira, and Sonia Fiol-González

5 Ant Colony Algorithm for Multi-
commodity Problems

The Ant Colony Algorithm for Multi-commodity
problems (ACAM) is a simple ant based algorithm
for the MCMNF problem (Fig. 3) In ACAM,
artificial ants move on the p-shortest path sub-
graph structure introduced in the previous section.
The algorithm exploits artificial pheromone trails
associated with each node 𝑖 of the sub-graph
network. The pheromone values denoted as 𝜏𝑖𝑗𝑑
represent the learned desirability to move from
node 𝑖 to node 𝑗 with a destination zone 𝑑. At
each node, an heuristic information value 𝜂𝑖𝑗 is
also available, it characterizes the convenience to
move from node 𝑖 to 𝑗 based on problem specific
knowledge associated to the (𝑖; 𝑗) edge. This
heuristic information is determined by physical
road attributes and is computed a priori according
to 𝜂𝑖𝑗 = 𝑢𝑖𝑗/𝑑𝑖𝑠𝑡𝑖𝑗 .

ACAM is inspired by the Ant Colony System
[11]. The algorithm iterates until some termination
conditions are met and at every iteration a

number 𝜔 of solutions are sequentially build by a
colony of ants. After the iteration is concluded, the
𝜔𝑏 best solutions are used to update the trail
proportionally to the solution quality. The values 𝜔
and 𝜔𝑏 are parameters of the algorithm with
1 < 𝜔𝑏 < 𝜔. The algorithm proceeds by creating
a list of ants associated to an origin-destination
pair (𝑠𝑘; 𝑡𝑘) and with an assigned flow cargo
equal to 𝜃 which is a parameter of the algorithm
(presented results used 𝜃 = 5). The sum of all
ants’ cargo must cover the entire traffic demand
between all zones. The ants are then randomly
chosen and sent from their origin zone toward
their destination. When the ant arrives, the trail of
the traversed edges is updated using Equation 7,
where 0 < 𝜌 < 1 is the pheromone evaporation
rate (presented results used 𝜌 = 0.9). The goal of
this pheromone decrease is to diversify the paths
used to deliver the flow between every pair of
zones by making an already traversed edge less
desirable. After a solution is obtained, the
pheromone trail is reset to its original value at the
beginning of the current iteration:

𝜏𝑖𝑗𝑑 = (1 − 𝜌)𝜏𝑖𝑗𝑑 . (7)

When an iteration ends, the 𝜔𝑏 best obtained
solutions are used for a global trail update
applying (8), where 𝑆𝜔𝑏 is the set of best solutions
at the current iteration; 𝑓𝑖𝑗𝑑𝑠 is the flow running
from node i to j, with destination zone 𝑑, in
solution s; 𝜑𝑠 and 𝜑𝑏𝑒𝑠𝑡 are the costs of solution 𝑠
and the best solution found so far, respectively:

𝜏𝑖𝑗𝑑 =
∑ 𝑓𝑖𝑗𝑑𝑠

𝜑𝑏𝑒𝑠𝑡
𝜑𝑠𝑠∈𝑆𝜔𝑏

𝜇𝑖𝑗𝑑
 , (8)

𝜇𝑖𝑗𝑑 = � � 𝑓𝑖𝑗𝑑𝑠
𝜑𝑏𝑒𝑠𝑡
𝜑𝑠

𝑗∈𝑁𝑖
𝑑𝑠∈𝑆𝜔𝑏

 . (9)

The factor 𝜇𝑖𝑗𝑑 weights the deposit of trail, to
make it proportional to the solution quality. This
term guaranties that the pheromone trails remain
smaller than 1, and is calculated using Equation
9, where 𝑁𝑖𝑑 represents the neighbor nodes of i
in 𝐺𝑑

𝑝:

Fig. 3. Pseudo-code of the Ant Colony Algorithm for
Multi-commodity problems (ACAM)

Computación y Sistemas Vol. 18 No. 1, 2014 pp. 37-50
ISSN 1405-5546
http://dx.doi.org/10.13053/CyS-18-1-2014-017

Traffic Flow Estimation Using Ant Colony Optimization Algorithms 43

𝑝𝑖𝑗𝑑 =
𝜉 𝜏𝑖𝑗𝑑 + (1 − 𝜉)𝜂𝑖𝑗

∑ 𝜉 𝜏𝑖𝑙𝑑 + (1 − 𝜉)𝜂𝑖𝑙𝑙∈𝑁𝑖
𝑑

 . (10)

At the construction stage, the list of created
ants is cleared as they are randomly selected and
sent from their assigned origin to their destination.
During the journey the ants construct their route
by applying a probabilistic action choice rule
every time they are at an intersection with multiple
links to choose from. Because of moving in 𝐺𝑑

𝑝,
there may exist nodes where only one edge is
available when aiming for a destination 𝑑. If that is
not the case, then an ant located at node 𝑖 and
leading to zone 𝑑 moves to node 𝑗 with
probability 𝑝𝑖𝑗𝑑 , calculated as in (10). The
parameter 𝜉 allows balancing the influence
between the pheromone trial and the heuristic
information (0 < 𝜉 < 1, presented results used
𝜉 = 0.8). This rule is similar to the one used by the
ANTS algorithm [12] and provided the best results
in our experimental evaluation of different
selection rules.

6 Ant Commodity Routing Algorithm

Although ACAM provides good computational
results, its general design can be further improved
by hybridizing it with techniques from other
heuristic and approximation algorithms. The Ant
Commodity Routing Algorithm (ACRA) in Fig. 4
has similarities with some well-known routing
algorithms. The general operation of ACRA is
strongly related with the approximation algorithm
of Awerbuch and Leighton [14]. In ACRA, as in
the approximation algorithm, the flow is pumped
continuously into the network, until a given
amount is reached. This flow accumulation allows
modeling and locating the bottlenecks, and
avoiding them on the final solution. Another point
of reference is the AntNet algorithm [15], where
the information about the network status,
gathered by the ants through their journeys, is
stored and updated on-line on node-local models.

The ACRA algorithm works by continuously
sending ants with a flow cargo of 𝜃, until some
stop conditions are met (presented results used
𝜃 = 5). The commodities are randomly selected

with a probability proportional to their demand.
Besides the pheromone trail, the model of the
flow distribution generated by the ants is also
stored; on the other hand, no heuristic information
is used. After an ant arrives, it backtracks over the
followed path to update the pheromone trail and
the flow distribution, then another commodity is
selected and the next ant is sent.

The pheromone trail value is associated to
every node of 𝐺𝑑

𝑝; in ACRA 𝜏𝑖𝑗𝑑 represents an
estimation of the travelling time to zone 𝑑
following the (𝑖; 𝑗) edge, given the current flow
distribution. The trail is updated as an ant
backtracks its path, and it is computed as
 𝜏𝑖𝑗𝑑 = 𝛿𝑗𝑑 − 𝛿𝑖𝑗, where 𝛿𝑗𝑑 is the time needed for
the ant to travel from vertex j to the destination d,
and 𝛿𝑖𝑗 is the cost of traversing the edge (𝑖; 𝑗) as
follows:

𝛿𝑖𝑗 =
𝑑𝑖𝑠𝑡𝑖𝑗 𝑓𝑖𝑗
𝑢𝑖𝑗 − 𝑓𝑖𝑗

 . (11)

To update the pheromone trail, it is necessary
to store the flow values distributed by the ants.
These values are directly associated to the edges
of the original network G, making no distinction
between flows of different destinations. Every
time an ant backtracks, it increases the flow
values by 𝜃.To keep the flow values over the
network at realistic levels, i.e., similar to those
present in a solution of the problem, a flow
evaporation process is implemented. Initially, a
number of �𝑡𝑓

𝜃
� iterations are run without

evaporation, allowing the flow to accumulate to
the desired level; 𝑡𝑓 is the total flow to be
distributed among all the commodities. Once the
desired level is achieved after each iteration, the
flow evaporation process is applied to every edge.
The evaporation rate guaranties that the flow
values over the entire network remain stable and
approximately equal to 𝑡𝑓.

In practice, for efficiency reasons, the
evaporation is only performed on the edges
backtracked by the ant. It is done before the flow
increases and is calculated by (12), where ∆𝜄𝑖𝑗 is
the number of iterations since the last flow
evaporation at the edge (𝑖; 𝑗). If it is the first time

Computación y Sistemas Vol. 18 No. 1, 2014 pp. 37-50
ISSN 1405-5546

http://dx.doi.org/10.13053/CyS-18-1-2014-017

44 Antonio Bolufé-Röhler, Juan Manuel Otero Pereira, and Sonia Fiol-González

the flow is evaporated on this edge, then ∆𝜄𝑖𝑗 is
the difference between the current iteration
and �𝑡𝑓

𝜃
�:

𝑓𝑖𝑗 = max�𝑓𝑖𝑗 − ∆𝜄𝑖𝑗
𝑓𝑖𝑗
𝑡𝑓
𝜃, 0� . (12)

The selection rule used by ACRA's ants during
their movement is quite simple, an ant heading to
zone 𝑑 and situated at a node 𝑖 chooses the next
node 𝑗 with a probability given by

𝑝𝑖𝑗𝑑 =
1

 𝜏𝑖𝑗𝑑 ∑
1

 𝜏𝑖𝑙𝑑𝑙∈𝑁𝑖
𝑑

 𝑖𝑓 𝑗 ∈ 𝑁𝑖𝑑 . (13)

The algorithm continuously iterates until some
termination criteria are met, such as time limit or
the total amount of flow. The pheromone trail laid
by the ants is then used to construct a solution.
The solution construction procedure follows the
same principles as at the previous phase,
generates and sends ants with a fixed amount of
flow, using (11) as the selection rule. In this
phase, the number of ants and their associated
commodity exactly covers all the traffic demand of
the problem. During the solution construction no
pheromone or flow update is done.

7 Post-Optimization

The computational results presented in the next
section show the good performance obtained by
ACRA in our study. However, the performance of
the algorithm strongly depends on a correct
construction of the 𝐺𝑝structure. The use of 𝐺𝑝as
the construction graph in ACRA and ACAM
restricts the solution space to a set of pre-
selected paths. The global optimum of the original
problem does not necessarily belong to this new
restricted subspace. As standard ACO algorithms,
ACRA and ACAM do not even guarantee the final
solution to be a local optimum. It is possible to
overcome these disadvantages designing a post-
optimization method not restricted by the 𝐺𝑝
structure on its search.

The post-optimization can be implemented
using a standard local search (hill climbing)

method. This local search method starts on a
solution provided by ACRA and as a
neighborhood structure uses a function that
considers all the feasible solution space, i.e., the
set of all possible paths which connect a couple of
zones. Consequently, the final solution provided
by the post-optimization procedure will be a local
optimum of the original (not restricted) problem.

A convenient way to define the neighborhood
function is to consider as neighbors of a given
solution all those solutions that can be obtained
by transferring a fixed amount of 𝜃𝑝𝑜 flow units
between two routes of the same good solution

Fig. 4. Pseudo-code of the Ant Commodity Routing
Algorithm (ACRA)

Fig. 5. Post-optimization method for improving
solutions provided by the ACRA algorithm

Computación y Sistemas Vol. 18 No. 1, 2014 pp. 37-50
ISSN 1405-5546
http://dx.doi.org/10.13053/CyS-18-1-2014-017

Traffic Flow Estimation Using Ant Colony Optimization Algorithms 45

(presented results used 𝜃𝑝𝑜 = 2). The source
route, from which the flow is extracted, must be
an active path. It means a path with a running
amount of flow bigger than 𝜃𝑝𝑜. On the other
hand, the destination route can be any path
connecting the origin-destiny nodes of a given
good solution, with enough capacity to assimilate
the 𝜃𝑝𝑜 units of flow without violating the capacity
constraints.

The general working of the post-optimization
method is very simple, see Fig. 5. On every
iteration for each good solution, the worst active
path and the minimum cost path are determined.
Then a flow transfer is initiated from the first to the
second one. This operation is executed
incrementally: moving 𝜃𝑝𝑜 units of flow, evaluating
the new solution and if this solution is better than
the previous one, transferring another 𝜃𝑝𝑜 units of
the flow. This procedure stops if all the flow from
the active path has been transferred, the
maximum capacity on any of the destiny path's
arcs has been reached, or the new solution
doesn't improve the previous one. The worst
active path can be directly attained from ACRA
solution, while the minimum cost path is
determined applying the Dijkstra algorithm over
the entire graph G. When evaluating the edges

cost on the Dijkstra algorithm, the objective
function (1) should be used, considering one unit
as the minimum flow running on every arc to
avoid a division by zero. The combination of
ACRA with this post-optimization method will be
denoted as ACRA_PO.

8 Parameter Tuning

A correct parameter tuning is fundamental when
using metaheuristics; the performance, as well as
the search behavior of the algorithm may strongly
vary depending on the parameter settings. In the
current research an exhaustive tuning process
was performed using a hyperheuristic approach
[16], i.e., a metaheuristic was used for finding the
optimum parameter configuration of another
metaheuristic. A simple genetic algorithm was
used as a higher level heuristic algorithm for the
tuning process. The genetic algorithm used a
binary representation of the problem with a
standard implementation of a one-point
crossover, uniform mutation and tournament
selection genetic operators [17]. Table 1 presents
the parameters that were tuned, their brief
description and the recommended values.

Table 1. Brief parameter description and recommended values

Parameter Description Values

p Number of shortest paths found for each good solution when building the shortest
path sub-graph structure. Larger values increase exploration; smaller values promote
exploration of the search space.

[10, 20]

Ψ Penalization applied to the length of edges when using the Dijkstra algorithm for
building the shortest path sub-graph structure. Larger values lead to more disjoint
paths.

[1.1, 1.2]

ω Amount of solutions build on each iteration of the ACAM algorithm 12

ωb Amount of solutions selected for the pheromone update on each iteration of the
ACAM algorithm.

4

ρ Pheromone evaporation coefficient for the ACAM algorithm. 0.15

ξ Balance between heuristic information and pheromone trail in ACAM. 0.8

τ0 Pheromone initial value in the ACAM algorithm. 0.15

θ Units of flow assigned to each ant in the ACAM and ACRA algorithms. 2

Computación y Sistemas Vol. 18 No. 1, 2014 pp. 37-50
ISSN 1405-5546

http://dx.doi.org/10.13053/CyS-18-1-2014-017

46 Antonio Bolufé-Röhler, Juan Manuel Otero Pereira, and Sonia Fiol-González

9 Computational Results

Six different instances of the traffic flow problem
in the Havana city were used to analyze the
computational results of the designed algorithms.
Each instance corresponds to a different partial
map of the city. Table 2 summarizes the main
characteristics of each map: the number of nodes
and edges on the graph, the amount of zones
(neighborhoods) and the traffic flow to be
distributed.

The results of the ACAM, ACRA and
ACRA_PO algorithms were initially compared with
those obtained by the MIP solver provided with
the COIN-OR tool [18]. The solver worked on a
relaxed model of the original problem, modeled by
a piecewise linear approximation of the non-linear
objective function. To create the piecewise linear
function, the capacity of each edge is divided into
s intervals of equal size, where s is a parameter
of the model. Fig. illustrates an approximation of
the original objective function with s = 4.

Table 3 shows the average solutions found by
each algorithm after 100 independent runs. The
reported values for each instance are the costs of
the objective function, i.e., the total travelling time
of all the vehicles involved in the system. For the
MIP solver, the numbers of parts used to
approximate the objective function are given. It
can be noticed that ACRA clearly outperforms
ACAM; however, when compared with the MIP
solver, both algorithms exhibit a good
performance.

These results support the hypothesis that ACO
metaheuristics provide an appropriate framework
for solving complex real-life routing optimization
problems. The effectiveness of the post-
optimization method and the convenience of
combining simple local search with ACO are also
confirmed; the ACRA_PO algorithm provides the
best solution for every instance.

Fig. 6. Piecewise linear approximation of the non-
linear objective function

Table 3. Average results of ACAM, ACRA and ACRA_PO and COIN-OR’s MIP solver

Map ACAM ACRA ACRA_PO
MIP Solver

 s = 2 s = 4 s = 6 s = 8 s = 10

Map 1 7.28e+03 7.14e+03 7.13e+03 1.49e+04 1.09e+04 9.92e+03 9.90e+03 9.82e+03

Map 2 6.16e+03 5.08e+03 5.03e+03 9.04e+03 7.93e+03 7.25e+03 6.43e+03 6.15e+03

Map 3 3.81e+04 3.59e+04 3.52e+04 5.14e+04 4.42e+04 4.54e+04 4.47e+04 4.37e+04

Map 4 3.43e+04 3.18e+04 3.12e+04 4.53e+03 3.85e+03 3.69e+03 3.61e+03 3.54e+03

Map 5 4.67e+04 4.39e+04 4.34e+04 --- --- --- --- ---

Map 6 4.10e+04 4.01e+04 3.96e+04 --- --- --- --- ---

Table 2. Instances of the MCMNF problem

 Vertex Edges Zones Flow
Map 1 474 1740 4 2670
Map 2 474 1740 7 7320
Map 3 1762 6426 6 8790
Map 4 1762 6426 12 12970
Map 5 2460 8846 12 10830

Map 6 2460 8846 20 10048

Computación y Sistemas Vol. 18 No. 1, 2014 pp. 37-50
ISSN 1405-5546
http://dx.doi.org/10.13053/CyS-18-1-2014-017

Traffic Flow Estimation Using Ant Colony Optimization Algorithms 47

Table 4 shows the time required for every
algorithm to find the best solutions. ACAM and
ACRA were executed with a fixed time budget of
3 seconds; on the other hand, the values for post-
optimization (ACRA_PO) represent the additional
time needed by the local search method. Given a
good quality of the initial solutions provided by
ACRA, this time is relatively short. Another
relevant data is the execution time required by the
exact method to solve the problem. As it can be
noticed, this time increases exponentially with
respect to the dimensions of each instance
making it impossible to solve Instances 5 and 6
using a piecewise linear approximation of the
objective function.

9.1 Comparison with other Ant Colony
Algorithms

Previous work, such as the one developed by
Maniezzo et al., has successfully applied ACO

algorithms to the Traffic Assignment Problem
(ACO_TAP). Due to big similarities between the
TAP and the MCMNF problems, it is
straightforward to adapt and apply the algorithm
proposed in [8] to the current optimization
problem. Another well-known and highly effective
ACO algorithm is the Max-Min ACO, developed
by Stützle and Hoos [19]. A standard
implementation of the Max-Min ACO algorithm
was also used to solve the traffic estimation
problem.

Both algorithms (ACO_TAP and Max-Min
ACO) were used to solve the six instances of the
MCMNF problem in the Havana city. On each
case, the algorithms were applied using the
original graph with all the edges and nodes (G),
as well as the p-shortest path sub-graph structure
(Gp). The average solutions found after 100
independent runs are presented in Table 5
together with the results reported by ACAM,
ACRA and ACRA_PO. All algorithms had a

Table 4. Running time of each algorithm (seconds)

Map ACAM ACRA ACRA_PO MIP Solver
s = 2 s = 4 s = 6 s = 8 s = 10

Map 1 2.00e+00 2.00e+00 2.20e+00 2.04e+00 4.17e+00 5.29e+00 7.03e+00 1.38e+01

Map 2 2.00e+00 2.00e+00 3.41e+00 5.56e+02 5.77e+02 6.29e+02 5.06e+02 4.58e+02

Map 3 2.00e+00 2.00e+00 6.12e+00 1.36e+03 5.34e+03 1.04e+04 1.71e+04 1.89e+04

Map 4 2.00e+00 2.00e+00 6.20e+00 1.63e+05 1.93e+05 2.37e+05 2.57e+05 2.60e+05

Map 5 2.00e+00 2.00e+00 5.45e+00 --- --- --- --- ---

Map 6 2.00e+00 2.00e+00 1.01e+01 --- --- --- --- ---

Table 5. Results provided by different ACO algorithms

Map ACAM ACRA ACRA_PO ACO_TAP
G Gp

MAX-MIN ACO
G Gp

Map 1 7.28e+03 7.14e+03 7.13e+03 9.29e+03 7.35e+03 1.09e+04 7.22e+03

Map 2 6.16e+03 5.08e+03 5.03e+03 7.04e+03 6.25e+03 9.43e+03 5.15e+03

Map 3 3.81e+04 3.59e+04 3.52e+04 4.04e+04 3.74e+04 4.27e+04 3.67e+04

Map 4 3.43e+04 3.18e+04 3.12e+04 3.63e+04 3.29e+04 3.51e+04 3.14e+04

Map 5 4.67e+04 4.39e+04 4.34e+04 5.10e+04 4.61e+04 5.12e+04 4.35e+04

Map 6 4.10e+04 4.01e+04 3.96e+04 4.40e+04 4.07e+04 4.39e+04 4.01e+04

Computación y Sistemas Vol. 18 No. 1, 2014 pp. 37-50
ISSN 1405-5546

http://dx.doi.org/10.13053/CyS-18-1-2014-017

48 Antonio Bolufé-Röhler, Juan Manuel Otero Pereira, and Sonia Fiol-González

maximum time of 3 seconds as the stopping
condition. As it can be noticed, there is a clear
difference in performance when using the original
graph and the p-shortest path sub-graph
structure. The use of Gp strongly improves the
performance of both algorithms. It is also
important to notice that although the results of all
ACO algorithms are similar, ACRA_PO provides
the best results on every instance.

9.2 Convergence Analysis

Different heuristics have usually different
convergence speeds. Fig. 7 shows a plot of the
best solution found by ACAM and ACRA (using
Map 5). This comparison between the
convergence rate of ACAM and ACRA reveals
that ACAM has a slower convergence process
before reaching a stagnation phase. On the other
hand, although ACRA provides worst solutions
during the first iterations, the quality of the best
solution found quickly improves before reaching
stability.

The convergence curve for ACRA shows that
the quality of the solution built using the
congestion model slightly decreases after a given
point. This diminishment is a direct consequence
of small fluctuations in the optimal pheromone
matrix due to the stochastic nature of the process
used to model traffic congestions. A simple way to
overcome this difficulty is by building a final
solution regularly using the current pheromone
matrix. A better and more efficient strategy would
be to stop the algorithm once the optimality point
has been reached.

The main difficulty with this approach is to
determine the correct moment to stop the
algorithm. An empirical study showed that a
recommendable stopping criterion can be
provided by Equation 14, where ni is the optimal
number of iterations to be executed, tf is the total
amount of flow that has to be distributed in a
given problem instance, and ϑ is the parameter
that determines the units of flow assigned to each
ant:

𝑛𝑖 = 3 �
𝑡𝑓
𝜗�

 . (14)

9.3 Traffic Simulation

A traffic simulation has been implemented using
the flow distribution provided by ACRA [20]. On
this discrete event simulation, the movements and
interactions of small groups of cars during their
journey through the city were accurately
predicted. The simulation is based on events such
as the departure and arrival of groups of cars with
the same origin and destiny, changes of lights on
semaphores, waiting and crossing of roads
intersections, among others. By using an
adequate estimation of traffic demands and the
flow distribution provided by ACRA, these events
allow recreating the dynamic of the traffic
behavior in a city.

The validation of the obtained data against
real-world information shows the feasibility of this
approach when gathering crucial information
about city traffic. Examples of statistical
information that can be obtained through the
simulation are the waiting time of vehicles on
roads intersections with and without a
semaphore, the most used routes and their
congestion levels, and the evolution of the traffic
flow during the day. This useful information can
be vital when distributing resources such as mass
transit, planning future infrastructure
developments, and synchronizing semaphores.

Fig. 8 shows an example of the overall flow
distribution for Instance 6, where 20 zones were
considered. It can be noticed how congestion is
correctly handled when paths followed by different
drivers are plotted. Different choices were made
for going from one same origin to one same

Fig. 7. Convergence rate of the ACAM and ACRA
algorithms

Computación y Sistemas Vol. 18 No. 1, 2014 pp. 37-50
ISSN 1405-5546
http://dx.doi.org/10.13053/CyS-18-1-2014-017

Traffic Flow Estimation Using Ant Colony Optimization Algorithms 49

destination. This ensures that no faster alternative
way is available (Wardrop’s first principle).

10 Conclusions

This paper presents two new ant algorithms for
the MCMNF problem and their application to the
case study of distributing traffic flows in the
Havana city. Computational results have shown
that ACO algorithms provide good results with low
running times, especially when solving complex
real-life routing optimization problems. The
convenience of hybridizing ACO algorithms with
techniques of other heuristic and approximation
algorithms as well as with simple local search
method has been also confirmed by the good
results obtained using ACRA and ACRA_PO.

Although the computational results on various
instances of the MCMNF problem with real
networks suggest that ACRA and ACRA_PO can
be used to efficiently determine flow distributions
in a city, there is still room for future
improvements. One of the main issues to be
improved is the strong effect that some
parameters have on the performance of the
algorithms, especially those parameters which are
related to the construction of the 𝐺𝑝 structure. As
stated earlier, the post-optimization method helps
to partially overcome this difficulty; however, a

great amount of time is still needed to correctly
tune the parameters.

The general performance of the algorithms
and the high standard deviation values in
particular could also be improved in future works.
Good results may be obtained by the
interoperation of metaheuristics and mathematic
programming; a promising trend known as
matheuristics has shown to be very effective on
solving hard real-life optimization problems. The
hybridization between different metaheuristics is
also an alternative for future developments.

To compare the performance of ACRA and
ACRA_PO to other state of the art ACO
algorithms, future work will adapt these algorithms
to the particularities of other flow distribution
problems, such as those presented in [9] and [10].

References

1. Wardrop, J.G. (1952). Some theoretical aspects of
road traffic research. Palo Alto: Institution of Civil
Engineers.

2. Fratta, L., Gerla, M. & Kleinrock, L. (1973). The
flow deviation method: An approach to store-and-
forward communication network design. Networks,
3(2), 97–133.

3. Goffin, J., Gondzio, J., & Vial, R. (1997). Solving
nonlinear multicommodity flow problems by the
analytic center cutting plane method. Mathematical
Programming, 76(1), 131–154.

4. Gabrel, V., Knippel, A., & Minoux, M. (1999).
Exact Solution of Multicommodity Network
Optimization Problems with General Step Cost
Functions. Operations Research Letters, 25(1),
15–23.

5. Boschetti, M.A., Maniezzo, V., Roffilli, M., &
Röhler A.B. (2009). Matheuristics: Optimization,
Simulation and Control. Hybrid Metaheuristics.
Lecture Notes in Computer Science, 5818, 171–
177.

6. Garlick, R.M. & Barr, R.S. (2002). Dynamic
wavelength routing in WDM networks via ant
colony optimization. Ant Algorithms, Lecture Notes
in Computer Science, 2463, 250–255.

7. Walkowiak, K. (2005). Ant algorithm for flow
assignment in connection-oriented networks.
International Journal on Applied Mathematics and
Computer Science, 15(2), 205–220.

8. Maniezzo, V., Roffilli, M., Gabrielli, R., Guidazzi,
A., Otero, M., & Trujillo, R. (2008). Regional

Fig. 8. Traffic flow distribution on a partial map of the
Havana city

Computación y Sistemas Vol. 18 No. 1, 2014 pp. 37-50
ISSN 1405-5546

http://dx.doi.org/10.13053/CyS-18-1-2014-017

50 Antonio Bolufé-Röhler, Juan Manuel Otero Pereira, and Sonia Fiol-González

Traffic Assignment by ACO. Ant Colony
Optimization and Swarm Intelligence, Lecture
Notes in computer Science, 5217, 409–410.

9. Mohan, C. & Baskaran, R. (2010). Improving
network performance using ACO based redundant
link avoidance algorithm. International Journal of
Computer Science Issues, 7(3), 27–35.

10. Sawadogo, M. & Anciaux, D. (2012). Sustainable
supply chain by intermodal itinerary planning: a
multiobjective ant colony approach. International
Journal of Agile Systems and Management, 5(3),
235–266.

11. Dorigo, M. & Gambardella, L.M. (1997). Ant
colony system: a cooperative learning approach to
the traveling salesman problem. IEEE Transaction
on Evolutionary Computation, 1(1), 53–66.

12. Maniezzo, V. (1999). Exact and approximate
nondeterministic tree-search procedures for the
quadratic assignment problem. INFORMS Journal
of Computing, 11(4), 358–369.

13. Eppstein, D. (1998). Finding the k Shortest Paths.
SIAM Journal on Computing, 28(2), 652–673.

14. Awerbuch, B. & Leighton, T. (1993). A Simple
local-control approximation algorithm for
multicommodity flow. 34th Annual Symposium on
Foundations of Computer Science, Palo Alto, CA,
459–468.

15. Di Caro, G. & Dorigo, M. (1998). AntNet:
distributed stigmergetic control for communications
networks. Journal of Artificial Intelligence
Research, 9(1), 317–365.

16. Burke, E., Kendall, G., Newall, J., Hart, E., Ross,
P., & Schulenburg, S. (2003). Hyper-heuristics:
An emerging direction in modern search
technology. Handbook of Metaheuristics,
International Series in Operations Research &
Management Science, 57, 457–474.

17. Goldberg, D.E. (1989). Genetic Algorithms in
Search, Optimization and Machine Learning.
Reading, Mass.: Addison-Wesley Pub. Co.

18. COIN-OR Foundation. (s.f.). Retrieved from
http://www.coin-or.org/foundation.html.

19. Stützle, T. & Hoos, H.H. (2000). MAX-MIN Ant
System. Future Generation Computer Systems,
16(8), 88–914.

20. Fernández, C.A. & Bolufé-Röhler, A. (2011).
MapTools, Herramienta para la Simulación y
Visualización de Problemas de Tráfico. XXV
JCJuvenil ICIMAF.

Antonio Bolufé Röhler
graduated in Computer
Science from the University of
Havana in 2007. In 2010 he
received the M.Sc. degree in
Mathematical Sciences and is
currently a Ph.D. student. He
holds an Assistant Professor

position at the Faculty of Mathematics and
Computer Sciences, where he teaches
metaheuristics, simulation, logic and computer
history. His main research area is application of
metaheuristics for optimization, machine learning
and computational linguistic analysis.

Juan Manuel Otero Pereira
is a Bachelor in Mathematics
from the University of
Havana (1978) and a Ph.D.
in Mathematics from the
Humboldt University of Berlin
(1987). He is Professor
Titular at the Department of
Applied Mathematics, the

University of Havana, and Invited Professor of
several Latin American universities. His main
research area is the design of metaheuristics for
vehicle routing problems, clustering and
automatic classification.

Sonia Fiol González received
her B.Sc. degree in Computer
Science at the University of
Havana in 2012. Currently, she
is a Master student at the
Faculty of Mathematics and
Computer Science of the
University of Havana. She

works at Simpro, an enterprise dedicated to the
development of simulators and virtual reality
devices and leads Simpro’s Research Lab at the
Havana University. Her main research experience
and interests are in the fields of databases and
simulation.

Article received on 01/05/2013, accepted on 27/06/2013.

Computación y Sistemas Vol. 18 No. 1, 2014 pp. 37-50
ISSN 1405-5546
http://dx.doi.org/10.13053/CyS-18-1-2014-017

http://www.coin-or.org/foundation.html

	1 Introduction
	2 Mathematical Model
	3 Previous Work
	4 Shortest Path Sub-Graph Structure
	4.1 Construction of the Shortest Path Sub-Graph Structure

	5 Ant Colony Algorithm for Multi-commodity Problems
	6 Ant Commodity Routing Algorithm
	7 Post-Optimization
	8 Parameter Tuning
	Parameter
	9 Computational Results
	9.1 Comparison with other Ant Colony Algorithms
	9.2 Convergence Analysis
	9.3 Traffic Simulation

	MAX-MIN ACO
	ACAM
	Map
	10 Conclusions
	References

