ISSN 2007-9737

Hierarchical Contour Shape Analysis

Daniel Valdes-Amaro?, Abhir Bhalerao?

! Benemerita Universidad Autonoma de Puebla, Faculty of Computer Science, Puebla,
Mexico

2 University of Warwick, Department of Computer Science, Coventry,

UK

daniel.valdes@cs.buap.mx, abhir.ohalerao@dcs.warwick.ac.uk

Abstract. This paper introduces a novel shape repre-
sentation which performs shape analysis in a hierarchi-
cal fashion using Gaussian and Laplacian pyramids. A
background on hierarchical shape analysis is given along
with a detailed explanation of the hierarchical method,
and results are shown on natural contours. A com-
parison is performed between the new method and our
proposed approach using Point Distribution Models with
different shape sets. The paper concludes with a discus-
sion and proposes ideas on how the new approach may
be extended.
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1 Introduction

Hierarchical Shape Analysis can be regarded as
a technique able to derive and quantify correlated
behavior between any number of structures [14].
Among these techniques, it is possible to find the
Hierarchical ASM [8], where the premise of the
method is that a small number of training sam-
ples can be used to estimate the covariation of
patterns of multiple variables, allowing their hier-
archical model to capture global (coarse) and local
(fine) shape details. This is done by representing,
in a hierarchical fashion, the shapes in terms of a
wavelet transform followed by a Principal Compo-
nent Analysis (PCA) of the computed coefficients.

In [17] a technique called Partitioned Active
Shape Model (PASM) is introduced, where these
3D PASMs can be regarded as partitioned repre-
sentations of 3D ASMs. Here a mesh is partitioned
into ‘tiles’ or surface patches, then PCA is applied

to the coordinates of the tile vertices. Next, train-
ing samples are projected as curves in a single
hyperspace so that the deformed points are fitted
into an allowable region of the model using a curve
alignment scheme.

Rao et al. [14] presented an approach where
two well-known multivariate statistical techniques
are used to investigate the statistical variation of
brain structures. Canonical Correlation Analysis
(CCA) is used to quantify the correlations between
the number of different brain structures, and Partial
Least Squares Regression (PLSR) is performed
over shapes of different structures to predict un-
known shapes from unseen subjects, given known
shapes of other structures from that subject. Addi-
tionally, CCA and PLSR facilitate the embedding of
statistical shape modeling of the brain within a hier-
archical framework, since they can be used to ex-
tract and quantify correlated behavior between any
number of brain substructures at multiple scales.

More recently, Yu et al. [16] introduced a method
that extracts shape features and conducts statisti-
cal analysis using a procedure that registers and
normalizes cortical surfaces, as well as decom-
pose them using spherical wavelets. The wavelet
coefficients obtained are used as shape features to
study the folding pattern at different spatial scales
and locations, as the underlying wavelet basis
functions have local support in the space and fre-
quency domains. Then, the patterns of cortical
shape variation are studied using PCA allowing
the correlation of these shape variations with age
and neuropsychological measurements at different
spatial scales.
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In Table 1 an overview of these methods is pro-
vided. Each entry in the table shows information
about the modeled object of interest, the image
modality, and the techniques used for the work.

Table 1. Overview of Shape Analysis methods and tasks
solved using Hierarchical Shape Models. Key: PCA =
Principal Component Analysis; PDM = Point Distribution
Model; PLSR = Partial Least Squares Regression; CCA
= Canonical Correlation Analysis; SPHARM = Spheral
Harmonics

Authors Object(s) of interest  Core technique(s)

Davatzikos et al. (2003) Corpus Callosum Wavelet transform
PCA

Lateral ventricle PDM
Left Thalamus PCA
Left Hippocampus Curve Alignment model fitting

Zhao et al. (2005)

Lateral ventricle

Pallidum
Caudate
Putamen

Rao et al. (2006) Thalamus PLSR
Amygdala CCA
Hippocampus
Accumbens
Brain Stem

Yu et al. (2007) White Matter SPHARM
Grey Matter PCA

In this paper a new shape model that derives
shape information in a hierarchical fashion is pre-
sented. To create a multilevel analysis, the method
employs the same ideas as in Burt and Adelson’s
method for images [3], i.e. that of using an iterative
process to encode the signal to generate a pyra-
mid data structure, which is equivalent to sampling
an image with Laplacian operators of many sizes,
hence the name Laplacian pyramid. Analogously,
in this work, the idea is that the Laplacian pyramid
encodes shape variation, so each level encodes
the variation between successively smoothed ver-
sions of the input shape. We explain the basic
principles behind the method and use examples to
illustrate its construction. Brain and leaf data sets
are then used to produce results of applying the
new model. The aim is to show that new hierar-
chical representation is more compact than a PCA
model. Our experiments confirm this hypothesis,
which indicates that the method has utility when
few training samples are available to model com-
plicated contours. In particular, the method is well
suited to natural shapes consisting of repeating or
self-similar patterns of variation.
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2 Generating Hierarchical Shape
Models

In the early 1980s, Burt and Adelson [3] introduced
an image encoding technique that uses local op-
erators at many scales as basis functions. The
iterative process to encode the image generates a
pyramid data structure, which is equivalent to sam-
pling an image with Laplacian operators of many
sizes, hence the name Laplacian pyramid. In this
section a novel method for shape analysis is intro-
duced based on the idea of Laplacian operators for
image enhancement and image coding.

2.1 The Contour Laplacian Pyramid as a
Compact Shape Code

As in Burt and Adelson’s method [3], the approach
applies a Gaussian pyramid GP as a first step. To
generate a GP for any shape

S:(l’l,yl,LL'27y2,...,LL'n7yn)T, (1)

it is ‘reduced’ using a Gaussian function that acts
as a low pass smoothing filter and reduces the
number of points. Such an operation is performed
by the function REDUC'E which can be defined as

REDUCE(S) = W(X(i,0),Y(i,0)). (2)

Here, X (i,0) = z(i) ® g(i,0) and Y (i,0) = y(i) ®
g(i,0), where ® denotes the convolution operator
and g¢(i,0) is a Gaussian of width o [13]. The
operator |} denotes downsampling of the shape by
a factor of two. Hence,

GP(i) = REDUCE(S), (3)

where i = 0,...,1 and [ is the number of levels
of the pyramid. Fig. 1 presents an example of
a Gaussian pyramid for a leaf and a brain white
matter contour. As the REDUCE operator is re-
peatedly applied, the shape is successively blurred
and reduced in size until a small circle results at a
higher pyramid level above the starting level.

The next step is the construction of the Laplacian
pyramid LP, where each level is the difference be-
tween two adjacent levels of the Gaussian pyramid.
First, the function EXPAN D is defined as:

EXPAND(S) = f#(GP(i) ® g(i,0), (4)
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Fig. 1. Example of Gaussian pyramid for (a) leaf and (b)
brain white matter contour

where 1} denotes an operator that up-samples the
shape by a factor of two. Then, each level of the
Laplacian pyramid LP is given by

LP(i) = GP(i) — EXPAND(GP(i + 1)).  (5)

An EXPAND operator is generally implemented
by nearest neighbor up-sampling of the input fol-
lowed by a smoothing operation. The same
smoothing kernel used for the REDUCE operation
is reapplied to the up-sampled signal.

Since there is no level 7 + 1 of GP to serve as a
prediction level for GP(1), we say

LP(l) = GP(1). (6)

Fig. 2 presents an example of a Laplacian pyra-
mid for a leaf and a brain white matter contour.
The output is harder to interpret as the ‘contour’
is no-longer the original shape at any level, but
represents the difference between adjacent Gaus-
sian contours, i.e. each Laplacian pyramid contour
is the detail. Note this is analogous to a wavelet
signal analysis consisting of a low-frequency ap-
proximation and a high-frequency detail.

It is then possible to recover the original contour
by expanding LP(I) once and adding itto LP(I—1),
then expanding again and adding it to LP(I — 2),
and so on until level 0 (the bottom of the pyramid) is
reached and GP(0) is recovered (the level that cor-
responds to the original contour). This procedure
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Fig. 2. Example of Laplacian pyramid for (a) leaf and (b)
brain white matter contour

simply reverses the steps in the Laplacian pyramid
generation. From Equation 5 we observe that

GP(i) = LP(i) - EXPAND(GP(i +1)). (7)

Fig. 3 presents an example of the reconstruction
of the Gaussian pyramid for a leaf and a brain
white matter contour, respectively. Fig. 4 shows an

Feconstruction Gaussian pyramid Reconstruction Gaussian pyramid

400 ~400 ® 00 200 ®

(a) " (b)

Fig. 3. Example of the reconstruction of the Gaussian
pyramid for (a) leaf and (b) brain white matter contour

example of the construction of the Gaussian and
Laplacian pyramids with a contour S of 512 points.
Unsurprisingly, the reconstructions using the top-
level of the GP and successive contour differences
from the LP result in the reconstructions of the GP,
and the figures look identical to the GP figure.

Being able to decompose a shape into approx-
imation and detail in this manner has a number
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Gaussian Pyramid

Laplacian Pyramid
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Fig. 4. Example of the construction of the Gaussian and Laplacian pyramids with a contour S (Equation 1) of 512 points.
On the left side the Gaussian pyramid (GP) construction process is depicted, where the shape is successively blurred
and reduced in size using the REDUC'E operator, until a small circle results at a higher pyramid level above the starting
level. Next, on the right side the construction of the Laplacian pyramid (£LP) is shown. In this step, the EXPAND
operator is used to create the different levels, but despite it is no longer the original shape at any level, each Laplacian

pyramid contour represents the ‘detail’ of the shape

of useful properties. As with other wavelet sig-
nal representations, they can be used for denois-
ing and compression using simple threshold meth-
ods (shrinkage) since the analysis process acts to
decorrelate the input signal.

For example, if the shape contour were to con-
tain noise, we could threshold out Laplacian pyra-
mid shape coefficients below some absolute value
and this prior to reconstruction, which would re-
move noise. In this work, we focus on using
Principal Component Analysis (PCA) to compactly
represent the shape by encoding shapes over the
multiple Laplacian pyramid levels.
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2.2 Deriving Shape Information from Laplacian
Pyramids

Intuitively, the idea is that the shape variation is
encoded in the Laplacian pyramid, so each level
encodes the shape variation among the different
levels of the Gaussian pyramid, i.e. at different
resolutions of detail.

Given a set of shapes & = §51,8s,...,S,, the
first step, as in any other shape model, is to align
them. This is necessary to remove pose variation,
this is known as Procrustes Analysis. In this work
Generalized orthogonal Procrustes analysis (GPA)
[11] is used, where k sets can be aligned to one



target shape or aligned to each other. So, in gen-
eral for GPA, the process is initiated by selecting
the first shape in the set to be the approximate
mean shape. Then, a new approximate mean is
calculated from the aligned shapes, followed by a
test of convergence based on the residual error
with the mean.

Once the shape set has been aligned, we pro-
ceed to model the shape information by covariance
analysis. Each level of the Laplacian pyramid £P
is collapsed to a stacked vector of x and y co-
ordinates, and the different levels are concatenated
forming LV:

LY = [GP(), La-1); Lu—2),-- -+ Lo]- (8)
where L represents a level from LP.

Then, a covariance matrix C is created by the
outer product of each LV:

c- LS )

=1

Then, using equation

Cy =Xy (10)

over C, we obtain the corresponding eigenvec-
tors and eigenvalues by PCA. The eigenvalues or
modes of variation effectively capture the variabil-
ity of the set. Larger eigenvalues are associated
with the principal modes which model the princi-
pal variation. Detail and noise are represented
by the minor modes associated with the smallest
eigenvalues [10]. Additionally, the modes of varia-
tion can be used in an alternative way to evaluate
their importance. The magnitudes of the principal
non-zero eigenvalues can be plotted against the
number of principal mode, sorted by decreasing
eigenvalue. In this type of eigenshape analysis, the
plot can be used to compare the performance of
the methods in the following way: from the eigen-
values plots for different data sets or methods, we
observe that the more compact is the shape space,
the faster the magnitudes of the eigenvalues tend
towards zero [2].
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2.3 Point Distribution Models

A Point Distribution Model (or PDM) is a way to
represent shapes through a model that reflects the
position of labeled points [7]. The model also
represents the mean geometry of a shape and
derives statistical modes of geometric variation in-
ferred from a training set of shapes. It has become
a standard in computer vision for statistical shape
analysis and especially for segmentation purposes
on medical images and has led to the creation of
two important techniques: Active Shape Models
(ASM) [6] and Active Appearance Models (AAM)
[5]. A comparison between both models can be
found in [4].

The method can be generalized as follows. First
we need to obtain a training set of outlines with
enough landmarks so they are able to sufficiently
approximate the geometry of the original shapes
(Fig.- 5-a). Next, an alignment of the landmark
sets using GPA is performed (Fig. 5-b). The idea
behind this is that the shape information is not
related to affine pose parameters, so they need to
be removed. Having this, a mean shape can now
be computed by averaging the aligned landmark
positions (Fig. 5-b). PCA computes the eigen-
vectors and eigenvalues of the training set using
a covariance matrix. Each eigenvector describes a
principal mode of variation along the set, the cor-
responding eigenvalue indicating the importance
of this mode in the shape space scattering (Fig.
5-c). If correlation is found between landmarks,
then the total variation of the space is concentrated
on the first few eigenvectors which present a very
rapid decrease in their corresponding eigenvalues.
Otherwise, if no correlation is found, that might
suggest that the training set has no variation or that
the pose of the landmarks has not been properly
removed. Finally, using the set of generated eigen-
vectors and eigenvalues, any shape of the training
set can be approximated using the mean shape
and a weighted sum of deviations obtained from
the modes (Fig. 5-d).

The generated eigenvectors can be seen as a
sequence of vectors associated to the correspond-
ing landmarks, where each comprises a mixture
of shape variation for the whole shape. Here,
the model consists of the mean positions of these
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Mean shape

(®)

Fig. 5. Point Distribution Model: (a) training set of contours, (b) aligned shapes after GPS and set mean shape, (c) from
the mean shape it is possible to reconstruct any shape of the set adding the proper modes of variation, (d) log-plot of

the eigenvalues against the number of modes

points and the main modes of variation, which de-
scribe how the points tend to move from the mean.
The most important idea behind the PDMs is that
eigenvectors can be linearly combined to create
new shape instances that will be similar to any in
the training set [7].

(a) )

Fig. 6. Leaf types used in the experiments: (a) Macro-
phyllum and (b) Kelloggii
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3 Comparative Assessment: Laplacian
Hierarchical Shape Model and PDM

In this section we present experiments that com-
pare the novel Hierarchical Shape Model (HSM)
and the Point Distribution Model. For both exper-
iments, different levels of the Gaussian pyramid
were used, and the idea was to compare the com-
pactness of the eigenvalues from both models. In
each of the following figures the resulting eigen-
modes for the HSM are plotted in shades of green
and for the PDM in red.

The first data set contains 50 leaves of the type
Macrophyllum (Fig. 6-a) as well from [9]. Fig. 7
corresponds to the HSM using 3 levels of the Gaus-
sian pyramid, Fig. 8 to 4 levels, Fig. 9 to 5, and
finally Fig. 10 to 6 levels.

The second data set contains 60 brain white
matter contours from simulated digital brain phan-
tom images, and each digital brain was created
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Fig. 7. Macrophyllum leaves set of 20 shapes: 4 different
levels of the Gaussian pyramid in shades of green, and
in red the plot for the PDM. Plot of eigenmodes against
the number of principal modes

PCA Modes: HSM vs POM
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Fig. 8. Macrophyllum leaves set of 40 shapes: 4 different
levels of the Gaussian pyramid in shades of green, and
in red the plot for the PDM. Plot of eigenmodes against
the number of principal modes

by registering and averaging four T1, T2, and PD-
weighted MRI scans from normal adults [1].

Again as in the previous data set, each Figure
(11, 12, 13 and 14) corresponds to the HSM using
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PCA Modes: HSM v POM
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Fig. 9. Macrophyllum leaves set of 60 shapes: 4 different
levels of the Gaussian pyramid in shades of green, and
in red the plot for the PDM. Plot of eigenmodes against
the number of principal modes

PCA Modes: HSM vs PDM
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Fig. 10. Macrophyllum leaves set of 80 shapes: 4 differ-

ent levels of the Gaussian pyramid in shades of green,

and in red the plot for the PDM. Plot of eigenmodes

against the number of principal modes

3, 4, 5, and 6 levels of the Gaussian pyramid,
respectively.
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PCA Modes: HSM vs PDM
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Fig. 11. Brain white matter set of 30 shapes: 4 different
levels of the Gaussian pyramid in warm colors, and in
blue the plot for the PDM. Plot of eigenmodes against
the number of principal modes

PCA Modes: HSM vs POM
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Fig. 12. Brain white matter set of 40 shapes: 4 different
levels of the Gaussian pyramid in warm colors, and in
blue the plot for the PDM. Plot of eigenmodes against
the number of principal modes

4 Evaluation and Discussion

In this paper a new shape model that derives
shape information in a hierarchical fashion was
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Fig. 13. Brain white matter set of 50 shapes: 4 different
levels of the Gaussian pyramid in warm colors, and in
blue the plot for the PDM. Plot of eigenmodes against
the number of principal modes
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Fig. 14. Brain white matter set of 60 shapes: 4 different
levels of the Gaussian pyramid in warm colors, and in
blue the plot for the PDM. Plot of eigenmodes against
the number of principal modes

presented. Hierarchical Shape Analysis can be
regarded as a technique able to derive and quantify
correlated behavior among any number of struc-
tures. The resulting plots show that even using dif-



ferent levels of the Laplacian pyramid and different
sizes of the training sets, the plots do not present
significative variation in their compactness. Hence,
it is possible to conclude that the compactness of
the method is consistent, and therefore using few
levels or a small set of shapes will not affect the
performance.

Next, we compared its compactness against the
PDM results from leaf contours (Figures 7 to 10)
and from white matter shapes (Figures 11 to 14).
The results illustrate that, in most cases, the HSM
is more compact than the PDM since it is possible
to find significative variation in the compactness of
the eigenmode plots. Also, the accuracy in deriving
shape information outperforms the proposed PDM
in some cases. This can be graphically assessed
in the resulting plots, where none of the plots using
different levels of the HSM were less compact than
the ones produced by the PDM. Moreover, it can
be seen that even using a few tree levels of the
HSM good compactness can be achieved. This
means that the HSMs can be at least as good
and compact as the PDM, and consequently is
worthy for performing efficient shape analysis but
in a different way.

Currently there remains a scope for extending
the presented technique in two ways. The first is to
adjust it to local shape analysis by taking parts of
the contour at different scales of smoothing accord-
ing, for example, a Curvature Scale Space (CSS)
description (see [15]). The other direction will
be to extend it to three dimensions using surface
patches. For example, in [12] it is shown that by
convolving local parameterizations of the surface
with 2D Gaussian filters iteratively it is possible
to obtain smoothed versions of the patches. We
believe this should be sufficient to derive the Gaus-
sian and Laplacian pyramids for a surface HSM.
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