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Abstract. This paper presents an application of Time-
Delay adaptive neural networks based on a dynamic
neural network for trajectory tracking of unknown nonlin-
ear plants. Our approach is based on two main method-
ologies: the first one employs Time-Delay neural net-
works and Lyapunov-Krasovskii functions and the sec-
ond one is Proportional-Integral-Derivative (PID) control
for nonlinear systems. The proposed controller structure
is composed of a neural identifier and a control law
defined by using the PID approach. The new control
scheme is applied via simulations to Chaos Synchroniza-
tion. Experimental results have shown the usefulness of
the proposed approach for Chaos Production. To verify
the analytical results, an example of a dynamical network
is simulated and a theorem is proposed to ensure the
tracking of the nonlinear system.

Keywords. Lyapunov-Krasovskii function stability, chaos
synchronization, trajectory tracking, time-delay adaptive
neural networks, PID control.

1 Introduction

In order to solve problems in the fields of opti-
mization, pattern recognition, signal processing,
and control systems, among others, recurrent neu-
ral networks have to be designed with the prop-
erty that there is only one equilibrium point, and
this point has to be globally asymptotically stable.
Therefore analysis of this kind of stability has been
intensively investigated (see [2] and references
therein). In biological and artificial neural networks,
time delays arise in the processing of information
storage and transmission. It is known that these
delays can create oscillatory or even unstable tra-
jectories [1]. Hence, lately a lot of results regarding

stability of delayed neural networks have been pub-
lished.

In this paper we present the design of a control
law to ensure tracking of a general nonlinear sys-
tem by a delayed recurrent neural network. Fol-
lowing the ideas of [9], we propose a PID control
law that considers the effect of time delay in the
system.

The tracking error stability is analyzed by means
of a Lyapunov-Krasovkii functional (see [3, 8, 7]).
The proposed adaptive control scheme is com-
posed of a recurrent neural identifier and a con-
troller, see Fig. 1.

Fig. 1. Adaptive time-delay recurrent neural network
scheme

We further improve the design by adapting it to
systems with fewer inputs than states (see [11] and
[10]) in which the control law is optimal with respect
to a well-defined Lyapunov-Krasovskii function.
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The applicability of the approach is illustrated
by one example of complex dynamical systems:
Chaos Synchronization.

2 Plant Modeling

An unknown nonlinear plant is given by

·
xp = Fp(xp,u) , fp(xp) + gp(xp)u, (1)

where xp, fp ∈ Rn, u ∈ Rm, and gp ∈ Rnxm,
xp is the plant, u is the control input, and both
fp and gp are unknown. We propose to model
(1) by the time-delay neural network state space
representation

·
x = Ax + W ∗Γz[x(t − τ)] + Ωu,

plus one more term modeling error (as in [5]). A
is a n × m matrix; without loss of generality we
can assume that A = −λI, λ > 0. x are the
neural states, giving an approximation to the real
plant by a neural network, W ∗ is the weights ma-
trix, Γz(x) is the hyperbolic tangent Gammaz(x) =
(tanh(x1(t)), . . . , tanh(xn(t)))t and Ω is a n × m
matrix that modifies the input u, and τ is the time
delay.

We define the modeling error between the time-
delay neural network and the plant by

wper = x− xp. (2)

We assume the following.

Hypotheses 1. (Objective of Modeling): The
modeling error is exponentially stable, that is,

·
wper = −kwper. (3)

In this work we consider k = 1. From (2) we have
·
wper=

·
x − ·xp and using the hypothesis we get

·
xp=

·
x+ wper.

The unknown plant can be modeled as

·
xp =

·
x+wper = Ax+W ∗Γz[x(t− τ)] +wper + Ωu,

(4)
where W ∗ are the fixed but unknown weights from
the neural network. They minimize the modeling
error.

3 Trajectory Tracking

We proceed now to analyze the modeling error
between the unknown plant modeled by (4) and the
reference signal defined by

·
xr = fr(xr,ur), with ur and xr ∈ Rn, (5)

where xr are the reference states, ur is the input
and fr is a nonlinear function.

For this purpose, we define the control error
between the plant and the reference signal by

e = xp − xr, (6)

whose derivative with respect to time is

·
e =

·
xp −

·
xr =

Ax+W ∗Γz[x(t− τ)] + wper + Ωu− fr(xr,ur).
(7)

Adding and subtracting to the right hand side of

(7) the terms
_

WΓz[xr(t−τ)], Ωαr(t,
_

W ), Ae, where
_

W is the estimate of W ∗, αr is defined below, and
considering that e = xp − xr, we have

·
e = Ax+W ∗Γz[x(t− τ)] + x− xp + Ωu

−fr(xr,ur) +
_

WΓz[xr(t− τ)]

−
_

WΓz[xr(t− τ)] + Ωαr(t,
_

W )

−Ωαr(t,
_

W ) +Ae−Ae,

·
e =Ae+W ∗Γz[x(t− τ)] + Ωu− fr(xr,ur)

+
_

WΓz[xr(t− τ)] + Ωαr(t,
_

W ) (8)

− Ωαr(t,
_

W )− e− xr −Ae+ x+Ax

−
_

WΓz[xr(t− τ)].

At this point, we consider the following supposi-
tion:

the time-delay neural network will follow the ref-
erence signal, even with the presence of distur-
bances, if

Axr +
_

WΓz[xr(t− τ)] + xr − xp + Ωαr(t,
_

W )

= fr(xr,ur).
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Then

Ωαr(t,
_

W ) =fr(xr,ur)−Axr −
_

WΓz[xr(t− τ)]

− xr + xp (9)

and we get

·
e =Ae+W ∗Γz[x(t− τ)]−

_

WΓz[xr(t− τ)]−Ae

+ (A+ I)(x− xr) + Ω(u− αr(t,
_

W )). (10)

Now, adding and subtracting in (10) the term
_

WΓz[x(t− τ)] we have

·
e =Ae+ (W ∗ −

_

W )Γz[x(t− τ)]

+
_

W (Γz[x(t− τ)]− Γz[xr(t− τ)]) (11)

+ (A+ I)(x− xr)−Ae+ Ω(u− αr(t,
_

W ))

We define
∼
W = W ∗ −

_

W and
∼
u = u− αr(t,

_

W ) (12)

and substituting (12) in (11), we obtain

·
e =Ae+

∼
WΓz[x(t− τ)] +

_

W (Γz[x(t− τ)]

− Γz[xr(t− τ)])

+ (A+ I)(x− xr)−Ae+ Ω
∼
u,

·
e =Ae+

∼
WΓz[x(t− τ)]

+
_

W

{
Γz[x(t− τ)]− Γz[xp(t− τ)]+
Γz[xp(t− τ)]− Γz[xr(t− τ)]

}
(13)

+ (A+ I)(x− xp + xp − xr)−Ae+ Ω
∼
u.

Now we can set
∼
u = u1 + u2 (14)

and define

Ωu1 =−
_

W (Γz[x(t− τ)]− Γz[xp(t− τ)])

− (A+ I)(x− xp), (15)

so (13) is reduced to

·
e = Ae+

∼
WΓz[x(t− τ)]

+
_

W (Γz[xp(t− τ)]− Γz[xr(t− τ)])

+(A+ I)(xp − xr)−Ae+ Ωu2.

By (6), shortening notation a little by setting σ =
Γz and defining

φσ(t− τ) = σ(xp(t− τ))− σ(xr(t− τ)),

we get

·
e = (A+I)e+

∼
Wσ[x(t−τ)]+

_

Wφσ(t−τ)+Ωu2. (16)

Now, the problem is to find the control law Ωu2
that stabilizes the system (16). We will obtain
the control law by using the Lyapunov-Krasovskii
methodology.

4 Stability of the Tracking Error

Once (16) is obtained, we consider its stabilization
in feedforward. We note (e,

_

W )= 0 is an asymp-
totically stable equilibrium point of the undisturbed
autonomous system (A = −λI and λ > 0). For its
stability, we propose the following PID control law:

Ωu2 =Kpe+Kv
·
e+Ki

∫ t

0

e(τ)dτ

−Υ(
1

2
+

1

2

∥∥∥_W∥∥∥2 L2
σ)e. (17)

The parameters Kp, Kv and Ki will be deter-
mined later, L2

σ is the Lipschitz constant of φ [6],
Υ > 0. This control law (17) is similar to the control
law in [5].

We will show that the feedback system is asymp-
totically stable. Substituting (17) in (16) and setting
a = (1−Kv), we get

·
e =

1

a
(A+ I)e+

1

a

∼
Wσ[x(t− τ)]+

1

a

_

Wφσ(t− τ) +
1

a
Kpe+ (18)

1

a
Ki

∫ t

0

e(τ)dτ − Υ

a
(
1

2
+

1

2

∥∥∥_W∥∥∥2 L2
σ)e

and assuming A = −λI

·
e =
−1

a
(λ− 1−Kp)e+

1

a

∼
Wσ[x(t− τ)]

+
1

a

_

Wφσ(t− τ) +
1

a
Ki

∫ t

0

e(τ)dτ

− Υ

a
(
1

2
+

1

2

∥∥∥_W∥∥∥2 L2
σ)e. (19)
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If we set w = 1
aKi

∫ t
0
e(τ)dτ , then

·
w = 1

aKie(t),
and (19) can be written as

·
e =
−1

a
(λ− 1−Kp)e+

1

a

∼
Wσ[x(t− τ)]

+
1

a

_

Wφσ(t− τ)

+ w − Υ

a
(
1

2
+

1

2

∥∥∥_W∥∥∥2 L2
σ)e. (20)

We will show that the new state (eT ,wT )T is
asymptotically stable and that the equilibrium point

is (eT ,wT )T = (0, 0)T , when
∼
Wσ[xr(t − τ)] = 0,

which is taken as an external disturbance.
Let V be the candidate Lyapunov-Krasovskii

function [3, 7] given by

V =
1

2
(eT ,wT )(eT ,wT )T +

1

2a
tr

{
∼
W

T

W̃

}
+

1

a

∫ t

t−τ
[φTσ (s)

_

W
T _

Wφσ(s)]ds. (21)

The time derivative of (21) along the trajectories
of (20) is

·
V =eT

·
e+ wT

·
w +

1

a
tr


·∼
W

T
∼
W


+

1

a
[φTσ (t)

_

W
T _

Wφσ(t)

− φTσ (t− τ)
_

W
T _

Wφσ(t− τ)], (22)

·
V =eT [

−1

a
(λ− 1−Kp)e+

1

a

∼
Wσ[x(t− τ)]

+
1

a

_

Wφσ(t− τ) + w

− Υ

a
(
1

2
+

1

2

∥∥∥_W∥∥∥2 L2
σ)e] +

1

a
wTKie (23)

+
1

a
tr


·∼
W

T
∼
W

+
1

a
[φTσ (t)

_

W
T _

Wφσ(t)

− φTσ (t− τ)
_

W
T _

Wφσ(t− τ)].

At this point, we select the next learning law for
the neural network weights as in [11] and [4]:

tr


·∼
W

T
∼
W

 = −eT
∼
Wσ[x(t− τ)] (24)

Then (23) is reduced to

·
V =
−1

a
(λ− 1−Kp)e

T e+
eT

a

_

Wφσ(t− τ)

+ (1 +
Ki

a
)eTw − Υ

a
(
1

2
+

1

2

∥∥∥_W∥∥∥2 L2
σ)eT e

+
1

a
[φTσ (t)

_

W
T _

Wφσ(t)− φTσ (t− τ)
_

W
T _

Wφσ(t− τ)].

(25)

If we apply the inequality

xT y ≤ 1

2
xTx+

1

2
yT y (26)

to the second term in the right hand side of (25)
then
·
V ≤−1

a
(λ− 1−Kp)e

T e

+
1

a
[
eT e

2
+

1

2
φTσ (t− τ)

_

W
T _

Wφσ(t− τ)]

+ (1 +
Ki

a
)eTw − Υ

a
(
1

2
+

1

2

∥∥∥_W∥∥∥2 L2
σ)eT e

+
1

a
[φTσ (t)

_

W
T _

Wφσ(t)− φTσ (t− τ)
_

W
T _

Wφσ(t− τ)],

·
V ≤−1

a
(λ− 1−Kp)e

T e+
1

a
(
1

2
+

1

2

∥∥∥_W∥∥∥2 L2
σ)eT e

+ (1 +
Ki

a
)eTw − Υ

a
(
1

2
+

1

2

∥∥∥_W∥∥∥2 L2
σ)eT e.

(27)

Here, we select (1 + Ki

a ) = 0, so KV = Ki + 1,
and KV ≥ 0 when Ki ≥ −1. With this selection of
parameters (27) is reduced to

·
V ≤−1

a
(λ− 1−Kp)e

T e

− 1

a
(Υ− 1)(

1

2
+

1

2

∥∥∥_W∥∥∥2 L2
σ)eT e. (28)

Observe λ − 1 −Kp > 0, a > 0 and Υ − 1 > 0,

then
·
V < 0, ∀ e,w,

_

W 6= 0, the error tracking is
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asymptotically stable and it converges to zero for
every e 6= 0, i.e., the plant will follow the reference
asymptotically. Finally, the control law which affects
the plant and the time-delay neural network is given
by

u =Ω†[−
_

WΓ(z[x(t− τ)]− z[xp(t− τ)])

− (A+ I)(x− xp) +Kpe+Kv
·
e+Ki

∫ t

0

e(τ)dτ

−Υ(
1

2
+

1

2

∥∥∥_W∥∥∥2 L2
σ)e+ fr(xr,ur)−Axr

−
_

WΓz[xr(t− τ)]− xr + xp] (29)

where Ω† is the Penrose pseudo-inverse of Ω. This
control law gives asymptotic stability of error dy-
namics and thus ensures the tracking of the refer-
ence signal. The results obtained can be summa-
rized as follows.

Theorem 1 For the unknown nonlinear system
modeled by (4), the on-line learning law (24) and
the control law (29) ensure the tracking of the non-
linear reference model (5).

Remark 2 From (28) we have

·
V ≤−1

a
(λ− 1−Kp)e

T e

− 1

a
(Υ− 1)(

1

2
+

1

2

∥∥∥_W∥∥∥2 L2
σ)eT e < 0,

∀e 6= 0,∀
_

W .

Therefore V is decreasing and bounded from
below by V (0), where V = 1

2 (eT ,wT )(e,w)T +

1
2a tr

{
∼
W

T

W̃

}
+
∫ t
t−τ [φTσ (s)

_

W
T _

Wφσ(s)]ds.

We conclude that e,
∼
W ∈ L1; this means that the

weights remain bounded.

5 Simulations

In order to demonstrate the applicability of the
proposed adaptive control scheme, the following
example is tested.

In this example, the unknown plant considered is
a Lorenz´s chaotic attractor generated by

•
xp1 =10xp2 − 10xp1, xp1(0) = 10,
•
xp2 =− xp2 − xp1xp3 + 28xp1, xp2(0) = 0,

•
xp3 =xp1xp2 − (

8

3
)xp3, xp3(0) = 10. (30)

The goal is to force the chaotic Lorenz´s attractor
to track the reference, the Chen´s attractor gener-
ated by

•
xr1 =35xr2 − 35xr1, xr1(0) = −10,
•
xr2 =− 7xr1 − xr1xr3 + 28xr2, xr2(0) = 0,
•
xr3 =xr1xr2 − 3xr3, xr3(0) = 37. (31)

In the simulations, the following time-delay neu-
ral network was used with τ = 5 sec:

•
x = Ax+W ∗Γz(x) + Ωu+ wper (32)

and

A =

 −5 0 0
0 −5 0
0 0 −5

 ,

Γ =

 150 0 0
0 150 0
0 0 150

 .

Here

Γz(x) = [tanh(0.5x1), tanh(0.5x2), tanh(0.5x3)]T

with Ω =

(
0 0 1 0
0 0 0 1

)
.

W ∗ is estimated using the learning law given in
(24), and u is calculated using (29).

The results of the simulations are shown in Fig-
ures 2-6, where the time evolution of the states and
phase portraits are presented.

We can see that the Time-Delay Adaptive Neu-
ral Controller ensures rapid convergence of the
system outputs to the reference trajectory. In our
approach, direct control is considered; the learning
laws for the time-delay neural networks depend
explicitly on the tracking error instead of the iden-
tification error. This approach results in a faster
response of the system.
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Fig. 2. Time evolution for state 1

Fig. 3. Time evolution for state 2

6 Conclusions

We have extended the Time-Delay Adaptive Neural
Network Control previously developed in [12] to
the trajectory tracking control problem in order to
consider fewer inputs than states. Stability of the
tracking error is analyzed via Lyapunov-Krasovskii
control functions and the control law is obtained
based on the PID approach. A new adaptive con-
trol structure based on a time-delay dynamic neu-
ral network for chaotic orbit tracking of unknown
nonlinear systems has been developed. This struc-
ture is composed of a Time-Delay neural network
identifier and a control law for orbit tracking. Sta-

Fig. 4. Time evolution for state 3

Fig. 5. Plant phase portrait

bility of the tracking control system has also been
established by means of the Lyapunov-Krasovskii
function method. An open question that remains to
be further investigated is the tolerance of a general
system to the magnitude of the delay.
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Fig. 6. Reference phase portrait
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