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Abstract. Understanding the dynamics of the 
resistance mechanisms in HIV proteins mutations is a 
key for optimizing the use of existing antiviral drugs and 
developing new ones. Several statistical and machine 
learning techniques have been proposed for predicting 
the resistance of a mutation to a certain drug using its 
genotype information. However, the knowledge publicly 
available for this kind of processing is majorly about 
resistant sequences, leading to highly imbalanced 
knowledge bases, which is a serious problem in 
classification tasks. In previous works, the authors 
proposed a methodology for modeling an HIV protein 
as a dynamic system through Fuzzy Cognitive Maps. 
The adjusted maps obtained not just allow discovering 
relevant knowledge in the causality among the protein 
positions and the resistant, but also achieved very 
competitive performance in terms classification 
accuracy. Based on these works, in this paper we 
propose an Ant Colony Optimization based method for 
generating possible susceptible mutations using the 
adjusted maps and biological heuristic knowledge. As a 
result, the mutations obtained allow drug experts to 
have more information of the behavior of the protease 
protein whenever a susceptible mutation takes place. 

Keywords. HIV, drug resistance, mutations, fuzzy 
cognitive maps, modeling, ant colony optimization. 

Mutación de la proteína proteasa del 
VIH utilizando optimización basada en 

colonia de hormigas y mapas 
cognitivos difusos: análisis de 

susceptibilidad a fármacos 

Resumen. El conocimiento de los mecanismos de 
resistencia en las mutaciones de las proteínas del VIH 
es fundamental para optimizar el uso de los fármacos 
existentes, así como diseñar nuevos medicamentos. 
Varias técnicas de estadística y aprendizaje 
automatizado han sido propuestas en la literatura para 
intentar predecir la resistencia  de una mutación a un 

fármaco determinado usando su información 
genotípica. Sin embargo el conocimiento disponible 
públicamente para este tipo de procesamientos está 
enfocado mayormente a las mutaciones resistentes, lo 
que provoca bases de conocimiento altamente 
desbalanceadas que constituyen un serio problema en 
las tareas de clasificación. En trabajos previos, los 
autores proponen una metodología para modelar una 
proteína del VIH como un sistema dinámico a través de 
Mapas Cognitivos Difusos. Los mapas ajustados 
obtenidos no solo permiten descubrir conocimiento en 
la causalidad entre las posiciones de la proteína y la 
resistencia, sino que alcanza un desempeño 
competitivo en términos de exactitud de la clasificación. 
Basado en estos trabajos, en este artículo proponemos 
un método basado en la técnica de Optimización de 
Colonias de Hormigas para generar nuevas 
mutaciones susceptibles utilizando los mapas 
ajustados y conocimiento biológico heurístico. Como 
resultado, las mutaciones obtenidas permitirían a los 
expertos en fármacos contar con mayor información 
sobre el comportamiento de la proteasa cuando 
aparece una mutación susceptible. 

Palabras clave. VIH, resistencia a fármacos, 
mutaciones, mapas cognitivos difusos, modelación, 
optimización basada en colonia de hormigas.  

1 Introduction 

In the last few years, several antiretroviral drugs 
have been approved for treating the Human 
Immunodeficiency Virus (HIV). These drugs are 
designed for inhibiting the function of proteins that 
play an important role in the virus life cycle, such 
as protease, reverse transcriptase and integrase. 
However, due to its high mutation rate, this virus 
is capable to develop resistance to therapies 
designed by specialists. Therefore, the study of 
the resistance mechanisms in the proteins 
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mutations is a key for optimizing the use of 
existing drugs and designing effective new 
ones [1]. 

Generally speaking, it is possible to determine 
the resistance of a mutation to a given drug by 
two different tests. The simplest one is the 
genotype testing, which consist on sequencing 
the patient and look for mutations previously 
associated with resistance. This method is 
relatively cheap but the interpretation could be too 
hard if multiple mutations take place. On the other 
hand, the phenotype test measures the quantity 
of drug concentration needed for inhibiting the 
protein function. This test is quite exact but is also 
costly in time and resources [2]. 

The information gathered from both 
experiments could be very useful in the study of 
the behavior of HIV proteins against different 
antivirals. In fact, in [3] is publicly available the 
paired results of these test. However, the 
historical data stored for this kind of processing is 
majorly about resistant sequences, leading to 
highly imbalanced knowledge bases. Imbalanced 
datasets are a very common problem in 
knowledge bases from real world problems. 
Frequently the minority class is usually the one 
that has the highest interest from the application 
point of view. In order to treat this issue, two 
major approaches have been proposed in 
literature: the data sampling which consist in 
modifying the dataset for obtaining a balanced 
distribution, and the algorithmic point of view 
which considers the imbalanced distribution in the 
learning process [4]. 

Despite imbalanced datasets, several machine 
learning and statistical techniques have used 
these historical data for training methods for 
virtual phenotyping, that is, to predict the 
phenotypic resistance using the genotypic 
information [1, 2, 5-9]. The numerous models 
proposed in literature offer a variety of tools for 
helping in designing therapies for patients without 
using the phenotype testing. Particularly, the 
authors in [10, 11] use the Fuzzy Cognitive Maps 
(FCM) theory for modeling the behavior of the HIV 
protease. In this proposal the causality patterns 
among all sequence positions and the resistance 
were learned using a Swarm Intelligence 
approach. As a result, the prediction accuracies 
obtained for five antiviral drugs were very 

promising and competitive, supporting the quality 
of the causal relations expressed in the adjusted 
map. In addition, the interpretation capabilities of 
the FCM allow the knowledge discovery of 
causality patterns of some punctual mutations 
and the resistance. As final contribution, these 
previous works, offer a simulation tool for studying 
the causality among all sequence positions when 
multiple mutations take place.  

In this paper we extent these results by using 
the inference capabilities and the causal relations 
expressed in the obtained maps for generating 
protease sequences which report low resistance 
(susceptibility) to the studied drugs. To do so, an 
Ant Colony Optimization (ACO) approach is used 
to generate the susceptible sequences mutations, 
modeled as a discrete optimization problem. Also, 
biological knowledge about the frequency of each 
possible mutation in nature is used as heuristic 
knowledge. The generated mutations could 
expand the knowledge available about the 
resistance mechanisms and, to some extent, offer 
an alternative for treating the imbalanced 
distribution in the knowledge bases used for 
virtual phenotyping. 

The rest of the paper is organized as follows. 
The next section makes an overview of previous 
works describing some theoretical aspects of 
FCM and explaining the protease modeling, 
learning process and their results. Section 3 
proposes the ACO based method for generating 
susceptible mutation sequences. In Section 4 we 
discuss some experiments and their results. As a 
final point, conclusions and future work 
suggestions are given in Section 5. 

2 Modeling Protease as a FCM 

HIV protease protein can be seen as a dynamic 
system where all positions of the genomic 
sequence interact with each other to some 
degree, depending on the 3D structure of the 
protein. In addition, interactions taking place in 
the active site have strong influence in the drug 
ability to dock to the protein and thus inhibit its 
function. In fact, frequently, some punctual 
mutations in the sequence cause resistance to a 
given drug by preventing the docking of the 
antiviral to the active site of the protein. 
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The behavior of this complex biological system 
has been modeled and studied using different 
statistical and machine learning methods, mainly 
in order to predict the drug resistance from the 
protein genome sequence using historical data. 
Particularly, in previous works the authors 
proposed a methodology for modeling and 
simulate the behavior of resistance mechanism in 
HIV proteins through FCM. 

 2.1 Fuzzy Cognitive Maps 

FCM are a soft computing technique which 
combines fuzzy logic and artificial neural network 
theories. They were proposed by Kosko in [12] as 
an extension to cognitive maps. Graphically, they 
are composed by nodes (concepts) representing 
descriptive variables of the system, and links 
(relations) expressing causality between two 
concepts.  

From the fuzzy logic point of view, concepts are 
characterized by a fuzzy value in the range [0, 1] 
denoting the activation degree of the represented 
variable in the system. The causal links are 
weighted arcs representing the cause-effect 
relations between two concepts, and they can be 
described by a fuzzy value in the range [-1, +1]. 
The sign of the causal relations specify the 
direction of the change, for example, if there is a 
positive causality between two concepts then an 
increase in the source concept leads to an 
increase in the target variable, or if a negative 
causality exists between the concepts, then an 
augment in the source concept causes a 
reduction in the activation value of the target 
variable. Lastly, if the value is zero, there is no 
causal relation between the concepts. These 
fuzzy weights are often linguistically defined by 
experts in the application domain or could be 
automatically learned from historical data of the 
modeled problem. 

On the other hand, from the connectionist point 
of view, FCM are a type of recurrent artificial 
neural network since they involve feedback in 
their connections. This aspect allows to express 
the dynamic of the system by describing the 
effects of a change in a variable on the other 
variables, which in turn can affect the node 
initiating the change, adding a temporal character 
to the modeling [13]. This is key feature for 

modeling bioinformatics sequence related 
problems. These structures are also an efficient 
inference engine, where the inference process is 
similar to neural networks.  

𝐴𝑖
(𝑡+1) =  𝑆��𝑤𝑗𝑖

𝑛

𝑗=1

𝐴𝑖
(𝑡)� , 𝑖 ≠ 𝑗                 (1) 

Once the causal weights are established and 
the initial values for all input concepts are given, 
the values of all concepts are computed through 
time according to the above expression, where Ai 
represents the activation value of the i-th concept, 
wji is the causal weight between the concepts and 
S is transformation function for normalizing the 
resulting activation value. The inference process 
is repeated a fixed number of times or until the 
map stability is reached, also known as hidden 
pattern. FCMs were a suitable choice for 
modeling the problem enunciated before since 
they can describe the biological system similarly 
to the mental representations of the experts.  

2.2 Protease Modeling 

Protease protein is defined by a sequence of 99 
amino acids. As was mentioned before, there 
exist relations among not necessarily adjacent 
positions of the sequence, due to 3D structure of 
the protein. Here, a change in a specific position 
(to be considered as a mutation) could be 
relevant on the resistance. Following figure 1 
illustrates the topology designed for representing 
the protease protein as a FCM.  

 
Fig. 1. FCM topology for representing HIV protease 
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Each input concept stands for a sequence 
position described by one of the twenty possible 
amino acids. These nodes are fully connected 
with each other and also have causal influence on 
the resistance concept, which represents the 
output of the model. In the suggested 
configuration the authors describe the protease 
protein using the amino acids contact energies 
[14], which is a numerical descriptor statistically 
representing the proximity of an amino acid to the 
others, and to some extent describing the 3D 
structure of the protein. Also, it was proposed a 
feature selection based on sequence positions 
previously associated with resistance, in order to 
facilitate the interpretability of the final map. 

In this case the causality of the map is 
automatically learned from historical data [3], 
using a variant of constricted PSO called PSO-
RSVN [15, 16]. The supervised learning scheme 
applied is able to avoid stagnation and premature 
convergence states to local optima. Afterwards, 
the optimized maps characterize the resistance 
mechanisms of the protease protein for each 
antiviral drug taken into account. As a result, the 
prediction accuracies obtained in extended 
experiments using a 5-folds cross-validation were 
competitive with reported models in literature (see 
Table 1). Seven protease inhibitors were studied: 
Amprenavir (APV), Atazanavir (ATV), Indinavir 
(IDV), Lopinavir (LPV), Nelfinavir (NFV), Ritonavir 
(RTV) and Saquinavir (SQV). The algorithms 
used for comparison were: decision trees (DT), 
neural networks (NN), least-squares regression 
(LSR), support vector regression (SVR), and least 

angle regression (LARS) from [1]; a random forest 
(RF) using n-grams from [9], a multilayer 
perceptron (MLP) and a bidirectional recurrent 
neural network (BRNN) from [8]. 

Since the accuracy of the obtained maps 
constitutes a quality measure of the causality 
expressed in the relations, it was possible to 
develop a knowledge discovering process. The 
interpretability features of the FCMs helped to find 
causal patterns among the protein positions and 
the resistance. For each drug, positions with 
positive, negative or null causality over the 
resistance were identified and the effects of a 
punctual mutation in those positions were 
explained, offering useful information to drug 
specialists. 

In the present paper, we extent these results 
starting from the aforementioned adjusted maps 
for generating susceptible possible mutations of 
the protease protein by using a discrete 
optimization approach. 

3 Generating Susceptible Mutations of 
the HIV Protease Protein 

As was discussed, the methodology proposed by 
Grau, Nápoles and coauthors [10, 11] allows 
analyzing the behavior of some HIV proteins, in 
order to understand the effect of mutations on the 
target drug resistance. As result, the existing 
causality between each protein position and the 
resistance concept was numerically established, 

Table 1. Average classification accuracy using a 5-fold cross-validation training evaluation  
(the best performing algorithm is emphasized in boldface) 

 
Drug DT NN LSR SVR LARS RF MLP BRNN FCM 

APV 0.77 0.74 0.81 0.82 0.81 0.80 0.82 0.81 0.87 

ATV 0.71 0.64 0.68 0.69 0.76 0.76 0.80 0.88 0.92 

IDV 0.75 0.73 0.78 0.77 0.77 0.80 0.86 0.92 0.97 
LPV 0.77 0.76 0.79 0.80 0.83 0.81 0.92 0.94 0.95 
NFV 0.76 0.73 0.79 0.79 0.80 0.82 0.86 0.93 0.92 

RTV 0.84 0.81 0.86 0.86 0.88 0.84 0.90 0.94 0.94 

SQV 0.75 0.76 0.81 0.81 0.82 0.80 0.85 0.91 0.94 
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and also a novel scheme for simulating the effect 
of simple or multiple mutations was introduced.  

However, from this work we notice that the 
FCM model not just is able to compute the 
biological causality, but also reported promising 
classification accuracies. More explicitly FCM 
model and the Swarm Intelligence based learning 
significantly outperformed other well-known 
classifiers such as Decision Trees, Support 
Vector Machine models, Multilayer Perceptron, 
Recurrent Neural Networks or Bayesian 
Networks. While those recurrent approaches 
computed best results. 

As we known, HIV available knowledge bases 
are imbalanced, so there are many resistant 
cases, while susceptible mutations are quite 
limited. Clearly it could induce learning algorithms 
converge to local optima. Despite this 
inconvenient, FCM methodology detailed in [11] is 
quite robust to handle such situations. However, a 
serious drawback remains: the number of 
susceptible mutations reported in the scientific 
literature is still insufficient, limiting the 
comprehension of the HIV proteins behavior. 

Then, it is possible to generate feasible 
mutations being susceptible to existing drugs? 
Next we introduce a novel scheme for mutating 
HIV protease protein using a learned FCM as 
suggested in [11] and a method based on ACO 
metaheuristic as generator of new mutations. 
Thus, the central idea of this scheme is to 
generate feasible mutations over the wild 
sequence as a typical combinatorial problem. To 
do that, we use the ACO metaheuristic where the 
information guiding the ant’s movements is 
computed from biological knowledge extracted 
from historical data. 

Perhaps the most relevant contribution from the 
machine learning point of view is that, in this 
scheme, the objective function value is computed 
through a learned FCM describing the protein 
behavior. In other words, the value of a candidate 
mutation is measured in terms of susceptibility to 
a specific drug, which is calculated over the FCM 
inference process. Of course, the FCM used in 
this method needs to be previously adjusted using 
the learning algorithm discussed in [11]. Following 
we justify this proposal more explicitly. 

Mutations could be grouped into two groups: 
chromosomal mutations and gene mutations. The 

first ones are related with the chromosomes 
reordering, thus codifying changes in the 
molecular structure of the protein; while the 
second group is oriented to changing the 
nucleotides succession in the DNA sequence. 
Hereinafter, this work will be exclusively focused 
on gene mutations since most reported 
sequences in related literature are codified from 
this perspective. Nevertheless, the method 
introduced in this section could be easily adapted 
to chromosomal mutations as well. 

As a further classification, gene mutations are 
grouped in four clusters as suggest [17]: 

– Silent mutations: alter the current codon in a 
degenerated codon; it means that the amino 
acids codification does not suffer any 
modification. Such phenotypic mutations are 
unable to produce perceptible alterations, but 
instead they remain silent having a 
determinant role in the individual’s evolution. 

– Frame shifted mutations:  these mutations 
induce the deletion or insertion of nucleotides 
over the protein sequence. 

– Missense mutations: consist in the 
nucleotides replacement in codons which 
modify the interpretation of the codon, that is, 
the amino acids codification in the sequence. 

– Nonsense mutations: transform a standard 
codon in a terminal codon (UAA, UAG, UGA). 
It is important to remark that, such mutations 
are particularly dangerous since they lead to 
the split of the proteomic chain.     

As a remark, frame shifted mutations are quite 
frequent in reverse transcriptase mutations 
leading to instances having variable length [18]. 
But in protease mutations missense mutations are 
often reported in scientific literature. For this 
reason in this section we concentrate on 
generating artificial missense mutation for the 
protease protein, being susceptible to existing 
drugs. However, a suitable mechanism that 
allows generating these protease mutations is 
required. With this goal in mind, next subsection 
provides a brief background on ACO 
metaheuristic, and later the model design from a 
biological perspective will be introduced. 
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3.1 Ant Colony Optimization 

The Ant Colony Optimization (ACO) metaheuristic 
is a well-known search method for solving 
combinatorial problems [19]. The biological idea 
behind this meta-heuristic is to simulate the 
behavior of a colony of individual agents (ants) 
when they are looking for food. Real ants in 
nature search for food in a random proximity to 
the nest. Once the ants found a source of food, 
they evaluate this source according to quality and 
quantity. Then, in the path back to the nest, they 
deposit a chemical pheromone trail on the 
ground, in order to guide the rest of the colony to 
the food source. 

Inspired in this behavior, the ACO algorithm is 
a fully constructive model where each ant builds a 
solution of the problem by exploring a 
construction graph. The artificial ant moves from 
one state to another during the search process. 
Here states denote the components of the 
problem solution. In general terms, the preference 
of moving from one node to the other depends on 
two main values associated with each pathway: 

– The artificial information 𝜂𝑖𝑗, which is based in 
the pheromone trail deposited. It is iteratively 
updated by ants during the search process 

– The heuristic information 𝜏𝑖𝑗, which is related 
with the application domain denoting the 
preference of moving from one state to 
another. It is important to notice that the 
heuristic information is known in advance and 
it is not updated during the search process. 

In the search process, the probability of the 𝑘-
th ant to move from state 𝑖 to state 𝑗 is computed 
by the expression (2); where 𝒩𝑖

𝑘  is the set of 
nodes that the ant has not yet visited, 𝛼 and 𝛽 are 
parameters specified by users for denoting the 
strength of the pheromone trail and the heuristic 
information on the decision, respectively. 

𝑃𝑖𝑗𝑘(𝑡 + 1) =
� 𝜏𝑖𝑗(𝑡)�𝛼� 𝜂𝑖𝑗�

𝛽

�   [ 𝜏𝑖𝑟(𝑡)]𝛼[ 𝜂𝑖𝑟]𝛽 𝑟∈𝒩𝑖
𝑘

, 𝑗

∈ 𝒩𝑖
𝑘     

(2) 

After the construction phase is complete, it is 
necessary to update de pheromone trails using 

the solutions found by ants. As a first stage, 
pheromone evaporation takes place uniformly 
reducing the pheromone trail in each path. 
Afterward, in a second moment, one or more 
solutions found are used to increase the value of 
such paths included in selected solutions. It is a 
sensible issue in the ACO metaheuristic. Actually, 
most of ACO variants primarily differ in the 
selected strategy for updating the pheromone trail 
at each cycle. 

In this work we use a variant of ACO known as 
Max-Min Ant System (MMAS) [20]. The central 
features of this implementation are summarized 
as follows: (1) the allowed values for the 
pheromone trail are in the range 𝜏𝑚𝑖𝑛 < 𝜏𝑖𝑗 <
𝜏𝑚𝑎𝑥, ∀𝜏𝑖𝑗 and (2) they are initialized with 𝜏𝑚𝑎𝑥 
value, ensuring more exploration of the search 
space at the beginning of the search. Moreover, 
MMAS uses a strategy for updating pheromones 
very similar to Ant Systems [19], as describes 
following equation using the constant 𝜌, with 0 <
𝜌 < 1: 

 𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) 𝜏𝑖𝑗(𝑡) + 𝜌𝜏𝑖𝑗𝑏𝑒𝑠𝑡(𝑡)        (3) 

Consequently, a strong elitist criterion regulates 
the ant which is allowed to update the pheromone 
trail. It could be the one with better tour so far 
(global-best ant) or the one with the best solution 
in the current iteration (iteration-best ant). In 
general, this algorithm has strong exploration 
capabilities and it attempts to avoid the stagnation 
of the colony more effectively. In the next 
subsection we explain how to use the MMAS 
method for solving the optimization problem 
enunciated before. 

3.2 Optimization Design Stage 

Here, the idea is to generate reasonable 
mutations using the ACO metaheuristic. Towards 
this end, it is important to represents solutions. 
Thus, each ant needs to build a vector having 
cardinality equal to the number of punctual 
mutations that will be induced. In other words, as 
we know the protease is described by 99 amino 
acids but only a small subset of such positions is 
related with the protein mutations. For this reason 
ants will generate solutions having 1 ≤ 𝑚 ≤ 99 
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components, that is to say, protein sequences 
with 𝑚 mutated positions. In this paper these 𝑚 
positions are taken as those that have been 
previously associated with the drug resistance 
target. For each drug, selected positions were 
determined using both numerical and biological 
perspective [3, 21-24]. 

Then a solution (to be considered a mutation) 
is a vector, where each position codifies a specific 
amino acid expressed by their contact energy. It 
is relevant to mention that those protein positions 
that won’t be muted preserve the amino acids of 
the wild sequence. This sequence for protease 
protein has the form: “PQITLWQRPLVTIKIGGQLKEALL 
DTGADDTVLEEMNLPGRWKPKMIGGIGGFIKVRQYDQILIE
ICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNF”. 

For better comprehension of this scheme, lets 
to generate a protease mutation for the drug IDV 
having 5 mutation points. For this drug, five of the 
positions directly related with the resistance target 
are: AA10, AA24, AA46, AA71 and AA90. It means 
that ants will build solutions with five components, 
that is, with five possible amino acids denoting the 
protein mutations. Now suppose that the optimal 
sequence found by the algorithm has the 
following form: “PQGTL”. It implies that the final 
mutation has the codification: 
“PQITLWQRPPVTIKIGGQLKEALQ 
DTGADDTVLEEMNLPGRWKPKGIGGIGGFIKVRQYDQILI 
EICGHKTIGTVLVGPTPVNIIGRNLLTQIGCTLNF”. 

Notice that the cardinality of the optimization 
problem is the number of mutations points, where 
the number of such points is fixed as the number 
of protein positions previously associated with the 
resistance. Hence, in the optimization stage, the 
𝑘-th ant will select the 𝑗-th amino acid as the 𝑖-th 
solution component mainly based on the 
pheromone trail information and the heuristic 
information. The pheromone trail is learned by 
ants during the search process, but the heuristic 
information should be designed by the user. 

Actually, the erroneous choice of this 
information frequently leads to poor solutions. 
Hence, how to efficiently estimate the heuristic 
preference for the optimization scheme? As a 
suitable alternative we use biological knowledge 
achieved from historical data. The central idea 
consist in quantify how many a protein position 
mutates to a specific amino acids. As an 

illustrative example, analyzing 150 mutations we 
noticed that the position AA30 mutates to the 
amino acid D in 104 sequences for drug LPV. It 
means that the heuristic preference of accepting 
this amino acid in the position AA30 will be 
𝜂𝑖𝑗 = 104/150 ≈ 0.7. 

However, due to available historical data are 
frequently imbalanced as was highlighted before, 
the proposed strategy for estimating the heuristic 
component instead of benefiting may negatively 
affect the global convergence rate of the 
optimization algorithm. More explicitly, the 
heuristic value of accepting an amino acid in a 
specific position probably leads to a resistant 
mutation, since that the heuristic component is 
estimated using historical data where most 
sequences are resistant to existing drugs. Despite 
this, the proposed strategy allows to simulate 
more naturally the HIV mutation mechanism, 
consequently reducing the probability of 
generating no feasible sequences. 

In order to complete the optimization design, a 
function 𝑓:𝑅𝑛 → [0,1] is required. In this paper we 
use a previously adjusted FCM to compute the 
resistance concepts for a given mutation. Hence, 
once the FCM is trained using historical data, the 
system behavior could be studied by simply 
varying the concept’s activation values. To do 
that, each mutated sequence position is directly 
related with the corresponding contact energy. 
Next, the FCM inference mechanism is activated 
and the resistance concept is examined: the 
closer to zero the resistant concepts is, the more 
susceptible the artificial mutation is. In next 
section this methodology is used for generating 
mutations having low resistant values for existing 
inhibitors. 

4 Simulations and Discussion 

With the intention of validating our proposal, in 
this section we obtain several susceptible 
protease mutations by using the workflow 
described above. To do that, we use the following 
as parameter settings: 20 ants, 100 generations, 
the evaporation constant  𝜌 is set to 0.1, while the 
transition rule parameters are 𝛼 = 2 y 𝛽 = 3.  
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Table 2. Example of mutation frequencies on each sequence position, extracted from historical data of  
Loinavir, which constitutes heuristic data for the ACO optimization 

 
AA A C D E F G H I K L M N P Q R S T V W Z 

10 0 0 0 0 24 0 0 61 0 11 0 0 0 0 0 0 0 10 0 0 

20 0 0 0 0 0 0 0 6 65 0 1 0 0 0 28 0 5 1 0 0 

24 0 0 0 0 1 0 0 13 0 92 0 0 0 0 0 0 0 0 0 0 

30 0 0 104 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 

32 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 94 0 0 

33 0 0 0 0 30 0 0 2 0 73 0 0 0 0 0 0 0 1 0 0 

36 0 0 0 0 0 0 0 43 0 6 56 0 0 0 0 0 0 1 0 0 

46 0 0 0 0 0 0 0 51 0 14 41 0 0 0 0 0 0 0 0 0 

47 0 0 0 0 0 0 0 96 0 0 0 0 0 0 0 0 0 10 0 0 

48 0 0 0 0 0 96 0 0 0 0 1 0 0 0 0 1 0 8 0 0 

54 1 0 0 0 0 0 0 32 0 6 4 0 0 0 0 3 0 60 0 0 

63 4 2 0 0 0 0 2 0 0 10 0 0 85 0 1 0 2 0 0 0 

64 0 0 0 0 0 0 0 87 0 0 3 0 0 0 0 0 0 16 0 0 

70 0 0 0 4 0 0 0 0 101 0 0 0 0 0 1 0 0 0 0 0 

71 31 0 0 0 0 0 0 8 0 1 0 0 0 0 0 0 9 57 0 0 

72 0 0 0 1 0 0 0 84 1 1 6 0 0 0 3 0 2 8 0 0 

73 2 0 0 0 0 86 0 0 0 0 0 0 0 0 0 15 3 0 0 0 

77 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 74 0 0 

82 59 1 0 0 4 0 0 1 0 0 0 0 0 0 0 1 9 31 0 0 

84 1 1 0 0 0 0 0 72 0 0 0 0 0 0 0 0 1 31 0 0 

88 0 0 4 0 0 1 0 0 0 0 0 100 0 0 0 0 1 0 0 0 

90 0 0 0 0 0 0 0 0 0 46 60 0 0 0 0 0 0 0 0 0 

93 0 0 0 0 0 0 0 63 0 42 1 0 0 0 0 0 0 0 0 0 

 

Table 3. Percent of coincidence between the generated susceptible mutations and the outputs of the three well-
known expert systems publicly available 

Drug ANRS HIVdb REGA 

ATV 1.0 0.98 1.0 

IDV 1.0 0.96 0.99 

LPV 0.98 0.90 0.94 

NFV 0.98 0.93 0.95 

SQV 0.99 0.92 0.99 
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Table 4. Example of susceptible mutations obtained for each drug 

Drug Amino Acids Code Nucleotides Code 

APV 

PQITLWQRPHVTIKIGGQLF
EAGTDTGADITVLEEHNLPG
RWKPKYIGGIGGCYKVRQY
DQIPIEICGHKFIGTVTVGPT
PCNSIGRRLCTQKGCTLNF 

CCGCAAATTACCCTGTGGCAACGACCCCACGTGACTATCAAGATCGGA
GGGCAACTCTTTGAGGCAGGGACTGACACAGGCGCGGATATCACAGT
TCTGGAGGAACACAACCTACCCGGTCGATGGAAACCGAAGTACATAGG
GGGGATTGGCGGATGCTATAAGGTAAGACAATATGATCAGATTCCTAT
CGAGATCTGCGGACATAAGTTCATAGGTACGGTGACTGTAGGCCCTAC
ACCATGTAATTCGATCGGGCGTCGCCTGTGCACCCAGAAGGGATGTAC
ATTAAACTTT 

ATV 

PQITLWQRPIVTIKIGGQLKE
ALLDTGADDTFSETANLPG
RWKPKREGGEGGGIKVRQ
YDQIFIEICGHKQIITVLDGPT
PVNIIGRNLTTQGGCTLNF 

CCACAAATTACACTTTGGCAACGACCGATCGTGACAATCAAGATCGGT
GGGCAACTAAAGGAAGCCTTGCTGGATACAGGAGCGGACGACACCTT
CAGCGAGACCGCCAACCTCCCAGGACGTTGGAAACCCAAAAGGGAAG
GTGGTGAAGGTGGTGGAATTAAAGTACGTCAGTACGACCAAATTTTTAT
CGAGATCTGCGGCCATAAACAAATTATAACCGTATTAGATGGTCCCACC
CCCGTCAATATTATAGGAAGAAACTTGACCACACAGGGCGGGTGTACT
CTTAACTTT 

IDV 

PQITLWQRPVVTIKIGGQLE
EALLDTGADDTVCEEQNLP
GRWKPKRIGGYGGFTKVR
QYDQILIEICGHKWIPTVLVG
PTPANSIGRKLLTQGGCTLN
F 

CCGCAGATCACACTCTGGCAACGGCCTGTCGTCACGATCAAGATCGG
GGGACAACTTGAGGAGGCTTTACTCGACACGGGAGCGGATGATACTG
TCTGTGAAGAACAGAACCTTCCCGGAAGATGGAAGCCTAAACGCATAG
GGGGCTATGGGGGTTTTACGAAGGTCCGGCAATATGATCAGATTCTCA
TAGAGATATGCGGCCATAAATGGATACCTACAGTGCTCGTGGGGCCAA
CCCCCGCCAATAGTATTGGTAGGAAGCTTTTAACGCAGGGCGGATGCA
CTTTGAACTTC 

LPV 

PQITLWQRPKVTIKIGGQLA
EALLDTGADQTSQEEDNLP
GRWKPKDQGGIGGFKKVR
QYDQIPYEICGHFGNGTVL
MGPTPWNLIGRPLRTQRGC
TLNF 

CCCCAAATAACCCTTTGGCAACGACCTAAAGTCACCATTAAAATTGGTG
GACAACTCGCAGAGGCGCTGTTAGACACTGGTGCCGACCAAACATCTC
AGGAAGAAGATAACCTGCCGGGGAGGTGGAAACCTAAAGATCAAGGG
GGCATAGGAGGGTTCAAAAAAGTACGGCAATACGATCAGATTCCCTAT
GAGATCTGCGGACATTTTGGAAATGGAACGGTACTAATGGGGCCAACA
CCGTGGAACCTCATAGGACGTCCTCTGAGAACCCAACGTGGATGCAC
GCTTAACTTC 

NFV 

PQITLWQRPTVTIKIGGQLD
EALLDTGADITVLEEPNLPG
RWKPKCIGGIGGFFKVRQY
DQIPIEICGHKVIWTVLYGPT
PKNQIGRWLATQAGCTLNF 

CCGCAGATCACCCTCTGGCAACGACCGACCGTGACTATAAAAATCGGT
GGCCAGCTCGACGAGGCACTACTAGATACTGGAGCTGATATCACTGTC
TTGGAGGAGCCGAATCTACCCGGTCGCTGGAAACCTAAATGCATTGGA
GGAATAGGCGGATTCTTTAAAGTACGCCAATACGACCAGATACCGATT
GAGATCTGTGGGCATAAAGTGATATGGACTGTGCTGTACGGGCCAACA
CCGAAGAATCAAATTGGAAGGTGGCTAGCAACGCAGGCCGGATGCAC
TTTGAACTTC 

RTV 

PQITLWQRPIVTIKIGGQLAE
ALLDTGADMTVREEWNLPG
RWKPKEIRGIGGFVKVRQY
DQIQIEICGHKRIRTVLVGPT
PENRIGRPLITQIGCTLNF 

CCACAGATCACCCTCTGGCAAAGACCCATTGTTACCATTAAGATAGGA
GGGCAGTTGGCCGAGGCGCTCCTAGACACTGGCGCGGACATGACAGT
CAGGGAAGAGTGGAATTTGCCCGGACGGTGGAAGCCGAAAGAGATCC
GTGGCATAGGCGGTTTTGTGAAGGTGAGGCAATACGACCAAATCCAAA
TTGAGATATGCGGGCATAAACGGATCCGAACCGTCCTCGTCGGGCCAA
CACCAGAAAACCGTATTGGACGTCCTCTAATTACACAAATCGGGTGTAC
TCTCAACTTT 

SQV 

PQITLWQRPFVTIKIGGQLS
EALLDTGADFTVLEEVNLPG
RWKPKHIIGIGGFIKVRQYD
QIVIEICGHKSYMTVLVGPT
PFNPIGRNLVTQMGCTLNF 

CCTCAGATAACGTTATGGCAGAGGCCCTTCGTCACCATTAAGATAGGG
GGCCAATTGTCGGAGGCTCTGTTAGATACTGGTGCGGACTTTACAGTG
CTGGAAGAGGTGAACCTACCGGGCCGCTGGAAGCCAAAACATATCATC
GGAATCGGTGGCTTCATTAAAGTGCGTCAGTACGACCAGATCGTGATA
GAGATCTGCGGACATAAGTCTTACATGACAGTTCTGGTTGGACCCACA
CCTTTCAACCCTATAGGTCGTAACCTCGTGACGCAAATGGGATGTACG
TTGAACTTC 
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The value of the pheromone trail is initialized 
with 𝜏𝑚𝑎𝑥, the maximum (𝜏𝑚𝑎𝑥) and the minimum 
(𝜏𝑚𝑖𝑛) value of pheromone are calculated 
according to the expressions  𝜏𝑚𝑖𝑛 = 𝜏𝑚𝑎𝑥 10⁄ ∗ 𝑛 
and 𝜏𝑚𝑎𝑥 = (1 1 − 𝜌⁄ ) ∗ (1 − 𝐹), where 𝐹 denotes  
the best solution found so far. The Table 2 
illustrates an example of the heuristic information 
used for generating mutations which are 
susceptible to Lopinavir, similar frequency 
matrixes are used for the other antiretroviral 
drugs. 

As a result, we obtain several susceptible 
mutations for each trained map representing an 
antiviral drug. Ideally, biological experiments are 
needed to verify whether our mutations are really 
susceptible or not, but these experiments are very 
costly. So, in order to validate the susceptibility of 
our generated sequences, we compare the output 
of three well-known experts systems from: ANRS 
Agence Nationale de Recherches sur le SIDA [25], 
HIVdb Drug Resistance Interpretation Algorithm 
[7], and Rega Institute [26]. 

These experts systems are rules-based 
algorithms, where rules are Boolean expression 
and they are frequently updated and widely 
accessible. Table 3 shows the percent of 
coincidence between the generated susceptible 
mutations and the outputs of the expert systems, 
using 100 possible susceptible sequences for the 
available drugs in the expert systems. The values 
obtained illustrate the accuracy of our proposal. 
As a further result, Table 4 shows seven 
susceptible mutations expressed in amino acids 
and nucleotides codes, one for each modeled and 
learned FCM (see Section 2). Here, the 
conversion to nucleotides was performed using 
the sequence conversion tool from [27].  

Then, from the HIVdb expert system we 
extracted some interesting comments about the 
mutations processed. For example for the LPV 
susceptible generated mutation, is an interesting 
fact that it is not just susceptible to LPV, but to all 
others, including Darunavir and Fosamprenavir, 
which are non-studied drugs in this work due to 
the lack of associated historical data. In addition, 
it could be a subtype B mutation (which is the 
most common subtype in literature) with 
probability 0.64. Also, it has no stop codons or 
frame shifts, since we only simulated missense 
mutations.  

PR Comments 
PIMinor 

• L10I/V/F/R/Y are associated with resistance to 
most PIs when present with other mutations. 
L10I/V occur in 5-10% of untreated persons. 
L10F is a non-polymorphic mutation which is 
associated with decreased susceptibility to all 
PIs except ATV/r, SQV/r, and TPV/r. L10R/Y 
are rare poorly characterized mutations. 

• D30N causes high-level resistance to NFV. 
D30P is a highly unusual mutation at this 
position. 

• M46I/L decreases susceptibility to IDV/r, NFV, 
FPV/r, LPV/r, and ATV/r when present with 
other mutations. M46V is an uncommon PI-
selected mutation at this position. M46K is a 
highly unusual mutation at this position. 

• I47V decrease susceptibility to FPV/r, ATV/r, 
IDV/r, LPV/r, TPV/r, and DRV/r. I47A usually 
occurs with V32I and in this setting causes 
high-level LPV/r and FPV/r resistance and 
decreased DRV/r susceptibility. I47Y is a 
highly unusual mutation at this position. 

• I54V/M/L/A/T/S have diverse effects on PI 
susceptibility. I54K is a highly unusual 
mutation at this position. 

• V82A/T/F/L/M/S/C have diverse effects on 
multiple PIs. V82D is a highly unusual 
mutation at this position. 

• L90M reduces susceptibility to NFV, SQV/r, 
ATV/r, and IDV/r. When present with other 
mutations it also reduces susceptibility to 
FPV/r and LPV/r. L90R is a highly unusual 
mutation at this position. 

Other  
• K20R/M/I/T/V are associated with resistance 

to multiple PIs when present with other 
mutations. K20C is a highly unusual mutation 
at this position. 

• L63P is a common polymorphism that is also 
selected by PIs. 

• N88S causes high-level resistance to NFV and 
ATV/r and low-level resistance to IDV/r; it 
increases susceptibility to FPV/r. N88T/G are 
rare PI-selected mutations that have much 
less pronounced effects than N88S. N88E is a 
highly unusual mutation at this position. 

Fig. 2. Comments extracted from the HIVdb expert 
system about the submitted LPV-susceptible 
mutation 
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Figure 2 illustrates the output comments of the 
expert system on the mutation identified as minor 
(frequent) or other (less frequent). No major 
mutation was identified for this particular 
sequence. In the notation, the first letter means 
the wild amino acid (source), the number 
represents the sequence position to be mutated 
and the last letters stands for the changed amino 
acids (target mutations).  

As a result, the susceptible mutations 
generated by our methodology could be 
incorporated to knowledge bases in order to 
enlarge the historical data available, treating the 
imbalanced distribution of classes and thus 
facilitating the study of drug resistance 
mechanisms in HIV proteins. 

5 Conclusions 

The complex dynamic and high mutation rate of 
the HIV leads to serious problem on designing 
more effective drugs. Particularly, it is known that 
this retrovirus frequently develop resistance to the 
existing drugs, thus causing the treatment failure. 
For this reason, other biological, mathematical or 
computational approaches allowing 
understanding this virus are required. Several 
machine learning methods have been applied for 
solving the related classification problem, but only 
a few are interpretable (for instance, Recurrent 
Neural Networks reported good accuracies in 
terms of classification rate, but we can’t explain 
the underlying interaction among protein amino 
acids). Attempting to deal with this issue, the 
authors introduce a novel modeling based on 
FCM theory, allowing not just efficiently classify 
new mutations but also numerically computing the 
causal influence of the amino acids over the drug 
resistance concepts. 

In this work we extend the above mentioned 
research, now with the goal of generating artificial 
mutations. To do that, we use a scheme based on 
ACO meta-heuristic to compute sequences 
having lower contact energy. Here, the objective 
value associated to each solution is computed by 
using a previously adjusted FCM. Besides, we 
use biological knowledge obtained from historical 
data to estimate the heuristic preference of 

mutations in each protein position, which ensures 
to generate feasible solutions.  

At the end, seven new susceptible mutations 
are reported, hence confirming the reliability of 
our methodology. It could contribute, in a certain 
sense, to understand the behavior the HIV 
resistant mechanism; since most of the available 
HIV mutations are highly resistant to existing 
drugs. More generally, the proposed scheme may 
be easily adapted to other problems in order to 
modify datasets with highly imbalanced 
distribution of classes, where a classifier exists 
but historical data having a desirable property are 
insufficient for obtaining consistent performance. 
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