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Abstract. In digital image processing and computer 
vision applications for microscopy imaging, calculating 
image features is a frequent task. Features related to 
intensity, color and morphology are used to classify 
cells and other objects. The precision of segmentation 
influences the calculated feature values and can affect 
the results of classification. Therefore, achieving a high 
precision in segmentation is very important. In this 
work, the effects of interpolation on the precision of 
image segmentation were studied using instances of 
cell microscopy images and different interpolation and 
segmentation methods. The goal was to determine 
quantitatively to what extent improvements in 
segmentation precision can be obtained through 
previous interpolation of the images. This effect can be 
particularly important for small objects, whose images 
might be deteriorated due to limitations in the camera’s 
resolution. The results show that an improvement in the 
precision of segmentation can be obtained by 
previously interpolating the images.  
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Efectos de la interpolación sobre la 
segmentación en imaginología celular 

Resumen. En las aplicaciones del procesamiento 
digital de imágenes y la visión computacional para 
imágenes de microscopía, el cálculo de rasgos de las 
imágenes es una tarea frecuente. Rasgos relacionados 
con la intensidad, el color y la morfología, son 
utilizados para clasificar células y otros objetos. La 
precisión de la segmentación influye sobre los valores 
calculados para los rasgos y puede afectar los 
resultados de la clasificación. Por tanto, es muy 
importante alcanzar una alta precisión en la 
segmentación. En este trabajo fueron estudiados los 
efectos de la interpolación sobre la precisión de la 

segmentación, utilizando ejemplos de imágenes de 
microscopía celular y diferentes métodos de 
interpolación y de segmentación. El objetivo fue 
determinar en forma cuantitativa en qué medida se 
obtienen mejoras en la precisión de la segmentación 
mediante una interpolación previa de las imágenes. 
Este efecto puede ser particularmente importante para 
objetos pequeños, cuyas imágenes podrían sufrir 
deterioro debido a limitaciones en la resolución de la 
cámara. Los resultados muestran que es posible 
obtener una mejora en la precisión de la segmentación 
mediante la interpolación previa de las imágenes. 

Palabras clave. Interpolación, segmentación, 
imaginología celular. 

1 Introduction 

In the applications of digital image processing and 
computer vision to microscopy imaging, image 
classification based on their features is a frequent 
task. In this case, the quality of the segmentation 
results is a very important issue. Intensity and 
color measures, objects’ dimensions and forms 
(morphology), and other characteristics are 
examples of features used for classification 
purposes of cells and other objects. In many 
cases, the contours established by the 
segmentation process can have a direct influence 
on the calculated feature values, particularly 
those related to the amount and location of pixels 
that the objects can encompass in the digital 
image. Therefore, the results of segmentation 
may be determinant in the results of an automatic 
classification process. Achieving a high precision 
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in the segmentation of cells or other objects of 
interest within those images constitutes therefore 
an essential issue.  

In this work, the effects of interpolation on the 
quality of segmentation were studied for this class 
of images. The goal was contributing to improve 
the reliability of the classification processes in cell 
imaging using computational methods. The 
research performed was specifically intended to 
determine if an improvement in the precision of 
segmentation can be obtained through previous 
interpolation, and in this case to quantify it by 
analyzing comparatively the effects of different 
interpolation methods.  

An important motivation for this research is 
that the digital microscopy images may include 
small objects whose contours and morphological 
characteristics, for a specific magnifying, might be 
not very well represented in the digital image due 
to limitations of the camera’s resolution. The 
hypothesis that motivated this work is that it is 
possible to obtain an improvement in the quality 
of segmentation in these cases if the image is 
previously interpolated. 

1.1 Interpolation 

To the effects of this analysis, interpolation is to 
be understood as a process in which the sampling 
rate of the digital image is incremented, 
determining the intensity values for the new pixels 
that will be inserted within the original ones. When 
the number of pixels per unit area is incremented, 
the spatial resolution can be improved, whenever 
the image had been sampled originally at a high 
enough rate in order to avoid the aliasing 
phenomenon. Among various well known 
interpolation methods we can mention the 
following, which were selected to be applied in 
this study: 

– Bilinear,  
– Bicubic,  
– Interpolation with splines. 

In bilinear interpolation, the pixel value is a 
weighted mean of the intensity values, 
corresponding to four pixels in a 2X2 
neighborhood. This procedure can cause some 
blur in the image due to the mean value 
calculation involved. 

In the bicubic interpolation, the interpolated 
pixels are weighted mean values in 4X4 
neighborhoods, and tend to produce smoothed 
contours [4].   

The term spline makes reference to a wide 
class of functions which are employed in 
applications requiring data interpolation or curve 
smoothing. Splines are employed in one or 
several dimensions and are particularly useful in 
image interpolation [8]. 

Spline interpolation consists actually in a 
family of methods including:  

– Cubic splines, 
– Smoothing splines, 
– Least-Square-Approximations. 

1.2 Segmentation 

Image segmentation is defined as an automated 
or semi-automated process by means of which 
the structures of interest in an image are 
delineated and separated from the background 
[4]. The level of subdivision of details during 
segmentation is determined by the application’s 
goal, and the segmentation process ends when 
the objects of interest had been isolated. 
In this work, the study was realized using two 
well-known segmentation methods: Otsu’s 
algorithm and the watershed transform (WT). 

Otsu’s algorithm [7] is used for grayscale 
image segmentation, in which the images include, 
for example, high intensity (clear) objects in the 
foreground and exhibit a low intensity, darker 
background. Here the intensities of pixels in the 
image (foreground and background objects) tend 
to have a bimodal histogram. Foreground and 
background pixels can be separated therefore by 
selecting an appropriate intensity threshold and 
performing the corresponding comparison and 
classification process. 

The Otsu’s algorithm is based in maximizing a 
statistical measure called “between-class 
variance”. A threshold’s optimum value is 
obtained, which provides the best separation 
between classes in terms of the intensity values 
of the objects to be segmented and the image 
background. 

WT is a segmentation method based in 
morphological grayscale image processing which 
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is realized on a three-dimensional representation 
of the image’s intensity as a surface [12]. 

The WT is usually applied to the gradient of 
the image to be segmented, which can be defined 
both for grayscale and color images. It is also 
frequently applied to the images obtained from 
the calculation of the distance transform for binary 
images. The results for real images lead usually 
to the so-called over-segmentation phenomenon. 
This is usually due to the presence of multiple 
local minima in the images, related to the 
presence of noise and other local irregularities in 
the gradient image. A solution for this problem is 
the use of markers in order to limit the number of 
segmentation regions. These markers are 
imposed on the objects to be segmented and 
serve to indicate, respectively, the inner and outer 
regions of the objects’ contours. 

The success of WT segmentation depends 
mainly upon the markers’ characteristics and the 
quality of the gradient image. WT results are 
independent of the markers’ locations whenever 
they had been appropriately placed inside and 
outside the objects, and the gradients associated 
to the object’s contours are significant when 
compared to the gradient values inside them. 

1.3 Evaluating the Quality of Segmentation 

The existence of a large number of image 
segmentation algorithms has determined that 
various techniques had been developed to 
evaluate and compare their performance [9]. The 
case of cell segmentation in microscopy images 
has been studied specifically as well [1]. These 
segmentation evaluation methods can be 
especially useful to the effects of this research 
which pursues comparing the segmentation 
results for different interpolation alternatives. This 
comparison has been realized here using 
statistical hypothesis testing.   

 Considering the above mentioned ideas, this 
work starts from the hypothesis that it is possible 
to improve the quality of segmentation if the 
image is previously interpolated. The objective 
here is therefore measuring quantitatively the 
effects, if any, of using different interpolation 
methods before segmentation in terms of 
segmentation quality. These tests were realized 

specifically applying the Otsu’s method and the 
WT to cell microscopy images.  

The organization of this paper is as follows. 
Section 2 describes the materials and methods 
used in terms of the images employed, 
experiments performed and segmentation 
evaluation methods used. Section 3 exhibits the 
results by means of figures and tables and 
discusses them. Finally, Section 4 presents the 
conclusions. 

2 Materials and Methods 

2.1 Characteristics of the Images Employed in 
this Study 

This study was realized using two sets of ten 
images each: one set is composed by synthetic 
images generated using an erythrocyte simulation 
algorithm [6] and the other is composed of ten 
images drawn from an atlas of hematology [5]. 
The digital images that appear in the latter were 
obtained from human blood smears and all of 
them are represented in the RGB color space. 
Examples of the synthetic images and their 
corresponding segmentation mask (the binary 
image resulting from segmentation in which pixels 
belonging to the objects of interest have the 
binary level 1), as well as from the real images, 

 
Fig. 1. Images employed: (a) synthetic image,  
(b) segmentation mask from image (a),  
(c) image from the database (basophilic stippling),  
(d) the corresponding segmented grayscale image using 
Otsu’s thresholding, with the contours in bold 
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together with a segmentation result with cell 
borders highlighted, are shown in Fig. 1. 

2.2 Experiments 

The block diagram depicted in Fig. 2 illustrates 
the experiments realized to investigate the effects 
of interpolation on the segmentation quality. 
These were performed in a desktop computer 
Pentium IV with 1 GB RAM. Starting from an 
image with a given resolution, another image was 
simulated, which was equivalent to the one that 
would be obtained with a lower resolution camera. 
Resolution was lowered by some factor as 
follows. 

In each case, the original image, to the effects 
of this study, was considered as the high 
resolution (HR) image. From this image, a new 
image called HR_modified was simulated, which 
has a number of rows and columns divisible by 2 
or by 4. These were the factors used to reduce 
the numbers of pixels by rows and columns (and 
later to interpolate the image). To obtain this 
result, the minimum possible number of border 
rows and columns were deleted from the digital 
image matrix, in order to keep the image as 
unaltered as possible.  

After this, a simulated image with lowered 
resolution was created. This was done by 
calculating the mean value of the pixels in a 2X2 
or 4X4 neighborhood, according to the desired 
reduction of the resolution. The intensity value in 
the low-resolution pixels corresponding to the 
neighborhoods was substituted by the calculated 
mean, as shown in Fig. 3 and described in [11], 

where it is used in the context of a study on 
super-resolution interpolation techniques. In order 
to generate the simulated, lowered resolution 
images, a function called low_res was created. 
This function uses three input parameters:  

– Ahr: original image, considered as having 
high resolution.  

– mfact: numerical value (integer) by which the 
number of rows of the original image will be 
reduced. 

– nfact: same as mfact, but related to the 
number of columns. In this work mfact=nfact, 
leading to 2X2 and 4X4 neighborhoods. As a 
result from this function, the following results 
are obtained:  

– Ahr_modified: conversion of the original 
image to grayscale (in case of necessity) and 
reduction of the number of rows and columns 
to the highest value which is divisible by the 
factors chosen. Obtaining this image is 
represented in Fig. 2 by the block named 
HR_modified.   

– Alr: low resolution image, corresponding to 
the chosen factors selected by the user. It 
corresponds to the LR blocks in Fig. 2.  

In Fig. 2, the branch labeled as 3 in the block 
diagram contains the operations that are to be 
performed on the HR modified image in order to 
obtain the ground-truth used to evaluate the 
quality of segmentation. In the case of synthetic 
images, the ground-truth is supplied together with 
each synthetic image and it is simply read and 
scaled. In the case of the real images drawn from 
the database, the HR modified image is 

 
Fig. 2. Block diagram showing the procedure used to evaluate the effects of interpolation on the segmentation 

process, for any segmentation algorithm 
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segmented (using either the Otsu’s algorithm or 
the WT) in order to obtain the ground-truth. This is 
considered here as the “true” segmentation result 
for having been obtained at high resolution. 
Notice that for simulated images, the 
segmentation for interpolated or low resolution 
images are both compared in this work to the 
synthetic ground-truth. On the other hand, for real 
images from the database, the segmentation 
results at low resolution and for interpolated 
images are compared to the ground-truth 
obtained by segmenting the image at high 
resolution. 

Branches 1 and 2 in Fig. 2 correspond, 
respectively, to the experiments performed. In 
Experiment 1, the first step consisted in obtaining 
the low resolution image LR using the function 
low_res, then its segmentation was performed at 
low resolution and the result was interpolated, 
obtaining an image of the same size as the 
ground-truth.   

Finally, the quality of segmentation was 
evaluated by comparing the obtained image with 
the ground-truth. 

In Branch 2 of Fig. 2 (Experiment 2), the low 
resolution image was interpolated by the same 
factor previously used to simulate the reduced 
resolution effect in the image. Then it was 
segmented and the resulting image was 
compared to the ground-truth to evaluate the 
quality of segmentation. 

Notice that Experiments 1 and 2 differ only in 
the order in which interpolation and segmentation 
are performed.  

2.3 Evaluating the Quality of Segmentation 

To evaluate the results of segmentation, a binary 
mask was obtained firstly by segmenting the 
ground-truth. The binary segmentation masks 
obtained from Experiments 1 and 2 were then 
compared to the ground-truth mask. Fig. 4 
illustrates this process. The ground-truth was 
obtained following Branch 3 in Fig. 2, and the 
segmentation masks following Branches 1 and 2. 
The fact, that only the effects of interpolation on 
segmentation are those to be evaluated, 
determined that the segmentation mask 
associated to the high resolution image was used 
as ground-truth for the case of the real images 
from the database. 

The measure used in this work to compare 
binary masks was the Jaccard’s coefficient, 
widely used in various works previously reported 
in the literature, an example of which is found 
in [3]. 

The Jaccard’s coefficient is expressed as 

𝐽(𝐴,𝐵) =
|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵| ,     0 ≤ 𝐽(𝐴,𝐵) ≤ 1, (1) 

where |•| is the cardinality of the set between 
bars. In terms of binary images, the Jaccard’s 

 

Fig. 4. Supervised evaluation of the segmentation 
results by comparing to ground-truth 

 

Fig. 3. Obtaining a simulated low-resolution image 
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coefficient is the quotient between the numbers of 
pixels in the sets’ intersection and in the sets’ 
union, respectively, corresponding to the 
segmented objects (actually their binary masks) in 
the images to be compared. If the J value 
obtained is 1, the coincidence between the 
corresponding objects in the images is perfect, 
and if it is zero, the objects do not overlap at all, 
the practical cases lying in between. The J 
coefficient for each pair of objects is usually 
calculated pairing the labelled ground-truth and 
the final images resulting from segmentation. The 
objects present in both images are identified by 
automatically labelling them. 

When the purpose of segmentation is oriented 
to realize further computational pattern 
recognition, it is convenient to suppress the cells 
that touch the image borders, leaving only the 
entire cells that exhibit their natural forms. This 
elimination was performed in this work using 
morphological signal processing techniques [10] 
applied to the binary masks obtained from the 
segmentation process.  

When using this technique, differences in 
labelling of objects or cells can appear between 
the ground-truth and the segmented images, due 
to the presence of an unequal number of objects 
in them. This might occur because when the 
resolution is lowered to obtain the LR images, 
some objects that did not touch the borders can 
become connected to others that do touch them, 
causing their deletion as unique combined border-
touching objects. This situation determined that 
when calculating the J coefficient, the objects 
could not be paired correctly according to their 
respective labelling numbers. 

To deal with this situation, another procedure 
was used in this work instead, based in 
morphological operations applied to the 
segmentation masks. An outline of this is 
presented below: 

1. Label the ground-truth segmentation mask 
after deleting the small objects considered as 
artifacts (through morphological area-
opening) as well as the border-touching 
objects. Instead of matching labels, now the 
algorithm looks for a matching object in the 
resulting segmentation mask. 

2. Determine the sets’ intersection and the sets’ 
union between the ground-truth mask and the 
segmentation mask from the segmented 
image to evaluate. The resulting intersection 
set for each object in the image will be a non-
empty set only if the ground-truth finds a 
corresponding object in the evaluated image, 
i.e., if the latter was not deleted for having 
been connected at low resolution to a border- 
touching object. 

3. Perform a morphological reconstruction using 
the intersections as markers and the unions 
as masks. Notice that in case that the 
intersection is an empty set, the same will 
occur with the marker and consequently with 
the reconstruction result. In other cases, the 
reconstruction will result in the union set for 
each object. 

4. Calculate the J coefficients for each object 
using Equation 1. For each object in the 
ground-truth, J will be indeterminate 
whenever the intersection is an empty set, 
and correctly calculated in other cases.  The 
number of indeterminate cases is associated 
with missing objects due to lowered 
resolution, as it was explained above. This 
can serve as an additional (negative) indicator 
of the quality of segmentation. Indeterminate 
cases were denoted here as NaN’s (not a 
number). 

As a final step in evaluating the segmentation 
quality, a statistical analysis was performed using 
non-parametric tests on the mean values of the J 
coefficients for the two employed sets (simulated 
and real) of ten images each [13]. 

Firstly, in order to determine if there were 
significant statistical differences between the 
results of Experiments 1 and 2, the Wilcoxon 
signed rank test was employed. Here we were 
working with two sets of ten paired images each, 
with a relatively high number of objects (cells) 
contained in them. The possible differences 
among the three interpolation methods employed 
were also analyzed using the Friedman test. In 
this case, the null hypothesis was that there are 
no significant differences among the results for 
the three methods (i.e., they have distributions 
with zero differences of the medians.) The 
alternative hypothesis was that at least one of the 
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interpolation methods has a distribution of J that 
differs from the others. The Wilcoxon test was 
employed as a post-hoc analysis. These 
statistical tests were performed using SPSS 15.0 
for Windows, and the significance level used 
was 0.05.  

In this research, the following combinations of 
interpolation and segmentation methods were 
used in the experiments: 

1. Resolution reduced by a factor of 2 in each 
axis, segmentation by Otsu’s algorithm and 
the WT, both for the three interpolation 
methods: bilinear, bicubic and splines (six 
alternatives in total). 

2. Same as in the previous case, but with 
resolution reduced by a factor of 4 in each 
axis. This meant again six alternatives.  

3 Results and Discussion 

The results obtained for the various alternatives 
tested are summarized below. 

3.1 Obtaining the Ground-Truth 

The ground-truth image was provided together 
with the simulated images or obtained by 
segmenting directly the high resolution real 
images, as it was explained before. This function 
returns, aside from the Alr (LR) image, the image 
Ahr_modified, as it was explained in section 2.2.  
For this case, Fig. 5 shows an example of the 
ground-truth image that was obtained for a 
resolution reduction factor 2, with Otsu’s 
segmentation of the image converted to grayscale 
and deletion of border-touching cells. This 
procedure was realized for the ten real images 
employed.  

Notice that in the lower left corner, an object 
was deleted because it became connected to a 
border-touching object at low resolution. Such 
objects are the ones that lead to NaN results 
when evaluating J. 

The total number of J coefficient’s values that 
is obtained for a given image is equal to the 
number of objects in the ground-truth image 
without artifacts. Labeling of objects is 
represented in Fig. 5 by their color. 

3.2 Results of Experiment 1 

The images corresponding to the comparison 
made in the last step of Experiment 1 are shown 
in Fig. 6, for resolution reduction factor of 2, 
Otsu’s segmentation and bicubic interpolation by 
the same factor. Notice that in the lower left 
corner an object was deleted because it became 
connected to a border-touching object at low 
resolution. These are the objects that lead to a 
NaN result when evaluating J. The total number 
of J coefficient values that is obtained for a given 
image is equal to the number of objects in the 
ground-truth image without artifacts. 

3.3 Results of Experiment 2 

Similarly to Experiment 1, using the same 
methods and changing only the order in which 
interpolation and segmentation were performed, 
the image (b) shown in Fig. 7 was obtained. The 

 
Fig. 5. Obtaining the ground-truth: (a) labeled with 
small artifacts, it has 95 objects, (b) artifacts cleaned, 
33 objects remaining 

 
Fig. 6. Images compared in Experiment 1, final step. 
Notice that the object indicated with an arrow in the 
ground-truth (a) is missing in the result (b) 
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differences, when comparing Fig.7(b) to Fig. 6 are 
not easily noticeable by the naked eye, but the 
measured J values obtained were indeed 
different. 

The images, that were compared, generated a 
list of 33 values of J in this example. The mean 
values for J for each of the 10 images were 
calculated (obviously discarding the NaN’s). The 
results are shown in Table 1 for Experiments 1 
and 2, together with the number of NaN’s 
obtained in each case.  Notice that for most cell 
morphologies, results from Experiment 2 were 
better than those from Experiment 1. 

3.4 Statistical Analysis 

In this section, we present the results of the 
statistical analysis performed on the data that 
were gathered in 12 tables analogous to Table 1.  

Firstly it was determined if interpolating before 
segmenting meant any advantage, i.e., we 
investigated if results from Experiment 2 were 
superior to those from Experiment 1. Tables 2 
and 3 show the results in terms of the ranks, for 
the Wilcoxon signed ranks test, applied to each 
set of J mean values from Experiment 2, paired to 
those from Experiment 1, for synthetic and real 
images and for Otsu’s and WT segmentation 
algorithms, respectively.  

Table 4 and Table 5 show the hypothesis 
testing results from Experiments 1 and 2, both for 

simulated and real images. We can appreciate in 
Table 4 that the null hypothesis (recall that it 
means that results from Experiments 1 and 2 are 
equivalent) is not rejected in any case for 
resolution reduction/interpolation factor equal to 2, 
although the probabilities are relatively close to 
the significance level chosen (0.05). However, for 
a factor of 4, the null hypothesis was rejected for 
bicubic and spline interpolation and is close to the 
threshold for the bilinear case. The results for WT 
segmentation showed a significant advantage of 
Experiment 2 against 1, for all the interpolation 
methods, for both factors 2 and 4. In regard of 
Table 5 (real images), the results are similar to 
those obtained for synthetic images. Notice that 
the ground truth was in this case the set 
segmentation masks at high-resolution. A 
decrement in the number NaN results was 
systematically observed for Experiment 2 in 
comparison to Experiment 1 in all cases, and an 
example of this is shown in Table 1.  

Table 1. Results of Experiments 1 and 2 for bicubic 
interpolation, Otsu’s segmentation and resolution 
reduced by 2 

Images from 
the database 

Experiment 1 
J/ No. of 
NaN*s 

Experiment 2 
J/ No. of 
NaN*s 

Basophilic 
Stipling 0,971/ 3 0,992/ 2 

Elliptocyte 0,968/ 1 0,989/ 1 

Howell-Jolly's 
body 0,942/ 0 0,957/ 0 

Leptocyte 0,964/ 1 0,971/ 0 

Malaria 0,972/ 0 0,990/ 0 

Pappenheimer's 
body 0,968/ 0 0,989/ 0 

Poikilocyte 0,965/ 0 0,939/ 0 

Spherocyte 0,969/ 0 0,992/ 0 

Tear Drop Cell 0,964/ 0 0,986/ 0 

Thalassemia 0,914/ 0 0,938/ 0 

 
Fig. 7. Images to be compared, corresponding to the 
final step in Experiment 2 indicating a missing object 
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Table 2. Wilcoxon signed rank test to compare Experiments 1 and 2 for Otsu’s segmentation: ranks 

Wilcoxon test ranks Synthetic images Real images from the database 
N Mean 

Rank 
Sum of 
Ranks 

N Mean  
Rank 

Sum of 
Ranks 

Experim 2 vs. 
Experim 1 
Bilinear 
Factor=2 

Negative 
Ranks 

2 1.50 3.00 1 10.00 10.00 

Positive 
Ranks 

8 6.50 52.00 9 5.00 45.00 

Ties 0  0  
Total 10 10 

Experim 2 vs. 
Experim 1 
Bicubic 
Factor=2 

Negative 
Ranks 

0 .00 .00 1 10.00 10.00 

Positive 
Ranks 

10 5.50 55.00 9 5.00 45.00 

Ties 0  0  
Total 10 10 

Experim 2 vs. 
Experim 1 
Splines 
Factor=2 

Negative 
Ranks 

0 .00 .00 2 5 50 11.00 

Positive 
Ranks 

10 5.50 55.00 8 5.50 44.00 

Ties 0  0  
Total 10 10 

Experim 2 vs. 
Experim 1 
Bilinear 
Factor=4 

Negative 
Ranks 

1 1.00 1.00 2 4.50 9.00 

Positive 
Ranks 

9 6.00 54.00 8 5.75 46.00 

Ties 0  0  
Total 10 10 

Experim 2 vs. 
Experim 1 
Bicubic 
Factor=4 

Negative 
Ranks 

1 10.00 10.0 0 0.00 0.00 

Positive 
Ranks 

9 5.00 45.00 10 5.50 55.00 

Ties 0  0  
Total 10 10 

Experim 2 vs. 
Experim 1 
Splines 
Factor=4 

Negative 
Ranks 

0 .00 .00 0 0.00 0.00 

Positive 
Ranks 

10 5.50 55.00 10 5.50 55.00 

Ties 0  0  
Total 10 10 

Negative ranks:    J/ Experiment 2 < J/ Experiment 1,   Positive ranks:    J/ Experiment 2 > J/ Experiment 
1, Ties:    J/ Experiment 2 = J/ Experiment 1 
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Table 3. Wilcoxon signed rank test, comparing Experiments 1 and 2 for WT segmentation: ranks 

Wilcoxon test ranks Synthetic images Real images from the database 

N Mean 
Rank 

Sum of 

Ranks 

N Mean  

Rank 

Sum of 

Ranks 
Experim 2 vs. 
Experim 1 
Bilinear 
Factor=2 

Negative 
Ranks 

0 .00 .00 0 .00 .00 

Positive 
Ranks 

10 5.50 55.00 10 5.50 55.00 

Ties 0   0  

Total 10 10 
Experim 2 vs. 
Experim 1 
Bicubic 
Factor=2 

Negative 
Ranks 

0 .00 .00       0 .00 .00 

Positive 
Ranks 

10 5.50 55.00       10 5.50 55.00 

Ties 0  0  

Total 10 10 
Experim 2 vs. 
Experim 1 
Splines 
Factor=2 

Negative 
Ranks 

0 .00 .00       0 .00 .00 

Positive 
Ranks 

10 5.50 55.00       10 5.50 55.00 

Ties 0  0  

Total 10 10 
Experim 2 vs. 
Experim 1 
Bilinear 
Factor=4 

Negative 
Ranks 

1 1.00 1.00       1j .00 .00 

Positive 
Ranks 

9 6.00 54.00       9 5.50 55.00 

Ties 0  0  

Total 10 10 
Experim 2 vs. 
Experim 1 
Bicubic 
Factor=4 

Negative 
Ranks 

0 .00 .00       0 .00 .00 

Positive 
Ranks 

10 5.50 55.00       10 5.50 55.00 

Ties 0  0  

Total 10 10 
Experim 2 vs. 
Experim 1 
Splines 
Factor=4 

Negative 
Ranks 

0 .00 .00       0 .00 .00 

Positive 
Ranks 

10 5.50 55.00      10 5.50 55.00 

Ties 0        0  

Total 10      10 
Negative ranks:    J/ Experiment 2 < J/ Experiment 1,   Positive ranks:    J/ Experiment 2 > J/ Experiment 1, 

Ties:    J/ Experiment 2 = J/ Experiment 1 
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Table 6 illustrates the results for the Friedman 
test to determine if there were significant 
differences among the performances of the three 
interpolation methods, in regard to segmentation 
quality. The test was applied for watershed 
transform segmentation, interpolation factor 4 and 
real images, as this condition tends to make a 
clearer difference between the results from 
Experiments 1 and 2. The largest rank is 
associated here to a better algorithm 
performance, which corresponded in this case to 
bicubic interpolation. A post-hoc analysis using 
the Wilcoxon test confirmed this result. 

In regard of computer times for interpolation, it 
was observed, as shown in Table 7, that the 
bilinear method was the fastest, followed by the 

bicubic one. The latter was almost equally fast, 
but with a better segmentation quality and this 
suggests that using it would be a good 
compromise between precision and speed. 

4 Conclusions 

Our study was realized with the purpose of 
determining the possible advantages, in regard of 
segmentation results that could be obtained, by 
performing an interpolation of the microscopy cell 
images before segmenting them. In order to 
accomplish this, two reference sets of ten cell 
images were employed: one composed by 
synthetic images together with their segmentation 

Table 5. Statistics of the Wilcoxon signed rank test to compare results from Experiments 1 and 2, for real images 

Method 
Exp 2 vs.1 

Bilinear 
factor: 2 

Exp 2 vs.1 
Bicubic 
factor: 2 

Exp 2 vs.1 
Splines 
factor: 2 

Exp 2 vs. 
1 

Bilinear 
factor: 4 

Exp 2 vs.1 
Bicubic 
factor: 4 

Exp 2 
vs.1 

Splines· 
factor: 2 

Otsu 
Z -1.784a -1.785a -1.682a -1.886a -2.803a -

2.803a 
Exact Sig.  
(2- tailed) .084 .080 .105 .064 .002 .002 

Watershed 
Transform 

Z -2.803a -2.803a -2.803a -2.803a -2.803a -2.803a 

Exact Sig.  
(2- tailed) .005 .005 .005 .005 .005 .005 

 a. Based on negative ranks. 

Table 4. Statistics from the Wilcoxon signed rank test, comparing results from Experiments 1 and 2, for 
simulated images 

Method 
Exp 2 vs.1 

Bilinear 
factor: 2 

Exp 2 vs.1 
Bicubic 
factor: 2 

Exp 2 vs.1 
Splines 
factor: 2 

Exp 2 vs. 
1 

Bilinear 
factor: 4 

Exp 2 vs.1 
Bicubic 
factor: 4 

Exp 2 
vs.1 

Splines· 
factor: 2 

Otsu Z -1.784a -1.785a -1.682a -1.886a -2.803a -
2.803a 

Exact Sig.  
(2- tailed) 

.084 .080 .105 .054 .002 .002 

Watershed 
Transform 

Z -2.803a -2.803a -2.803a -2.701a -2.803a -2.803a 

Exact Sig.  
(2- tailed) 

.002 .002 .002 .004 .002 .002 

 a. Based on negative ranks. 
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mask, and the other by real images from a 
database. Lower resolution images were 
simulated from the reference images, and 
appropriate experiments were performed. 

The segmentation quality was evaluated for 
two frequently used algorithms, Otsu’s and the 
watershed transform, in terms of the Jaccard’s 
coefficient between reference images at high 
resolution and the resulting segmented images. 
The results were analyzed using non-parametric 
statistical tests, and showed that in fact an 
improvement in the quality of segmentation was 
obtained when the images were previously 
interpolated, for both segmentation methods. In 
the experiments realized, it was observed that 
among the bilinear, bicubic and splines 
interpolation methods, the second one showed 
the most favorable results in terms of 
segmentation quality. These results were 
evidenced more clearly for the X4 factor used to 
reduce resolution and interpolating. Additionally, it 

was observed that the bilinear method was the 
fastest in regard of computer time. 

The results obtained suggest the convenience 
of interpolating the microscopy images before 
segmentation in order to improve the precision of 
segmentation, as well as that this improvement 
might be more significant for a higher interpolation 
factor. This makes this procedure advisable 
whenever the resolution with which the images 
had been obtained is relatively limited and an 
increment in computational load is permissible. 
The obtained advantage can be useful when the 
task is to segment and classify small objects 
which were not very well delineated in the digital 
image due to a limited camera resolution. Future 
work will address an extension to evaluate other 
interpolation algorithms and segmentation 
methods to assess their behavior in the 
applications studied in this research. 
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