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Abstract. A challenge in hybrid evolutionary algorithms is
to employ efficient strategies to cover all the search space,
applying local search only in actually promising search areas;
on the other hand, clustering algorithms, a fundamental base
for data mining procedures and learning techniques, suffer
from the lack of efficient methods for determining the optimal
number of clusters to be found in an arbitrary dataset. Some
existing methods use evolutionary algorithms with cluster val-
idation index as the objective function. In this article, a new
cellular evolutionary algorithm based on a hybrid model of
global and local heuristic search is proposed for the same task,
and extensive experimentation is done with different datasets
and indexes.

Keywords. Clustering, cellular genetic algorithm, micro-
evolutionary algorithms, particle swarm optimization, optimal
number of clusters.

Búsqueda eficiente del óptimo número de
grupos en un conjunto de datos con un

nuevo algoritmo evolutivo celular hı́brido

Resumen. Un reto actual en el área de algoritmos evolutivos
hı́bridos es el empleo eficiente de estrategias para cubrir la
totalidad del espacio de búsqueda usando búsqueda local sólo
en las regiones prometedoras. Por otra parte, los algoritmos
de agrupamiento, fundamentales para procesos de minerı́a
de datos y técnicas de aprendizaje, carecen de métodos efi-
cientes para determinar el número óptimo de grupos a formar
a partir de un conjunto de datos. Algunos de los métodos
existentes hacen uso de algunos algoritmos evolutivos, ası́
como una función para validación de agrupamientos como su
función objetivo. En este artı́culo se propone un nuevo algo-
ritmo evolutivo celular, para abordar dicha tarea. El algoritmo
propuesto está basado en un modelo hı́brido de búsqueda,
tanto global como local y tras presentarlo se prueba con una
estensa experimentación sobre diferentes conjuntos de datos
y diferentes funciones objetivo.

Palabras clave. Agrupamiento, algoritmo gentico celular, mi-
croalgoritmos evolutvos, optimizacin por cmulo de partculas,
nmero ptimo de clases.

1 Introduction

Modern search methods for optimization consider hy-
brid evolutionary algorithms (HEA) which combine evo-
lutionary algorithm (EA) and local optimizers. The hy-
bridism comes from the balancing of global and local
search procedures, and the main focus of such models
is real-world problems. In recent years, the integration of
different learning and adaptation techniques in order to
overcome individual limitations and achieve synergetic
effects through hybridization or fusion of these tech-
niques has contributed to a large number of new hybrid
evolutionary algorithms [16].

On the other hand, a clustering algorithm is a proce-
dure that groups data patterns according to their similar-
ity [19] and [44]. Clustering is a very useful and popular
task among artificial intelligence activities; consequently,
numerous algorithms and procedures for solving clus-
tering problems have been reported: centroid based
methods [17], graph theory based clustering [35], fuzzy
[30], probability accumulation based clustering [41], hi-
erarchical [8], and kernel methods for clustering [37].

Once a dataset has been clustered, there is a certain
warranty that elements from the same cluster are more
similar to each other than to those in other clusters,
therefore, they share some common properties [44]. By
using inductive learning procedures like those in [23],
knowledge about the cluster structure of a multidimen-
sional dataset can be used to construct a synthetic and
characteristic definition of each cluster. Such character-
istic definition is generally used as the core learning in-
formation for a wide variety of intelligent agents, concept
generalization mechanisms, and all sorts of knowledge
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discovery procedures [26] and [27]. That is why clus-
tering algorithms are most valuable tools for data mining
processes.

During the last few decades cluster analysis has
played a major role in a wide variety of research fields,
including microbiology, genetics, psychology, marketing,
economics, machine learning [3], computer vision [13],
and many others [7]. However, a major family of cluster-
ing algorithms (aka. centroid based or partitional ones),
heavily depend on the number of clusters to form, and
although several rules of thumb can be used to estimate
this number, there is no definite rule for that.

The problem of finding the optimum number k of
clusters for an arbitrary dataset has distinguished itself
as one of the most intriguing and challenging problems
in the Pattern Recognition field [10]. More than often,
the choice of this number determines the behavior of
several learning applications such as [18], [46], and [38]
and has profound implications, as well as interpretations,
regarding the nature and properties of the dataset being
clustered [42]. Once this number k has been estimated,
there is a wide variety of algorithms like [45] and [6]
that take it as a parameter and effectively decide a way
to cluster all available data into exactly that number of
clusters. However, there is still no universal criterion or
algorithm for estimating k.

1.1 Clustering Problem

The clustering problem can be formally defined as fol-
lows. Let Ω = {o1, · · · ,on} be a set of r dimensional
patterns. A clustering of Ω is a partitioning of Ω into k
clusters {C1, · · · ,Ck} satisfying the following conditions:

— The union of all clusters must be equal to the
original universe of discourse:

⋃k
j=1 C j = Ω for all

i, j ∈ [1,k].

— Each pattern can belong to one and only one clus-
ter: Ci

⋂
C j = /0, for all i, j ∈ [1,k].

— There can be no empty clusters: C j 6= /0, for all i, j ∈
[1,k].

However, the problem of estimating k is formally de-
fined in [10] as an optimization problem. Given the
fact that a dataset can be partitioned in several different
ways while preserving the aforementioned properties, an
objective (target) function for the optimization process

must be defined. The problem then turns out to be
one of finding a partition C∗ of optimal or near-optimal
adequacy, as compared to all other feasible solutions.

The well-known intrinsic relationship between cluster-
ing and optimization has attracted the attention of re-
searchers in the field of meta-heuristic optimization to the
problem of estimating k for any given dataset. Numerous
research papers have been published where all kinds of
evolutionary algorithms are used for tackling the problem
of estimating k [2], [10], [36], and [42] and the problem
of finding an appropriate clustering of data into exactly k
clusters [1] [21], [28], [33], and [25]. In this paper we try
to provide a new best-performing algorithm, to the best
of our knowledge, for the same task.

When k is known a priori, an adequate clustering of
a dataset can be found by determining the position of all
cluster representatives that minimizes the global intra-
cluster variance. On the other hand, when estimating k,
each possibility can only be tested with the aid of a global
structure-related measure, such as a cluster validation
index. However, since a dataset can be clustered in
different ways with the same number of clusters, all
meta-heuristic methods that seek to estimate k at the
same time also find the best clustering of data in that
particular number of clusters. These methods, charac-
terized by the use of an internal cluster validation index
as the fitness function, model the clustering problem as
a combinatorial optimization [20].

In this article, we present a novel evolutionary al-
gorithm which implements a hybrid model of heuristic
search. We experimentally test the efficiency of the
proposed algorithm for finding the optimal number of
clusters in a dataset, and compare its performance with
that of the most widely used evolutionary techniques
for the same problem and under the same conditions.
Exhaustive experimentation with synthetic datasets, as
well as the use of non-parametric statistical tests, con-
vincingly shows that the proposed algorithm is the most
efficient evolutionary algorithm used for that problem
so far.

2 State of the Art

In this section, the state of the art on the main tech-
niques used during the development of this research
work will be briefly described. In Section 2.1, most
representative research works regarding the determina-
tion of the optimal number of clusters (value of k) in a
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dataset are described. Section 2.2 describes the latest
advancements in cellular genetic algorithms as well as
their different possible configurations. Finally, in Section
2.3 micro-evolutionary algorithms are analyzed, and their
advantages in convergence speed and reduced popula-
tion size are discussed.

2.1 Finding Optimal Value for K

In [2] the authors proposed a genetic algorithm based
procedure called Genetic Clustering for Unknown K
(GCUK-Clustering). It was developed for finding the
optimal number of clusters in a dataset. The authors
only reported experiments with the Davis-Boulding index
as the fitness function and with both synthetic (Data 3 2,
Data 5 2, Data 6 2 and Data 4 3) and real datasets
(IrisData and Breast Cancer sets from the Machine
Learning Repository). The GUCK-Clustering algorithm
successfully found the correct number of clusters in all
reported experiments.

Six years later, the authors of [10] developed a differ-
ential evolution algorithm called A Classical Differential
Evolution for clustering (ACDE) for the same purpose.
This algorithm encodes the cluster representatives in
each chromosome, but it also adds, for each represen-
tative, the probability of that particular representative to
be active in that individual. The ACDE algorithm also
uses the Davis-Boulding index as its fitness function,
and experiments only with the IrisData, Breast-Cancer
and Wine datasets from the same UCI repository were
reported. Again, the correct number of clusters was
found in all reported experiments.

Apparently, as a response to the previous paper, [36]
presented another differential evolution algorithm called
ADEFC (A new Differential Evolution based on Fuzzy
Clustering) for finding the appropriate number of clusters
in a fuzzy dataset. Almost with the same genotype
coding explained before, ADEFC encodes each cluster
representative with real numbers, but with an extra array
of bits for activating/deactivating each representative.
The authors used the Xie-Beni index as the fitness func-
tion, and although in all their reported experiments the
optimal number of clusters was found correctly, almost
for the first time in this kind of research, they also used
the Wilcoxon non-parametric ranking test to support their
experimental results.

Lastly, the authors of [42] devised a differential evo-
lution based algorithm called Automatic Clustering with

Differential Evolution; it used the cluster number Oscil-
lation method (ACDE-O) which includes an oscillation
mechanism. This algorithm, while having the same
structure of a canonical differential evolution, also has
the ability to locally adjust the estimated number of
clusters based on activation of the information stored in
the individual’s genotype. The authors used the I-index
(designed by Maulik and Bandyopadhyay) as the fitness
function. IrisData and Breast Cancer datasets were used
in reported experimentation; however, no statistical test
was used for evaluation purposes.

2.2 Cellular Evolutionary Algorithms (cEAs)

The first cGA was designed by Robertson in 1987 [216-
22] for a classification system. Robertson’s idea was to
construct a parallel genetic algorithm where each individ-
ual was connected with others in its neighborhood. His
experimental results were quite encouraging, since the
cGA got better results than a classic GA.

In 1991, Davidor [58-27] experimented with cGA and
bi-dimensional grids as a means for structuring the pop-
ulation into 8-individual neighborhoods. He used the
proportional selection method to select ancestors for
recombination and to reinsert individuals into the neigh-
borhood with a probability based on their fitness value.
Davidor concluded that cGA with the aforementioned
characteristics had faster convergence speeds than the
traditional cGA.

In 1994, Gordon et al. [110-28] studied the behavior of
cGAs with different types of neighborhoods. They used
cGA on a wide variety of optimization problems, both
continuous and discreet, and concluded that neighbor-
hoods with bigger neighborhood radius work better with
simple problems. However, for more complex problems,
cGAs with smaller neighborhood radius work better.

In 2002, Alba et al. [19-28] performed a compar-
ative research of different individual update criteria in
both synchronous and asynchronous modes. Exper-
imental results obtained by them suggest that asyn-
chronous cGAs show a higher selection pressure than
synchronous cGAs, so their convergence speed is also
faster and they find solutions faster in less complex prob-
lems. On the other hand, synchronous cGAs show a
better performance when facing complex problems.

Also in 2002, Ekund [84-28] made an extensive em-
pirical research in order to determine the best selection
criterion for cGAs as well as the optimal shape and size
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for neighborhoods. He concluded that shape and size
of the neighborhoods directly depend on the size of the
population. He also showed that any selection criterion
can lead to good results as long as an elitism criterion is
also used to preserve the best solutions found.

2.3 Micro-Evolutionary Algorithms (µEAs)

In 1989, [24] presented the first implementation of a µEA
in the form of a micro-Genetic Algorithm (µGA) with a
very small population and with elitism. He tested his
µGA against a conventional Genetic Algorithm (GA) and
found that the µGA was able to get better results when
dealing with stationary functions as well as in certain
control engineering problems.

That same year Goldberg suggested in [15], basing
on some theoretical results, a µGA that starts with a
reduced population and applies recombination operators
such as crossover and mutation until the population
reaches a state of nominal convergences. This algorithm
randomly reinitializes the population but keeps the best
fitted individuals from the last generation. All the above
processes are repeated until a certain termination condi-
tion is met. Following his experimental results, Goldberg
found that a population with only three individuals is
enough to ensure the algorithm’s convergence, indepen-
dently from the length of the chromosomes.

As described in the state of the art, µEAs can be
classified into two classes: (1) those that are modified
versions of original EAs and (2) those specifically de-
signed to work with small populations [40]. The most
representative algorithms of the first class are µGA [24],
µPSO [4], and µDE [34]. On the other hand, one of
the few known algorithms in the second class is Elitist
Evolution (EEv) designed in 2009 [39].

Concerning more recent studies, in 2010 Coello et
al. proposed a µPSO for multi-objective problems
(µMOPSO) [5]. In this algorithm, the swarm’s leader
selection is made with the Pareto efficiency parameter,
a density-based neighborhood estimator, a mutation op-
eration, and a re-initialization process. The experimen-
tal results show that for all tested objective functions,
their algorithm finds better solution and with a faster
convergence time than the NSGA-II algorithm [12], a
representative multi-objective algorithm.

2.4 Hybrid Evolutionary Algorithms (HEA)

Even though evolutionary computation has clearly
shown its advantages for tackling difficult practical op-
timization problems, there are many reported cases in
which the performance yielded by direct evolutionary
algorithms turns out to be marginal at best. On sev-
eral other occasions the practical complexity in select-
ing parameter values and appropriate representations
highlight the limitations of the direct approach. All these
facts clearly illustrate the need for hybrid approaches
to optimize the performance of the direct evolution-
ary approach. Recently, hybridization of evolutionary
algorithms has become popular due to their capabili-
ties in handling several real world problems involving
complexity, noisy environment, imprecision, uncertainty,
and vagueness.

Several hybridization approaches have been used to
improve the general efficiency of evolutionary algorithms.
The most widely used technique is the hybridization
of one evolutionary algorithm with another one having
different exploration/exploitation capabilities. Examples
of such approach include neural network assisted EA,
swarm assisted EA, and ant colony assisted EA. Still
another popular approach is the hybridization of some
EA and other heuristics such as local search, taboo
search, simulated annealing, hill climbing, etc.

Noteworthy is the case of [32], where the authors pro-
pose a new hybrid EA for clustering tasks. The proposed
HEA combines an ACO with a Simulated Annealing
(SA) algorithm for ACO-SA. Although it is very similar in
structure to the hybridization technique used during this
research, the marked difference between the objectives
of both studies as well as their distinct experimental
evaluation processes make them virtually impossible to
compare. On the one hand, in [32] the HEA is used for
clustering tasks and the desired total number of clusters
is received as a user parameter. On the other hand,
in [32] the evaluation process is based on a Minimal
Squared Error (MSE). The primary objective of our re-
search is to estimate the total number of clusters to be
found in a dataset and not to directly cluster such data.

3 Theoretical Background

A description of the theoretical framework for the meth-
ods and techniques used during this research is briefly
presented in this section. Section 3.1 describes the
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interconnection topology and the neighborhoods of the
proposed cGA. Section 3.2 shows the PSO used for
local search including its pseudocode. Finally, Section
3.3 describes the cluster validation indexes used as the
fitness function for the proposed cGA.

3.1 Cellular Genetic Algorithm

Cellular Genetic Algorithms (cGA), like many other evo-
lutionary algorithms, search for the solution to a prob-
lem by evolving a population of candidate solutions.
However, cGAs model the evolutionary process in a
more individual-oriented perspective rather than the
population-oriented perspective typical for many other
models like genetic algorithms, evolutionary strategies,
and differential evolution. In a cGA, a grid provides
structure for the population (see Fig. 1).

Fig. 1. cGA population structure

The grid, along with the selection of a neighbor-
hood model, sets the interaction and communication
processes to take place during the population evolu-
tion. Unlike what happens in population-oriented meta-
heuristics, in a cGA each individual can only recom-
bine with those that are part of its local neighborhood.
Such behavior significantly modifies the properties of the
evolutionary meta-heuristic search. On the one hand,
the relatively small size of an individual’s neighborhood
causes its diversity to decrease quite rapidly during the
evolutionary process. On the other hand, since all neigh-
borhoods overlap, an individual has as much chance of
being replaced as the number of neighborhoods of which
it is part. The size of the overlap sets the relative speed
at which the best solutions are propagated through the
whole population or takeover (see Fig. 2).

The exploration/exploitation capabilities of a cGA can
be regulated by varying the size and topology of the
neighborhoods. There are two classical ways to define a

Fig. 2. Neighborhoods overlapping

neighborhood: the Cn compact form and the Ln linear
form (see Fig. 3), where n indicates the size of the
neighborhood in both cases. The behavior of a cGA
notoriously depends on its individual replacement policy
as well as on other parameters such as the size and
geometry of neighborhoods, see the pseudocode of the
canonical cGA algorithm 1. Here, in lines 1 and 2, the
initial population is created, initialized and evaluated. Af-
terwards, for each individual in line 5, the neighborhood
of the current individual is calculated. Line 6 selects
both parents to be recombined (line 7) and mutated (line
8). In line 10, the current individual is replaced with the
best-fitted mutated descendant. The whole process is
run while the stop-condition is not met (line 3).

a) b) c)

Fig. 3. Typically used neighborhoods: a) L5, B) C9, c) C13

3.2 MicroPSO with Local Search

A Particle Swarm Optimization algorithm (PSO) is a
population meta-heuristic inspired by the social behavior
observed in flocks of birds or shoals of fish. This kind
of algorithm follows a biological model known as social
metaphor [22], which states that when individuals take
part in a society, their opinions emerge partly from their
own experience and partly from their society’s set of
beliefs (the search space).

A µPSO is a PSO with a very small population (typ-
ically between 3 and 5 individuals). Unlike classical
swarm algorithms, a µPSO operates along two loops
(see the pseudocode 2 for µPSO algorithm): the inner
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Algorithm 1 Pseudocode of the cGA
1: p← generateInitialPopulation()
2: evaluate(population)
3: while not terminationConditionMeet do
4: for each individual in p do
5: neighboors← getNeighborhood(p, individual)
6: parents← selection(neighboors)
7: offspring← recombination(parents)
8: offspring← mutation(offspring)
9: evaluate(offspring)

10: ptemp ← replacement(individual,offspring)
11: end for
12: p← ptemp
13: end while
14: return bestSolutionFound

loop (lines 7 to 16) works exactly as in a canonical
PSO until it finds a best solution; the outer loop (line
4) re-initializes the swarm with a preset frequency (line
18). The re-initialization of the swarm yields new ran-
dom individuals and preserves the best fitted individual
from the previous swarm, thus promoting the exploration
capabilities of the algorithm.

Algorithm 2 Pseudocode of the µPSO-LS
1: swarm← initSwarm()
2: bestParticlePosition← getBestParticlePosition()
3: globalBest ← getGlobalBest()
4: while not terminationConditionMeet do
5: while not nominalConvergenceMeet do
6: for each particle in swarm do
7: v← calculateVelocity(particle)
8: x← calculatePosition(particle,v )
9: x← localSearch(x)

10: if fitness(x) ≥ fitness(bestParticlePosition) then
11: bestParticlePosition← x
12: if fitness(x) ≥ fitness(globalBest) then
13: globalBest ← x
14: end if
15: end if
16: end for
17: end while
18: swarm← restartSwarm(swarm, globalBest)
19: end while
20: return bestSolutionFound

3.3 Cluster Validation Indexes

Different clustering algorithms can deliver very different
results on the same dataset [29]. The aim of the cluster
validity is to find the partitioning that best fits the un-
derlying data. Many validation indexes exist; however,

only three of them will be used for this research: the
Davis-Bouldin (DB) index, the Xie-Beni (XB) index, and
the I-index (I).

In the DB index [11], Equation 1, a similarity measure
between the clusters Ci and C j is defined based on a
measure of dispersion of a cluster Ci and a comparison
with the separation between both clusters. DB is the
average similarity between each cluster Ci and its most
similar one:

DB =
1
k

k

∑
i=1

max
j=1..k
j 6=i

{
Disp(Ci)+Disp(C j)

Sep(Ci,C j)

}
, (1)

where Disp(Ci) is the dispersion of class Ci calcu-
lated as

Dist (Ci) =

√√√√√ 1
|Ci| ∑

Oi,O j∈Ci
i6= j

∥∥oi,o j
∥∥2

(2)

and Sep(Ci,C j) is the separation between class i and
class j, measured with any appropriate linkage function
(single, complete, average, etc.).

In the Xie-Beni index [43], Equation 3, the fuzzy de-
viation of xi from cluster j is defined as the distance
between xi and the center of the cluster weighted by its
fuzzy membership to that same cluster j:

XB =
∑

k
j=1 ∑

n
i=1 µi j

∥∥oi,u j
∥∥2

n

 min
p=1..k

p6= j

{∥∥u j,up
∥∥2
} , (3)

where µi j is the membership of object i in class j and
u j is the selected class representative object (class cen-
troid) of class j.

Finally, in the I-index [31], Equation 4, the first factor
normalizes each index value by the overall number of
clusters k, the second term sets the overall error sum
of squares of the complete dataset in relation to the
intra-cluster error of a given clustering. Lastly, the third
factor incorporates the maximum observed difference
between two of the k clusters. The index computation
includes a variable parameter p ∈ R to control the con-
trast between the different cluster configurations. The
authors recommend a value of p = 2:

USUARIO
Cuadro de texto
318 Javier Arellano-Verdejo, Adolfo Guzmán-Arenas, Salvador Godoy-Calderon…

USUARIO
Cuadro de texto
Computación y Sistemas Vol. 18 No. 2, 2014 pp. 313-327ISSN 1405-5546 http://dx.doi.org/10.13053/CyS-18-2-2014-034



I =
(

1
k
· E1

Ek
·Dk

)p

, (4)

where Ek is the weighted variance of class j, E1 is the
global non-weighted variance of all patterns, and Dk is
the maximum distance between classes. Variable p is
the only scale factor which authors recommend to be 2.

4 Hybrid cGA

The algorithm herein proposed is a Hybrid Cellular Ge-
netic Algorithm for finding the optimal number of clus-
ters in a dataset. The proposed algorithm incorporates
a local search technique taken from the Micro-Particle
Swarm Optimization model which increases the effi-
ciency with respect to the works discussed in the state
of the art. In addition, our proposal is very simple to
understand and implement (Occam’s razor); we test it on
a superset of problems taken from the mentioned litera-
ture and assess the statistical validation of our results.
This, we guess, represents a self-contained model and
hopefully, a useful contribution for future research in a
wide variety of domains using clustering.

This section presents the proposed cellular genetic
algorithm for finding the optimal number of clusters in any
given dataset including the computational representation
for individuals (4.1), the fitness function (4.2), as well as
datasets, configuration, statistical and analysis results
(Sections 5, 5.1, and 5.5).

The proposed algorithm is a hybrid evolutionary algo-
rithm made up of two heuristics: a cGA and a µPSOLS
(see algorithms 1 and 2 in Section 3.1 and 3.2).

The upper part of Fig. 4 shows a cGA, with its
population structured by a toroidal grid, and where each
individual represents one possible solution (one value for
k). The lower part of the same figure shows that a µPSO,
with local search capabilities (LS), is used to determine
the optimal clustering of objects for the individual’s value
of k.
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Fig. 4. Architecture of the proposed CGA

4.1 Computational Representation

As stated in the previous paragraph, the cGA works over
a population structured with a completely connected grid
(toroid). Each individual has a different value within the
search range for k. The µPSO uses an array of length k
to represent each individual. Each position in such array,
codes the centroid’s position for each of the k clusters
represented by a cGA individual.

4.2 Fitness Function

Fig. 5 shows a graphical representation of the proposed
fitness evaluation mechanism. The µPSO takes a k value
as input (from the cGA) and returns an optimal partition
of the objects with exactly that number of clusters. The
partition is then assessed by using a cluster validation
index (see Section 2) which in turn yields the fitness
value required by the cGA.
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Cluster Index Validation

PSOu

Fitness

K

Fig. 5. Individual evaluation mechanism for the CGA

In order to enhance the performance of the µPSO, a
local search was included within its evolutionary process.
The left part of Fig. 6 shows the µPSO representation of
one particular centroid for a cluster. After performing the
local search procedure, the position of the centroid is ad-
justed to better fit the cluster. Such adjustment induces
an increase in the algorithm convergence speed, as it
can be seen in the experimental results section.

x

x

x
x
x

x
x

x x
x

x
x

xx

x

x

x

x

x x
x

x

x
x
x

x
x

x x
x

x
x

xx

x

x

x

x

x x

Fig. 6. µPSO local search

4.3 The cGA/µPSOLS Algorithm

As it can be seen in the pseudocode 1, the algorithm
generates the initial population with a uniform random
distribution (line 1 of the pseudocode). Using the method
explained in Section 4.2, the whole generated population
is evaluated (line 2). The specific tour to be performed
on the population is determined in line 4 of the algorithm.
For this research, a lineal tour was performed, from the
upper-left corner to the opposite lower-right corner of the
grid. For each individual in the tour a neighborhood is
specified (line 6), from which the ancestors for recombi-
nation are selected (line 7). The resulting offspring are
generated, mutated, and then evaluated in order to set
the next generation (lines 8, 9 and 10). A buffer will store
the best fitted individuals, and the whole process will run
while the stop condition is not met (line 3).

Fig. 7. Synthetic datasets used for experimentation

Table 1. Dataset characteristics

Dataset Instances Attributes Classes
4 2 1288 2 4
5 2 250 2 5
6 2 300 2 6
9 2 900 2 9
10 2 500 2 10

5 Experiments and Results

To show the performance of the proposed algorithm,
five synthetic datasets were selected to test the al-
gorithm. Each dataset was tested with three dif-
ferent fitness functions and five different evolution-
ary algorithms. The synthetic datasets (see Fig.
7) were taken from the repository on the personal
web page of S. Bandyopadhyay, which is available at
http://www.isical.ac.in/sanghami/data.html. Those five
datasets were designed to show different configurations
for cluster geometry, compactness and separation. Table
1 shows the characteristics of each dataset.
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Table 2. Configuration parameters for experiments

Parameter Value
cGA grid size 5 × 5
cGA generations 50
cGA recombination probability 0.8
cGA mutation probability 0.01
cGA neighborhood tour lineal
cGA neighborhood type compact, lineal
cGA neighborhood size 1,2,5
cGA parent selection center, binary tournament
PSO inertia [0.1 . . . 0.9]
PSO cognitive weight 0.8
PSO Social weight 1.6
PSO popualtion size 5
PSO generations 30
PSO velocity [-0.1 . . . 0.1]
PSO survivors 2
PSO reset generations 5

5.1 Configuration Parameters

All experiments were performed on a 16 PC cluster
with 64 bits Ubuntu Linux v12.10 operating system, an
Intel(R) Core(TM)2 Quad processor running at 2.66 GHz
and with 4 GB of RAM. For each one of the algorithms,
one hundred independent runs were performed. Three
cluster validation indexes and 5 datasets were used
amounting to a total of 7500 experiments; all algorithms
were programmed with Matlab 2012b for Unix.

The parameterization of the studied algorithms is de-
scribed in Table 2. Specifically, we study two cGAs:
the cGACenter+BT and cGABT+BT. The two cGAs differ
from each other in the selection method for the first
parent: in cGACenter+BT the first parent is the current
individual itself, while in the case of cGABT+BT the first
parent is selected by binary tournament, exactly as the
other parent. The algorithms were tested using different
neighborhoods and sizes: C9 represents a compact
topology with nine neighbors while L5 represents a linear
topology with five neighbors.

As a first important result, we show that the pro-
posed algorithm, like its predecessors, is also capable
of achieving 100% accuracy in all reported experiments.
Table 3 presents the summary of the results obtained by
running the proposed algorithm with each of the indexes
used as fitness functions, to find the optimal number of
groups in each dataset. As it can be seen, the best
results were obtained using the I-index.

Table 3. Number of clusters found with the proposed algorithm
for each experiment

Data Set No. Clusters I-Index Xie-Beni DB
4 2 4 4 4 4
5 2 5 5 5 5
6 2 6 6 4 4
9 2 9 9 9 4
10 2 10 10 10 8

5.2 Selection of Type of Parents

As discussed before, two parental selection methods
were used by the cGA we experimented with: Center (C)
and binary tournament (BT). Those algorithms labeled
as cGACenter+BT select the first parent from the center
of a neighborhood, and the second parent is selected
using BT on the rest of the neighborhood. The inclusion
of the central individual in each neighborhood ensures
that all individuals will be part of the recombination pro-
cess. On the other hand, those algorithms labeled as
cGABT+BT select both parents using the BT method. As
it can be seen in the experimental results provided (see
Figures 8 and 9), the selection method has the overall
effect of increasing or decreasing the selection pressure
of the cGA. This change on the selection pressure sets
different priorities to the exploration/exploitation capa-
bilities of the algorithm causing it to converge faster
or slower. The best experimental results were always
achieved when both parents were selected with the BT
method. This means that by increasing the selection
pressure (aka. the exploration capability), the cGA is
able to better traverse its search space (see statistical
results table).

5.3 Type of Neighborhood

Once the selection method is decided for a particular
problem, the type of neighborhood that best suits the
problem must be specified. Two of the most common
types of neighborhoods were tested: compact neigh-
borhood and linear neighborhood (see Fig. 3). As
Figures 10 and 11 show, the fastest convergence times
for datasets 6 2 and 9 2 were achieved with linear neigh-
borhoods. The same experiments were performed with
all available datasets and the results were always the
same (see statistical results table), which compels us to
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draw the conclusion that linear neighborhoods are the
ones to induce the best performance.

It can be empirically observed that, when compact
neighborhoods are used for the studied problem, the se-
lection pressure promotes exploitation over exploration,
which in turn reduces the convergence speed of the
algorithm. Since the probability of selecting a parent that
forms part of two overlapping neighborhoods increases,
the probability of selecting an exploration-promoting in-
dividual on that same search space naturally decreases.

5.4 Size of Neighborhood

Until this point, based on the experiments performed, a
selection method and a neighborhood type have been
picked up, that bring the proposed cGA to its best pos-
sible performance. To bluntly conclude this research,
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the length (radius) of the best possible neighborhood
was also searched for. Since the structuring grid for
all experiments has a size of 5x5 individuals, lengths
of 5, 9, and 13 individuals were tested. Figures 12
and 13 show that the bigger difference resulted when
comparing the performance of neighborhoods with 5 and
9 individuals as well as with 5 and 13 individuals. This
means that neighborhoods of size 5 show the worse
performance, including the lowest fitness of all tested
algorithms. Also, the performance of algorithms with 9
and 13-sized neighborhoods are nearly the same, so the
conclusion is drawn as follows.

Since the structuring grid is toroidal, an overlapping is
always present between individuals from different neigh-
borhoods, and the neighborhood of size 13 always in-
cludes the central individual from a neighborhood of size
9. Consequently, both cases promote a relaxation on
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pressure selection of the algorithm, and a decrease in
the convergence speed.
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5.5 Statistical Results

In order to be able to compare the experimental re-
sults from all tested algorithm variants and their param-
eters, two statistical analyses were performed. The first
one involves all classical statistical indicators (maximum,
mean, median, standard deviation, etc.), which allow
an initial comparison. The second analysis involves
non-parametric indexes based on hypothesis tests which
detect and alert if there is a significant difference among
performances of the tested algorithms as well as help to
identify the best performing test.

Table 4 shows that the worst performance was that
from the cGACenter+BTL1 algorithm, since it had the

lowest fitness value in all experiments. The algo-
rithm with the lower standard deviation was cGACen-
ter+BTC5, undoubtedly caused by the selection pres-
sure induced by its type of neighborhood. The best per-
formance among all five tested algorithms was achieved
by cGABT+BTL9 and cGABT+BTL13. This can also be
explained by the type and size of the neighborhood those
algorithms used. Therefore, from the data showed in
Table 4 it can be concluded that for the currently studied
problem, the best performing algorithms are those that
select parents by the BT method and with neighborhoods
of size between 9 and 13 individuals.

5.6 Statistical Analysis of Experimental Results

Non-parametric statistical tests have emerged as an ef-
fective, affordable, and robust way for evaluating new
proposals of meta-heuristic and evolutionary algorithms
[14]. The validation and comparison of new algorithms
often requires the definition of a comprehensive exper-
imental framework, including a range of problems and
state of the art algorithms. A critical part of these com-
parisons lies in the statistical validation of the results,
contrasting the differences between methods.

To analyze the obtained experimental results, two
non-parametric statistical tests have been used. Par-
ticularly, the Aligned Friedman Test was applied, and
also the Multi-compare Holm test was used as a post
hoc procedure to find out which algorithms have worse
performance than the proposed algorithm.

The Friedman Test [9] assigns a ri j ranking to the
results obtained by each algorithm i over each data set
j. Each ranking is a real number 1≤ ri j ≤ k , where k is
the total number of algorithms to compare. Rankings are
assigned in an ascending way, so 1 is the best possible
rank, and it gets worse as the assigned rank grows.

The null hypothesis, established for the performed
post hoc study, assumes that all three compared algo-
rithms have a statistically similar behavior. The Holm
test, with α = 0.05, aims at succeeding in 95% or more
of the analyzed results, having a Gaussian (normal)
distribution as its point of reference.

Holm’s procedure rejects those hypotheses that have
an unadjusted p-value ≤ 0.016667.
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Table 4. Statistical results of all instances

Dataset Std. Measure CGACenter-BTL5 CGABT-BTC9 CGABT-BTL5 CGABT-BTL9 CGABT-BTL13

dataset 4 2

Min 0.3065 0.3744 0.3491 0.3775 0.3806
Max 0.4782 0.5236 0.5167 0.5294 0.5280

Mean 0.4032 0.4779 0.4643 0.4846 0.4823
Median 0.4190 0.5035 0.4952 0.5155 0.5124

Std 0.0703 0.0612 0.0693 0.0638 0.0622

dataset 5 2

Min 11.0240 13.3710 12.6400 13.7200 13.2270
Max 16.8240 18.8230 18.5080 18.9530 18.9970

Mean 14.2902 17.2230 16.5132 17.3764 17.3008
Median 14.6990 18.1450 17.4400 18.5630 18.5230

Std 2.3241 2.2519 2.3847 2.2277 2.4392

dataset 6 2

Min 304.3400 395.4500 375.5600 400.0800 393.1600
Max 554.6600 613.9900 611.8800 619.8500 619.0700

Mean 440.6040 550.9820 534.7240 558.0380 557.2960
Median 449.2300 593.4200 582.0900 604.3500 612.2000

Std 101.0624 90.9416 98.7067 92.7730 97.0172

dataset 9 2

Min 3.7629 4.2465 4.2168 4.2525 4.3572
Max 4.8965 4.9932 4.9823 5.0017 5.0026

Mean 4.4627 4.7928 4.7415 4.8018 4.8267
Median 4.5980 4.9452 4.8690 4.9681 4.9705

Std 0.4548 0.3143 0.3147 0.3197 0.2745

dataset 10 2

Min 234.2100 257.9200 254.1300 258.9300 255.7700
Max 289.1000 299.1100 296.5500 299.5700 299.7000

Mean 266.2940 287.8440 283.6300 288.8460 287.7800
Median 270.5600 295.5000 291.7100 297.8500 297.7400

Std 21.8989 17.2526 17.7088 17.3374 18.7831

Table 5. Post Hoc comparison for α = 0.05

i algorithm z = (R0−Ri)/SE p Holm
1 CGABT-BTL13 0.042967 0.965728 0.050000
2 CGABT-BTC9 0.386702 0.698977 0.025000
3 CGABT-BTL5 1.203073 0.228948 0.016667
4 CGACenter-BTL5 3.093616 0.001977 0.012500

Table 6. Average rankings of the algorithms (Aligned Fried-
man Test)

Algorithm Ranking
CGABT-BTL9 8.6
CGABT-BTL13 8.8
CGABT-BTC9 10.4
CGABT-BTL5 14.2
CGACenter-BTL5 23

6 Conclusions

A new Hybrid Cellular Genetic Algorithm (HcGA) was
proposed for finding the optimal number of clusters in a
dataset. Several selection methods, as well as types and
lengths of neighborhoods were tested for the proposed
algorithm. The best experimental results were achieved
when using BT as the parent selection method, and a lin-
ear neighborhood of size 9. The choice of the selection
method has a direct effect over the algorithm’s selection
pressure, which in turn causes the convergence speed

to significantly improve when both parents are selected
with the BT method. Also, the effect induced by the
choice of different neighborhoods was also researched,
and the best performance was achieved by linear neigh-
borhoods where the probability of selecting the same two
parents for two overlapped neighborhoods decreases.
Finally, statistical analysis show that selecting between
9 and 13 individuals to form neighborhoods also leads to
the best possible performance. The non-parametric sta-
tistical analysis confirms that cGABT+BTL9 behaves in a
very similar way to cGABT+BTL13, while cGABT+BTC5
performs better in 97.5% of experiments, and even in
99% of experiments when compared with cGABT+BTL5
and cGACenter+BTL5.

7 Future Work

All experiments were performed with synthetic datasets,
so testing the proposed algorithm with real datasets is
first thing on the list. Also, an exhaustive comparative
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study with synchronous and asynchronous cGAs using
diverse routes will be sought.

Finally, a parallel implementation of all tested algo-
rithms (over GPUs or multi-core CPUs) will be useful for
statistically assessing their viability.
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