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Abstract. Simulation and optimization of traffic 
flows in a city or province allow the 
implementation of correct developing strategies 
and help the decision making process when using 
and distributing resources such as mass transit. 
This estimation can be modeled as a bifurcated 
multi-commodity network flow problem, where the 
general flow distribution is dictated by Wardrop’s 
principles. In this paper two different Ant Colony 
Optimization algorithms are presented for solving 
this problem. The proposed algorithms are tested 
with real-life traffic demand in the Havana city. 
The obtained results are compared to those 
provided by classical algorithms, showing that the 
new ant colony algorithms provide good results as 
well as low running times. 

Keywords. Non-linear optimization, 
metaheuristics, traffic problem, logistics, 
simulation. 

Algoritmos de optimización basados 
en colonias de hormigas para la 
estimación de flujos de tráfico 

Resumen. La estimación de flujos de tráfico 
permite implementar buenas estrategias de 
desarrollo, a la vez que ayuda en el proceso de 
toma de decisiones cuando se controlan y 
distribuyen recursos claves como el transporte 
masivo. La distribución de tráfico puede ser 
modelada como un problema de Flujo de Costo 
Mínimo para Múltiples Bienes. Para su solución, 
la Optimización de Colonia de Hormigas provee 
un marco de trabajo prometedor. En la presente 
investigación se presentan dos nuevos algoritmos 
basados en Colonias de Hormigas, los mismos se 
aplican a instancias reales del problema de 
estimación de flujo en Ciudad de La Habana. Los 

resultados alcanzados se comparan con los 
provistos por algoritmos clásicos, mostrando la 
efectividad del método propuesto. 

Palabras clave. Optimización no-lineal, 
metaheurísticas, problema de tráfico, logística, 
simulación. 

1 Introduction 

It is possible to simulate the behavior of a system 
through the optimization of a model that 
accurately predicts it; such simulation allows 
analyzing the system’s responses to different 
events and decisions. In this case study, we are 
concerned with the prediction of traffic flow 
distribution in the Havana city. As a result of 
optimizing a flow problem, it will be possible to 
simulate different decision making strategies for 
such scenarios as optimum semaphore 
distribution and synchronization, efficient 
selection of mass transit routes, or infrastructure 
development. 

For this purpose we have different maps of the 
city roads, the biggest of them has over 8000 
edges, representing the road sections, and 2000 
nodes representing the intersection between the 
streets. The map's nodes are partitioned into 
zones, representing different districts or 
neighborhoods of the city; an estimation of the 
traffic demand between these zones is also 
known. 

The problem to solve is finding an optimal flow 
distribution between these zones; we formalize 
the optimality assumption in our case study by 
Wardrop's principles [1]. The flow distribution 
dictated by Wardrop's principles state that the 
journey times in all routes actually used are equal 
to, or less than, those which would be 
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experienced on any unused route.  Assuming that 
the system will lean toward such a minimum free 
energy status, or equilibrium, it is possible to 
model the flow prediction as a Minimum Cost 
Multi-commodity Network Flow Problem 
(MCMNF) with a non-linear objective function. 
The commodities are associated with the flow 
running in each direction of every pair of zones. 
For every commodity there exist multiple source 
and sink nodes, i.e., the traffic moving from a 
zone to another can begin at any node of the 
starting zone and culminate at any node of the 
destination zone. 

The MCMNF with a non-linear function and 
integer flow values is a well-known NP-hard 
optimization problem for which some heuristic and 
approximation algorithms have been developed. 
Nevertheless, state of the art is not yet fully 
satisfactory when facing large real-world 
optimization problems. In recent years, 
metaheursitics have demonstrated their ability to 
solve this kind of complex real-world problems. In 
particular, the Ant Colony Optimization (ACO) 
metaheuristic has proved to be specially fitted to 
deal with the kind of dynamism that exists in 
similar problems, such as traffic assignment and 
data routing. 

In this paper, two new ACO algorithms are 
presented for solving the MCMNF problem. Both 
algorithms use a specially designed data structure 
as construction graph for the ants. 

This paper is organized as follows. Section 2 
describes two formulations used in the literature 
to model the MCMNF problem. Section 3 
presents a brief introduction to state of the art. In 
Section 4 a first approach to the problem and the 
p-shortest path data structure are presented. In 
Sections 5, 6 and 7, the ant algorithms and a 
post-optimization method are explained. The rest 
of the paper provides the results and conclusions 
of this study. 

2 Mathematical Model 

The MCMNF problem is defined on a directed 
graph 𝐺 = (𝑉;𝐸) associated to the roads network, 
with |𝑉| = 𝑛 and  |𝐸| = 𝑚 . Additionally to the 𝑛 
network nodes, other 𝑧 dummy nodes are added 
to connect all the nodes belonging to a same 

zone; every ordered pair of distinct zones defines 
a commodity. Using the dummy nodes it is 
possible to associate a single source-sink pair of 
nodes (𝑠𝑘; 𝑡𝑘) to each of the 𝐾 = 𝑧 (𝑧 − 1) 
commodities. Thus, the problem’s objective 
function can be modeled as in (1), with 
constraints (2), (3) and (4): 

min 𝑐�𝑓𝑖𝑗� = �
𝑑𝑖𝑠𝑡𝑖𝑗𝑓𝑖𝑗
𝑢𝑖𝑗 − 𝑓𝑖𝑗(𝑖,𝑗∈𝐸)

 (1) 

subject to 

0 ≤ 𝑓𝑖𝑗 ≤ 𝑢𝑖𝑗  (2) 

�𝑓𝑖𝑗𝑘

𝑗∈𝑉

= 0     𝑖 ∈ 𝑉, 𝑖 ≠ 𝑠𝑘, 𝑡𝑘   , (3) 

�𝑓𝑠𝑘𝑗
𝑘

𝑗∈𝑉

= �𝑓𝑖𝑡𝑘
𝑘

𝑗∈𝑉

= 𝑑𝑘      𝑘 ∈ 𝐾 (4) 

where 𝑑𝑖𝑠𝑡𝑖𝑗, 𝑓𝑖𝑗 and 𝑢𝑖𝑗 are the distance, running 
flow and an upper bound of the theoretical 
capacity of the road section (𝑖 ; 𝑗), respectively. 
The traffic demand for commodity k is 
represented by dk; while fij, and fijk are the total 
flow and the flow for commodity k on edge (𝑖;  𝑗), 
respectively. Constraint (2) establishes a limit on 
the total flow that can traverse a given edge, while 
constraints (3) and (4) guarantee flow 
conservation and demand satisfaction, 
respectively.  

The previous model is known as a node-arc 
formulation. An alternative way to represent the 
problem is the arc-path formulation. The arc-path 
formulation is equivalent to the previous one, but 
is obtained by providing for each commodity the 
set of all paths connecting the source node 𝑠𝑘 
with the sink node  𝑡𝑘. In this formulation the 
constraints are expressed as 

� 𝜙𝑝 = 𝑑𝑘
𝑝∈Φ𝑘

      𝑘 ∈ 𝐾 , (5) 

𝑓𝑖𝑗 = �𝛿𝑖𝑗
𝑝𝜙𝑝 ≤ 𝑢𝑖𝑗

𝑝∈Φ

    (𝑖, 𝑗) ∈ 𝐸 (6) 
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where 𝛷 is the set of all possible paths and 𝛷𝑘 is 
those paths used to transport commodity 𝑘. The 
flow running over path 𝑝 is represented by 𝜙𝑝, and 
𝛿𝑖𝑗
𝑝  is a constant equal to 1 if arc (𝑖;  𝑗) belongs to 

path 𝑝 and 0 otherwise. In this alternative model 
an exhaustive enumeration of all paths for every 
(𝑠𝑘;  𝑡𝑘) pair is assumed. For medium or big 
networks this assumption is numerically 
intractable since the number of paths growths 
exponentially with the problem dimensions. 
Therefore, in practice many algorithms dealing 
with this formulation restrict the number of paths 
considered between every source-sink pair, or 
include some iterative path generation 
procedure [2]. 

3 Previous Work  

Various network or transportation problems can 
be modeled as non-linear multi-commodity flow 
problems, therefore, a vast collection of 
algorithms can be found in the literature on this 
topic. If the flow values can be real numbers, then 
algorithms based on classical mathematical 
programming methods such as feasible direction, 
cutting planes and sub-gradient methods can be 
used [2, 3]. Another practical approach is to 
approximate the objective function by a linear or 
piecewise linear function [4]. A combination of 
metaheuristics with mathematical programming 
(matheuristics) has also been successfully 
applied to the MCMNF problem [5]. 

On the other hand, if the flow values are 
integers, then the MCMNF becomes an NP-hard 
problem. In such case, the Ant Colony 
Optimization (ACO) provides an appropriate 
framework to deal with this kind of complex real-
life optimization problems. The non-linear 
MCMNF problem is characterized by an inherent 
dynamic structure given by the application of 
Wardrop’s principles.  

Because of the internal representation based 
on pheromone trails, which needs to be updated 
and not reconstructed as the instance and its 
autocatalytic ability change, ACO systems are 
specially fitted to deal with this kind of dynamism. 
This hypothesis is supported by the results of 
ACO algorithms applied to complex network 
optimization problems such as the dynamic 

routing wavelength assignment [6], the non-
bifurcated linear MCMNF [7], and the traffic 
assignment problem [8]. 

Recent works also show that the use of ACO 
algorithms can be effective when reducing 
response time and pocket loss in computer 
networks [9], as well as increasing sustainability 
in supply chains of transportation systems [10]. A 
new ACO algorithm called ‘Redundant Link 
Avoidance (RLA) algorithm’ is proposed in [9]. By 
removing redundant links in the merged routes, 
this algorithm improves the results provided by 
ACO based multi-path routing methodology. The 
solutions provided by RLA allow to tackle 
problems such as network burst, overloading and 
traffic merging. In [10] an ant colony algorithm is 
built based on a multi-objective approach in order 
to find Pareto-optimal solutions. These solutions 
aim to increase sustainability without sacrificing 
economic objectives. The proposed algorithm is 
analyzed using a case of transportation in 
Europe. 

The results reported in [8] show the 
theoretical and practical advantages obtained 
when applying a correctly designed ACO 
algorithm to traffic flow optimization and 
simulation problems. This paper extends those 
results by presenting new algorithms and insights. 

4 Shortest Path Sub-Graph Structure 

The first attempt to develop an ant based 
algorithm for the MCMNF problem was applied to 
the arc-node formulation, i.e., the algorithm was 
directly executed over the network graph. In that 
algorithm a number of ants were sent 
simultaneously at each origin node 𝑠𝑘 with a 
respective sink node 𝑡𝑘 as destination. Each ant 
represented a group of vehicles having the same 
origin and destination. However, this approach 
was not effective; the main reason was the 
inability of the ants to find short paths between 
the zones.  

The rules determining the ants’ movements 
were similar to the ACS algorithm [11] and the 
trail update were inspired by the work in [8]. The 
heuristic information represented such physical 
road attributes as length and capacity, while the 
pheromone trail modeled the congestion of the 
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roads. The heuristic information was computed a 
priori using the Dijkstra algorithm, labeling every 
node with the traveling time of the uncongested 
shortest path to every destination. The trail was 
updated locally and globally. As every ant moved 
toward its destination, the pheromone trail was 
decreased, with the idea of making the path less 
desirable to other ants due to the flow increase 
during the solution construction. When a solution 
was obtained, the trail was globally updated 
proportionally to the solution quality; trail 
evaporation was also performed. 

Despite this algorithm seems to be 
theoretically correct, in practice several difficulties 
arise during its application. The ants tend to 
ramble before arriving to their destination, and 
although the flow was fairly distributed through 
different paths, those paths were not the shortest 
ones. Two main reasons explain this behavior: 
the first one is a relatively small difference in the 
heuristic information values between two nodes 
that have a common adjacent node. For example, 
for a node 𝑛 which is adjacent to 𝑛1 and 𝑛2, the 
heuristic information for a specific destination 𝑘 of 
these two nodes is quite similar. Even if the step 
from 𝑛 to 𝑛1 directly nears the destination zone k 
and the step from 𝑛 to 𝑛2 goes in the opposite 
direction, the difference between the heuristic 
information for 𝑛1 and 𝑛2 is comparatively small. 
This is driven by the fact that the distances 
between two intersections in a city are usually 
small in comparison to the total distance to be 
travelled, as illustrated in Fig. 1. When a 
stochastic selection rule is applied to choose the 
next movement for an ant located in 𝑛, then there 
exists a high probability that a wrong decision is 
made. 

The trail update is the second fact that causes 
a poor decision making process. During the 
solution construction process several ants are 
send for every (𝑠𝑘;  𝑡𝑘) pair until the flow demand 
is satisfied. As these ants move from their source 
to their destination, the pheromone trail is locally 
updated and decreased. This trail update 
guaranties a good flow distribution among 
different paths, but reinforces the possibility of 
choosing the node 𝑛2 instead of 𝑛1 for an ant 
located at 𝑛. This may happen when the step from 
node 𝑛 to 𝑛1 is repeatedly selected by other ants 
during the same solution. On the other hand, if 

the local trail update is not applied, or instead of 
decreasing the trail is increased, then the ants' 
routes converge over the shortest paths between 
every pair of zones which leads to a poor flow 
distribution, augmenting the flow congestion on 
the used paths and therefore the time of all 
journeys. 

After this experience, and to overcome the 
arising difficulties, the ant algorithm was applied 
to the arc-path formulation. The basic idea is to 
preselect a set of promising paths between every 
pair of zones and establish them as the only 
possible routes. This approach better reflects 
what happens in the real life when a driver faces 
the task of determining a route.  

From the algorithmic point of view, the arc-
path formulation prevents the ants from making a 
wrong decision which could lead to unnecessary 
long tours, and at the same time allows the use of 
the pheromone trail as a mechanism for 
distributing the flow through different paths. This 
approach leads to better computational results, 
although it restricts the original solution space and 
the ants’ ability to adapt to the environment. 

 

Fig. 1. Distances from adjacent street intersections 
(n1 and n2) to a destination point (n3) 
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To overcome these new drawbacks, a special 
data structure was designed to be used as a 
construction graph of the ant algorithm. 
Therefore, the ants won't move on the original 
network graph but on what will be called the p-
shortest path sub-graph structure, denoted as  
𝐺𝑝. As its name indicates, this structure is a 
collection of 𝑧 different sub-graphs, 𝐺𝑝 =
�𝐺1

𝑝 ,  𝐺2
𝑝 , … ,𝐺𝑧

𝑝�. The sub-graph 𝐺𝑖
𝑝 will include 

those vertex and edges from the original network 
that belong to some of the p-shortest paths 
between any of the 𝑧 zones and the zone 𝑖; 𝑝 is a 
parameter of the algorithm that determines the 
number of preselected paths (presented results 
used 𝑝 = 20). 

Independently of the starting zone, an ant 
heading toward zone 𝑖 will move only over the 
links belonging to the sub-graph 𝐺𝑖

𝑝. For any pair 
of zone (𝑗 ; 𝑖) there will exist at least 𝑝 different 
paths connecting zone 𝑗 with the zone 𝑖 in 𝐺𝑖

𝑝. 
The maximum number of paths will depend on the 
amount of intersections between the p-shortest 
paths heading to 𝑖.  

The p-shortest path sub-graph structure is a 
practical way to restrict the number of paths 
considered between every source-sink pair. At the 
same time using it as the construction graph 
allows a flexible implementation of the arc-path 
approach, since the path used by an ant is not 
selected beforehand from a fixed set of paths, but 
constructed as the ant moves over the 
correspondent 𝐺𝑖

𝑝 sub-graph. 

4.1 Construction of the Shortest Path Sub-
Graph Structure 

For the construction of the 𝐺𝑖
𝑝sub-graphs two 

different methods were tested. The first method 
used the Eppstein algorithm to find the p-shortest 
paths between each pair of origin-destiny nodes 
[13]. The computational complexity of this 
methods is 𝑂(𝑚 +  𝑛𝑙𝑜𝑔 𝑛 +  𝑝𝑛), with 𝑛 = |𝑉| 
and 𝑚 = |𝐸|. The second method obtained the 
shortest paths by repeatedly applying the Dijkstra 
algorithm, after each run of which the cost of the 
edges belonging to the resulting paths were 
penalized multiplying their cost by a factor 𝛹, 
which is a parameter. The cost function 
associated to the edges was 𝑐𝑜𝑠𝑡(𝑖, 𝑗) =

 𝑑𝑖𝑠𝑡𝑖𝑗/𝑢𝑖𝑗 where 𝑑𝑖𝑠𝑡𝑖𝑗 is the distance and 𝑢𝑖𝑗  is 
the theoretical capacity of the road section (𝑖, 𝑗). 
Since the Dijkstra algorithm needs to be executed 
𝑝 times, the computational complexity of this 
method is 𝑂(𝑝 𝑚 𝑙𝑜𝑔𝑛). In both methods, once all 
the shortest paths toward zone 𝑖 where computed 
(independently of the starting zone), they were 
merged into the 𝐺𝑖

𝑝 sub-graph.  
In practice, the running time needed by both 

methods to construct the p-shortest path sub-
graph structure were similar, however, the graph 
obtained using the Dijkstra algorithm leads to 
better solutions during optimization. This result 
was driven by the fact that the paths obtained 
through the penalized Dijkstra method were more 
diverse than the actual p-shortest paths provided 
by the Eppstein method. Fig shows the “shortest” 
paths provided by each method.  

When implementing the p-shortest path sub-
graph structure it is not necessary to actually 
have the 𝑘 sub-graphs as independent data 
structure. Instead, it is enough to have, for each 
node, a routing table indicating the set of edges 
that can be followed to reach each of the 
destination zones. When a new path is added to a 
given sub-graph, it is enough to update, for each 
of its vertex, the set of available edges in the 
routing tables. 

 

Fig. 2. Shortest paths provided by the methods 
based on the Eppstein and Dijkstra algorithms 
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5 Ant Colony Algorithm for Multi-
commodity Problems 

The Ant Colony Algorithm for Multi-commodity 
problems (ACAM) is a simple ant based algorithm 
for the MCMNF problem (Fig. 3) In ACAM, 
artificial ants move on the p-shortest path sub-
graph structure introduced in the previous section. 
The algorithm exploits artificial pheromone trails 
associated with each node 𝑖 of the sub-graph 
network. The pheromone values denoted as 𝜏𝑖𝑗𝑑  
represent the learned desirability to move from 
node 𝑖 to node 𝑗 with a destination zone 𝑑. At 
each node, an heuristic information value 𝜂𝑖𝑗 is 
also available, it characterizes the convenience to 
move from node 𝑖 to 𝑗 based on problem specific 
knowledge associated to the (𝑖;  𝑗) edge. This 
heuristic information is determined by physical 
road attributes and is computed a priori according 
to 𝜂𝑖𝑗 = 𝑢𝑖𝑗/𝑑𝑖𝑠𝑡𝑖𝑗  .  

ACAM is inspired by the Ant Colony System 
[11]. The algorithm iterates until some termination 
conditions are met and at every iteration a 

number 𝜔 of solutions are sequentially build by a 
colony of ants. After the iteration is concluded, the 
𝜔𝑏 best solutions are used to update the trail 
proportionally to the solution quality. The values 𝜔 
and 𝜔𝑏  are parameters of the algorithm with 
1 < 𝜔𝑏 <  𝜔. The algorithm proceeds by creating 
a list of ants associated to an origin-destination 
pair (𝑠𝑘;  𝑡𝑘) and with an assigned flow cargo 
equal to 𝜃 which is a parameter of the algorithm 
(presented results used 𝜃 = 5). The sum of all 
ants’ cargo must cover the entire traffic demand 
between all zones. The ants are then randomly 
chosen and sent from their origin zone toward 
their destination. When the ant arrives, the trail of 
the traversed edges is updated using Equation 7, 
where 0 < 𝜌 < 1 is the pheromone evaporation 
rate (presented results used 𝜌 = 0.9). The goal of 
this pheromone decrease is to diversify the paths 
used to deliver the flow between every pair of 
zones by making an already traversed edge less 
desirable. After a solution is obtained, the 
pheromone trail is reset to its original value at the 
beginning of the current iteration: 

𝜏𝑖𝑗𝑑 = (1 − 𝜌)𝜏𝑖𝑗𝑑 . (7) 

When an iteration ends, the 𝜔𝑏 best obtained 
solutions are used for a global trail update 
applying (8), where 𝑆𝜔𝑏  is the set of best solutions 
at the current iteration; 𝑓𝑖𝑗𝑑𝑠  is the flow running 
from node i to j, with destination zone 𝑑, in 
solution s; 𝜑𝑠 and 𝜑𝑏𝑒𝑠𝑡 are the costs of solution 𝑠 
and the best solution found so far, respectively: 

𝜏𝑖𝑗𝑑 =  
∑ 𝑓𝑖𝑗𝑑𝑠

𝜑𝑏𝑒𝑠𝑡
𝜑𝑠𝑠∈𝑆𝜔𝑏

𝜇𝑖𝑗𝑑
  , (8) 

𝜇𝑖𝑗𝑑 = � � 𝑓𝑖𝑗𝑑𝑠
𝜑𝑏𝑒𝑠𝑡
𝜑𝑠

𝑗∈𝑁𝑖
𝑑𝑠∈𝑆𝜔𝑏

  . (9) 

The factor 𝜇𝑖𝑗𝑑 weights the deposit of trail, to 
make it proportional to the solution quality. This 
term guaranties that the pheromone trails remain 
smaller than 1, and is calculated using Equation 
9, where 𝑁𝑖𝑑 represents the neighbor nodes of i 
in 𝐺𝑑

𝑝: 

 
Fig. 3. Pseudo-code of the Ant Colony Algorithm for 
Multi-commodity problems (ACAM) 
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𝑝𝑖𝑗𝑑 =  
𝜉 𝜏𝑖𝑗𝑑 + (1 − 𝜉)𝜂𝑖𝑗

∑ 𝜉 𝜏𝑖𝑙𝑑 + (1 − 𝜉)𝜂𝑖𝑙𝑙∈𝑁𝑖
𝑑

  . (10) 

At the construction stage, the list of created 
ants is cleared as they are randomly selected and 
sent from their assigned origin to their destination. 
During the journey the ants construct their route 
by applying a probabilistic action choice rule 
every time they are at an intersection with multiple 
links to choose from. Because of moving in  𝐺𝑑

𝑝, 
there may exist nodes where only one edge is 
available when aiming for a destination 𝑑. If that is 
not the case, then an ant located at node 𝑖 and 
leading to zone 𝑑 moves to node 𝑗 with 
probability 𝑝𝑖𝑗𝑑 , calculated as in (10). The 
parameter 𝜉 allows balancing the influence 
between the pheromone trial and the heuristic 
information (0 < 𝜉 < 1, presented results used 
𝜉 = 0.8). This rule is similar to the one used by the 
ANTS algorithm [12] and provided the best results 
in our experimental evaluation of different 
selection rules. 

6 Ant Commodity Routing Algorithm 

Although ACAM provides good computational 
results, its general design can be further improved 
by hybridizing it with techniques from other 
heuristic and approximation algorithms. The Ant 
Commodity Routing Algorithm (ACRA) in Fig. 4 
has similarities with some well-known routing 
algorithms. The general operation of ACRA is 
strongly related with the approximation algorithm 
of Awerbuch and Leighton [14]. In ACRA, as in 
the approximation algorithm, the flow is pumped 
continuously into the network, until a given 
amount is reached. This flow accumulation allows 
modeling and locating the bottlenecks, and 
avoiding them on the final solution. Another point 
of reference is the AntNet algorithm [15], where 
the information about the network status, 
gathered by the ants through their journeys, is 
stored and updated on-line on node-local models. 

The ACRA algorithm works by continuously 
sending ants with a flow cargo of 𝜃, until some 
stop conditions are met (presented results used 
𝜃 = 5). The commodities are randomly selected 

with a probability proportional to their demand. 
Besides the pheromone trail, the model of the 
flow distribution generated by the ants is also 
stored; on the other hand, no heuristic information 
is used. After an ant arrives, it backtracks over the 
followed path to update the pheromone trail and 
the flow distribution, then another commodity is 
selected and the next ant is sent.  

The pheromone trail value is associated to 
every node of 𝐺𝑑

𝑝; in ACRA  𝜏𝑖𝑗𝑑  represents an 
estimation of the travelling time to zone 𝑑 
following the (𝑖;  𝑗) edge, given the current flow 
distribution. The trail is updated as an ant 
backtracks its path, and it is computed as 
 𝜏𝑖𝑗𝑑 = 𝛿𝑗𝑑 − 𝛿𝑖𝑗, where 𝛿𝑗𝑑 is the time needed for 
the ant to travel from vertex j to the destination d, 
and 𝛿𝑖𝑗 is the cost of traversing the edge (𝑖;  𝑗) as 
follows: 

𝛿𝑖𝑗 =
𝑑𝑖𝑠𝑡𝑖𝑗  𝑓𝑖𝑗
𝑢𝑖𝑗 − 𝑓𝑖𝑗

 . (11) 

To update the pheromone trail, it is necessary 
to store the flow values distributed by the ants. 
These values are directly associated to the edges 
of the original network G, making no distinction 
between flows of different destinations. Every 
time an ant backtracks, it increases the flow 
values by 𝜃.To keep the flow values over the 
network at realistic levels, i.e., similar to those 
present in a solution of the problem, a flow 
evaporation process is implemented. Initially, a 
number of  �𝑡𝑓

𝜃
� iterations are run without 

evaporation, allowing the flow to accumulate to 
the desired level; 𝑡𝑓 is the total flow to be 
distributed among all the commodities. Once the 
desired level is achieved after each iteration, the 
flow evaporation process is applied to every edge. 
The evaporation rate guaranties that the flow 
values over the entire network remain stable and 
approximately equal to 𝑡𝑓. 

In practice, for efficiency reasons, the 
evaporation is only performed on the edges 
backtracked by the ant. It is done before the flow 
increases and is calculated by (12), where ∆𝜄𝑖𝑗 is 
the number of iterations since the last flow 
evaporation at the edge (𝑖;  𝑗). If it is the first time 
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the flow is evaporated on this edge, then ∆𝜄𝑖𝑗 is 
the difference between the current iteration 
and �𝑡𝑓

𝜃
�:  

𝑓𝑖𝑗 = max�𝑓𝑖𝑗 − ∆𝜄𝑖𝑗
𝑓𝑖𝑗
𝑡𝑓
𝜃, 0� . (12) 

The selection rule used by ACRA's ants during 
their movement is quite simple, an ant heading to 
zone 𝑑 and situated at a node 𝑖 chooses the next 
node 𝑗 with a probability given by 

𝑝𝑖𝑗𝑑 =  
1

 𝜏𝑖𝑗𝑑 ∑
1

 𝜏𝑖𝑙𝑑𝑙∈𝑁𝑖
𝑑

     𝑖𝑓 𝑗 ∈ 𝑁𝑖𝑑 . (13) 

The algorithm continuously iterates until some 
termination criteria are met, such as time limit or 
the total amount of flow. The pheromone trail laid 
by the ants is then used to construct a solution. 
The solution construction procedure follows the 
same principles as at the previous phase, 
generates and sends ants with a fixed amount of 
flow, using (11) as the selection rule. In this 
phase, the number of ants and their associated 
commodity exactly covers all the traffic demand of 
the problem. During the solution construction no 
pheromone or flow update is done.  

7 Post-Optimization 

The computational results presented in the next 
section show the good performance obtained by 
ACRA in our study. However, the performance of 
the algorithm strongly depends on a correct 
construction of the 𝐺𝑝structure. The use of 𝐺𝑝as 
the construction graph in ACRA and ACAM 
restricts the solution space to a set of pre-
selected paths. The global optimum of the original 
problem does not necessarily belong to this new 
restricted subspace. As standard ACO algorithms, 
ACRA and ACAM do not even guarantee the final 
solution to be a local optimum. It is possible to 
overcome these disadvantages designing a post-
optimization method not restricted by the 𝐺𝑝 
structure on its search.  

The post-optimization can be implemented 
using a standard local search (hill climbing) 

method. This local search method starts on a 
solution provided by ACRA and as a 
neighborhood structure uses a function that 
considers all the feasible solution space, i.e., the 
set of all possible paths which connect a couple of 
zones. Consequently, the final solution provided 
by the post-optimization procedure will be a local 
optimum of the original (not restricted) problem. 

A convenient way to define the neighborhood 
function is to consider as neighbors of a given 
solution all those solutions that can be obtained 
by transferring a fixed amount of 𝜃𝑝𝑜 flow units 
between two routes of the same good solution 

 
Fig. 4. Pseudo-code of the Ant Commodity Routing 
Algorithm (ACRA) 

 
Fig. 5. Post-optimization method for improving 
solutions provided by the ACRA algorithm 
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(presented results used 𝜃𝑝𝑜  = 2). The source 
route, from which the flow is extracted, must be 
an active path. It means a path with a running 
amount of flow bigger than 𝜃𝑝𝑜. On the other 
hand, the destination route can be any path 
connecting the origin-destiny nodes of a given 
good solution, with enough capacity to assimilate 
the 𝜃𝑝𝑜 units of flow without violating the capacity 
constraints.  

The general working of the post-optimization 
method is very simple, see Fig. 5. On every 
iteration for each good solution, the worst active 
path and the minimum cost path are determined. 
Then a flow transfer is initiated from the first to the 
second one. This operation is executed 
incrementally: moving 𝜃𝑝𝑜 units of flow, evaluating 
the new solution and if this solution is better than 
the previous one, transferring another 𝜃𝑝𝑜 units of 
the flow. This procedure stops if all the flow from 
the active path has been transferred, the 
maximum capacity on any of the destiny path's 
arcs has been reached, or the new solution 
doesn't improve the previous one. The worst 
active path can be directly attained from ACRA 
solution, while the minimum cost path is 
determined applying the Dijkstra algorithm over 
the entire graph G. When evaluating the edges 

cost on the Dijkstra algorithm, the objective 
function (1) should be used, considering one unit 
as the minimum flow running on every arc to 
avoid a division by zero. The combination of 
ACRA with this post-optimization method will be 
denoted as ACRA_PO. 

8 Parameter Tuning 

A correct parameter tuning is fundamental when 
using metaheuristics; the performance, as well as 
the search behavior of the algorithm may strongly 
vary depending on the parameter settings. In the 
current research an exhaustive tuning process 
was performed using a hyperheuristic approach 
[16], i.e., a metaheuristic was used for finding the 
optimum parameter configuration of another 
metaheuristic. A simple genetic algorithm was 
used as a higher level heuristic algorithm for the 
tuning process. The genetic algorithm used a 
binary representation of the problem with a 
standard implementation of a one-point 
crossover, uniform mutation and tournament 
selection genetic operators [17]. Table 1 presents 
the parameters that were tuned, their brief 
description and the recommended values. 

Table 1. Brief parameter description and recommended values 

Parameter Description Values 

p Number of shortest paths found for each good solution when building the shortest 
path sub-graph structure. Larger values increase exploration; smaller values promote 
exploration of the search space. 

[10, 20] 

Ψ Penalization applied to the length of edges when using the Dijkstra algorithm for 
building the shortest path sub-graph structure. Larger values lead to more disjoint 
paths. 

[1.1, 1.2] 

ω Amount of solutions build on each iteration of the ACAM algorithm 12 

ωb Amount of solutions selected for the pheromone update on each iteration of the 
ACAM algorithm. 

4 

ρ Pheromone evaporation coefficient for the ACAM algorithm. 0.15 

ξ Balance between heuristic information and pheromone trail in ACAM. 0.8 

τ0 Pheromone initial value in the ACAM algorithm. 0.15 

θ Units of flow assigned to each ant in the ACAM and ACRA algorithms. 2 
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9 Computational Results 

Six different instances of the traffic flow problem 
in the Havana city were used to analyze the 
computational results of the designed algorithms. 
Each instance corresponds to a different partial 
map of the city. Table 2 summarizes the main 
characteristics of each map: the number of nodes 
and edges on the graph, the amount of zones 
(neighborhoods) and the traffic flow to be 
distributed. 

The results of the ACAM, ACRA and 
ACRA_PO algorithms were initially compared with 
those obtained by the MIP solver provided with 
the COIN-OR tool [18]. The solver worked on a 
relaxed model of the original problem, modeled by 
a piecewise linear approximation of the non-linear 
objective function. To create the piecewise linear 
function, the capacity of each edge is divided into 
s intervals of equal size, where s is a parameter 
of the model. Fig.  illustrates an approximation of 
the original objective function with s = 4. 

Table 3 shows the average solutions found by 
each algorithm after 100 independent runs. The 
reported values for each instance are the costs of 
the objective function, i.e., the total travelling time 
of all the vehicles involved in the system.  For the 
MIP solver, the numbers of parts used to 
approximate the objective function are given. It 
can be noticed that ACRA clearly outperforms 
ACAM; however, when compared with the MIP 
solver, both algorithms exhibit a good 
performance.  

These results support the hypothesis that ACO 
metaheuristics provide an appropriate framework 
for solving complex real-life routing optimization 
problems. The effectiveness of the post-
optimization method and the convenience of 
combining simple local search with ACO are also 
confirmed; the ACRA_PO algorithm provides the 
best solution for every instance. 

 

Fig. 6. Piecewise linear approximation of the non-
linear objective function 

Table 3. Average results of ACAM, ACRA and ACRA_PO and COIN-OR’s MIP solver 

Map ACAM ACRA ACRA_PO 
MIP Solver 

  s = 2           s = 4           s = 6           s = 8           s = 10 

Map 1 7.28e+03 7.14e+03 7.13e+03 1.49e+04     1.09e+04     9.92e+03     9.90e+03     9.82e+03 

Map 2 6.16e+03 5.08e+03 5.03e+03 9.04e+03     7.93e+03     7.25e+03     6.43e+03     6.15e+03 

Map 3 3.81e+04 3.59e+04 3.52e+04 5.14e+04     4.42e+04     4.54e+04     4.47e+04     4.37e+04 

Map 4 3.43e+04 3.18e+04 3.12e+04 4.53e+03     3.85e+03     3.69e+03     3.61e+03     3.54e+03 

Map 5 4.67e+04 4.39e+04 4.34e+04 ---                ---               ---                ---                --- 

Map 6 4.10e+04 4.01e+04 3.96e+04 ---                ---               ---                ---                --- 

Table 2. Instances of the MCMNF problem 

 Vertex Edges Zones Flow 
Map 1 474 1740 4 2670 
Map 2 474 1740 7 7320 
Map 3 1762 6426 6 8790 
Map 4 1762 6426 12 12970 
Map 5 2460 8846 12 10830 

Map 6 2460 8846 20 10048 
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Table 4 shows the time required for every 
algorithm to find the best solutions. ACAM and 
ACRA were executed with a fixed time budget of 
3 seconds; on the other hand, the values for post-
optimization (ACRA_PO) represent the additional 
time needed by the local search method. Given a 
good quality of the initial solutions provided by 
ACRA, this time is relatively short. Another 
relevant data is the execution time required by the 
exact method to solve the problem. As it can be 
noticed, this time increases exponentially with 
respect to the dimensions of each instance 
making it impossible to solve Instances 5 and 6 
using a piecewise linear approximation of the 
objective function. 

9.1 Comparison with other Ant Colony 
Algorithms 

Previous work, such as the one developed by 
Maniezzo et al., has successfully applied ACO 

algorithms to the Traffic Assignment Problem 
(ACO_TAP). Due to big similarities between the 
TAP and the MCMNF problems, it is 
straightforward to adapt and apply the algorithm 
proposed in [8] to the current optimization 
problem. Another well-known and highly effective 
ACO algorithm is the Max-Min ACO, developed 
by Stützle and Hoos [19]. A standard 
implementation of the Max-Min ACO algorithm 
was also used to solve the traffic estimation 
problem.  

Both algorithms (ACO_TAP and Max-Min 
ACO) were used to solve the six instances of the 
MCMNF problem in the Havana city. On each 
case, the algorithms were applied using the 
original graph with all the edges and nodes (G), 
as well as the p-shortest path sub-graph structure 
(Gp). The average solutions found after 100 
independent runs are presented in Table 5 
together with the results reported by ACAM, 
ACRA and ACRA_PO. All algorithms had a 

Table 4. Running time of each algorithm (seconds) 

Map ACAM ACRA ACRA_PO MIP Solver 
s = 2           s = 4           s = 6           s = 8           s = 10 

Map 1 2.00e+00 2.00e+00 2.20e+00 2.04e+00     4.17e+00     5.29e+00     7.03e+00     1.38e+01 

Map 2 2.00e+00 2.00e+00 3.41e+00 5.56e+02     5.77e+02     6.29e+02     5.06e+02     4.58e+02 

Map 3 2.00e+00 2.00e+00 6.12e+00 1.36e+03     5.34e+03     1.04e+04     1.71e+04     1.89e+04 

Map 4 2.00e+00 2.00e+00 6.20e+00 1.63e+05     1.93e+05     2.37e+05     2.57e+05     2.60e+05 

Map 5 2.00e+00 2.00e+00 5.45e+00 ---                ---               ---                ---                --- 

Map 6 2.00e+00 2.00e+00 1.01e+01 ---                ---               ---                ---                --- 

 

Table 5. Results provided by different ACO algorithms 

Map ACAM ACRA ACRA_PO ACO_TAP 
G                    Gp 

MAX-MIN ACO 
G                     Gp 

Map 1 7.28e+03 7.14e+03 7.13e+03 9.29e+03 7.35e+03 1.09e+04 7.22e+03 

Map 2 6.16e+03 5.08e+03 5.03e+03 7.04e+03 6.25e+03 9.43e+03 5.15e+03 

Map 3 3.81e+04 3.59e+04 3.52e+04 4.04e+04 3.74e+04 4.27e+04 3.67e+04 

Map 4 3.43e+04 3.18e+04 3.12e+04 3.63e+04 3.29e+04 3.51e+04 3.14e+04 

Map 5 4.67e+04 4.39e+04 4.34e+04 5.10e+04 4.61e+04 5.12e+04 4.35e+04 

Map 6 4.10e+04 4.01e+04 3.96e+04 4.40e+04 4.07e+04 4.39e+04 4.01e+04 
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maximum time of 3 seconds as the stopping 
condition. As it can be noticed, there is a clear 
difference in performance when using the original 
graph and the p-shortest path sub-graph 
structure. The use of Gp strongly improves the 
performance of both algorithms. It is also 
important to notice that although the results of all 
ACO algorithms are similar, ACRA_PO provides 
the best results on every instance. 

9.2 Convergence Analysis  

Different heuristics have usually different 
convergence speeds. Fig. 7 shows a plot of the 
best solution found by ACAM and ACRA (using 
Map 5). This comparison between the 
convergence rate of ACAM and ACRA reveals 
that ACAM has a slower convergence process 
before reaching a stagnation phase. On the other 
hand, although ACRA provides worst solutions 
during the first iterations, the quality of the best 
solution found quickly improves before reaching 
stability. 

The convergence curve for ACRA shows that 
the quality of the solution built using the 
congestion model slightly decreases after a given 
point. This diminishment is a direct consequence 
of small fluctuations in the optimal pheromone 
matrix due to the stochastic nature of the process 
used to model traffic congestions. A simple way to 
overcome this difficulty is by building a final 
solution regularly using the current pheromone 
matrix. A better and more efficient strategy would 
be to stop the algorithm once the optimality point 
has been reached.  

The main difficulty with this approach is to 
determine the correct moment to stop the 
algorithm. An empirical study showed that a 
recommendable stopping criterion can be 
provided by Equation 14, where ni is the optimal 
number of iterations to be executed, tf  is the  total 
amount of flow that has to be distributed in a 
given problem instance, and ϑ is the parameter 
that determines the units of flow assigned to each 
ant: 

𝑛𝑖 = 3 �
𝑡𝑓
𝜗�

 . (14) 

9.3 Traffic Simulation  

A traffic simulation has been implemented using 
the flow distribution provided by ACRA [20]. On 
this discrete event simulation, the movements and 
interactions of small groups of cars during their 
journey through the city were accurately 
predicted. The simulation is based on events such 
as the departure and arrival of groups of cars with 
the same origin and destiny, changes of lights on 
semaphores, waiting and crossing of roads 
intersections, among others. By using an 
adequate estimation of traffic demands and the 
flow distribution provided by ACRA, these events 
allow recreating the dynamic of the traffic 
behavior in a city. 

The validation of the obtained data against 
real-world information shows the feasibility of this 
approach when gathering crucial information 
about city traffic. Examples of statistical 
information that can be obtained through the 
simulation are the waiting time of vehicles on 
roads intersections with and without a 
semaphore, the most used routes and their 
congestion levels, and the evolution of the traffic 
flow during the day. This useful information can 
be vital when distributing resources such as mass 
transit, planning future infrastructure 
developments, and synchronizing semaphores.  

Fig. 8 shows an example of the overall flow 
distribution for Instance 6, where 20 zones were 
considered. It can be noticed how congestion is 
correctly handled when paths followed by different 
drivers are plotted. Different choices were made 
for going from one same origin to one same 

 

Fig. 7. Convergence rate of the ACAM and ACRA 
algorithms 
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destination. This ensures that no faster alternative 
way is available (Wardrop’s first principle). 

10 Conclusions 

This paper presents two new ant algorithms for 
the MCMNF problem and their application to the 
case study of distributing traffic flows in the 
Havana city. Computational results have shown 
that ACO algorithms provide good results with low 
running times, especially when solving complex 
real-life routing optimization problems. The 
convenience of hybridizing ACO algorithms with 
techniques of other heuristic and approximation 
algorithms as well as with simple local search 
method has been also confirmed by the good 
results obtained using ACRA and ACRA_PO.  

Although the computational results on various 
instances of the MCMNF problem with real 
networks suggest that ACRA and ACRA_PO can 
be used to efficiently determine flow distributions 
in a city, there is still room for future 
improvements. One of the main issues to be 
improved is the strong effect that some 
parameters have on the performance of the 
algorithms, especially those parameters which are 
related to the construction of the 𝐺𝑝 structure. As 
stated earlier, the post-optimization method helps 
to partially overcome this difficulty; however, a 

great amount of time is still needed to correctly 
tune the parameters. 

The general performance of the algorithms 
and the high standard deviation values in 
particular could also be improved in future works. 
Good results may be obtained by the 
interoperation of metaheuristics and mathematic 
programming; a promising trend known as 
matheuristics has shown to be very effective on 
solving hard real-life optimization problems. The 
hybridization between different metaheuristics is 
also an alternative for future developments. 

To compare the performance of ACRA and 
ACRA_PO to other state of the art ACO 
algorithms, future work will adapt these algorithms 
to the particularities of other flow distribution 
problems, such as those presented in [9] and [10]. 
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