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Abstract. Rendering 3D models with real world re-
flectance properties is an open research problem with
significant applications in the field of computer graphics
and image understanding. In this paper, our interest is
in the characterization and transference of appearance
from a source object onto a target 3D shape. To this
end, a three-step strategy is proposed. In the first step,
reflectance is sampled by rotating a light source in con-
centric circles around the source object. Singular value
decomposition is then used for describing, in a pixel-wise
manner, appearance features such as color, texture, and
specular regions. The second step introduces a Markov
random field transference method based on surface nor-
mal correspondence between the source object and a
synthetic sphere. The aim of this step is to generate a
sphere whose appearance emulates that of the source
material. In the third step, final transference of properties
is performed from the surface normals of the generated
sphere to the surface normals of the target 3D model.
Experimental evaluation validates the suitability of the
proposed strategy for transferring appearance from a
variety of materials between diverse shapes.

Keywords. Reflectance transference, singular value
decomposition, random Markov fields.

1 Introduction

The interaction of surface with light is an active
topic of interest in the fields of computer vision
and computer graphics, since recovering shape
and appearance is possible through the compre-
hension of such interaction. In this sense, un-
derstanding the reflecting behavior of real world
materials represents a challenge as they exhibit
different properties such as specularity, diffuse-
ness, anisotropy, and retro-reflection. Appearance

models are helpful in areas such as image interpre-
tation, 3D reconstruction from images, perception,
lighting interpolation, and image synthesis. Partic-
ularly, the photo-realistic rendering of 3D models
has been the subject of study for many years, and it
remains an open research topic. The patterns and
characteristics to be recognized are focused on
the appearance properties in terms of illumination
changes together with camera motion. Generally,
these problems can be solved by considering three
elements: (1) a model of the properties to be deter-
mined, (2) the characteristics taken from the scene,
and (3) an algorithm to find the parameters of the
model that better adjust to these characteristics.
Among the variety of methods for characteriz-
ing appearance from imagery, some use math-
ematical models aimed at accurately describing
the reflectance phenomenon [20, 4, 12], i.e., a
parametric equation that helps rendering the ap-
pearance of 3D models in accordance with the
expected reflectance. Unfortunately, these ap-
proaches depend on the choice of a specific para-
metric family and do not deal with spatially varying
reflectance. Other strategies use special sampling
devices which require spherical or planar samples
of the material to be analyzed [16, 7, 17, 11], con-
straining the characterization of reflectance to the
existence of the physical specimen. In general, at-
tention has been paid to characterizing reflectance
by acquiring a considerable amount of images
through special devices which consider calibration
of light sources, introducing additional issues such
as computational storage and errors in calibration.
Alternatively, in this work we focus on the
statistical analysis of the appearance of a pixel
which, in the form of a compact matrix, contains
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the behavior of a surface patch with a moving light
source. Our main goal is to automatically estimate,
from a source object, appearance models suitable
for transferring properties to target objects with
known 3D geometry. The appearance behavior is
related to the optical properties of a material as
well as properties of the illumination source which
is incident on the material; these properties being
recorded by a camera are considered in this paper
as the appearance information of the scene.

The contributions of this article are as follows.
First, a novel representation based on the statis-
tical decomposition of luminance matrices is pro-
posed for the purposes of reflectance characteri-
zation. Such representation can be conveniently
coupled with a Markov Random Field strategy that
solves for correspondence between the surface
normals of the source object and those of a syn-
thetic sphere, which is used as an intermediate
reflectance object in order to diminish transference
errors. The second contribution of this work is
therefore a methodology for reflectance transfer-
ence that considers, after alteration of their singu-
lar values, a weighted reconstruction of luminance
matrices that reflects the correspondence error be-
tween surfaces normals. Fig. 1 illustrates the result
of using our method for transferring the reflectance
of styrofoam mannequins covered with different
materials onto the surface normals of Stanford’s
Buddah, dragon, and rabbit.

1.1 Related Work

The idea of reflectance was mathematically intro-
duced by the BRDF [10] (Bidirectional Reflectance
Distribution Function), a function that relates in-
coming energy over a surface patch (radiance) with
the outcoming energy (irradiance) captured by the
camera. The aim of BRDFs is to analytically repre-
sent the physical reflectance of real world materials
as a mathematical function that considers local
shape and illumination parameters. Reflectance
may also be understood as the fraction of lumi-
nous flow striking a surface which is reflected of
it. The basic form of the BRDF can be found in the
Lambertian model, which can be expressed by the
following equation for each pixel at a position (u, v):
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Fig. 1. Reflectance transference. A source object is
illuminated in concentric paths in order to sample and
transfer its reflectance onto the surface normals of a
target object. The figure illustrates the result of using our
method for transferring the reflectance of styrofoam man-
nequins covered with different materials onto the surface
normals of different objects of the Stanford database.

I(u,v) = p(u,v)AIn(u,v), (1)

where I is the image irradiance, p is the albedo (a
scaling factor indicating the amount of light to be re-
flected), A is the light source intensity, 1 = (1,1, 1)
is the illuminant vector, and n = (ng,n,,n,) is
the surface normal vector. Eg. 1 is a common
reference for many BRDFs which consider more
complex reflectance such as specular regions and
spatially varying albedo [20, 4, 12].

Traditionally, the BRDF of a sample material is
measured using gonioreflectometers, special de-
vices that position a light source and a detec-
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tor (photometer) in several directions over a pla-
nar sample material. Unfortunately, these devices
measure one reflectance value at a time, making
the gathering process slow. In the last decade,
however, digital cameras have been used to assist
the sampling process, as in the work of Ward [25],
where a hemispherical mirror was used with a fish-
eye camera and a moving light source in order to
measure reflectance in all incident angles and for
BRDF modeling.

In [8], Dana et al. developed a device to measure
spatially varying BRDFs. To this end, a digital
camera, a robotic arm, and a light source were
used in order to measure reflectance on planar
surface sample materials. In their work, samples
were taken from varying angles of the light source
and camera poses, from which a database of 60
types of materials can be found in [6]. Later, Dana
et al. [7] made their previous device more efficient
using a parabolic mirror. Similarly, Ghosh et al.
[11] proposed using illumination basis functions for
speeding up the measuring process. Additionally,
in the works of [16] and [17], sampling is performed
using superficial curves in order to recover BRDFs
and reduce the number of images to be sampled
along the hemisphere. In these methods, spherical
samples of the material to be characterized are
required. The above approaches share some com-
mon features: (1) reflectance is measured from
images in accordance with changes in both illumi-
nation direction and camera pose, (2) the surface
normals of the samples are known for each surface
patch of the sample, 3) irradiance is determined af-
ter performing a radiometric calibration process on
the light sources, which may imply using additional
optical devices and samples of a highly diffuse
material like spectralon, and (4) they consider the
existence of either planar or spherical samples of
the analyzed material.

Alternatively, Mertens et al. [18] proposed a
texture transference method from a known 3D ge-
ometry object with known texture onto a target 3D
model. Their work is based on the correlation
between local shape and texture of the source
object. In this sense, this approach focuses on both
geometric and texture information for transference,
while ignoring the effect of changes in illumination

which avoids BRDF modeling. Although the re-
ported results keep an accurate level of photoreal-
ism, no reflectance information is characterized in
the generated rendered view which only considers
the light source direction of the source object.

In this paper, we introduce a novel solution
to the above problems with a method that only
requires features (1) and (2), i.e. no calibration of
the light source is needed nor planar or spherical
sample materials are assumed available. Instead,
our approach is based on a recent work developed
by [13] that considers the statistical analysis of
a pixel’s reflectance along concentric circles of
a light source. While this analysis is useful for
the purposes of reflectance characterization, the
transference method solves for surface normal
correspondence via Markov Random Fields.

The rest of the paper is organized as follows: in
Section 2, the reflectance characterization devel-
oped for a pixel-wise decomposition is described;
later, in Section 3, a Markov Random Field model
for surface normal correspondence is depicted
in order to establish a reflectance transference
method between a source object and a target
geometry; Section 4 presents experimental eval-
uation for characterizing and transferring the re-
flectance of objects with varying textures; finally,
Section 5 provides conclusive remarks and future
extensions of this work.

2 Reflectance Characterization

Photometric sampling can be defined as a process
where the surface normals of an object are esti-
mated through the excitation of the object’s surface
while a light source rotates around it. The method
can be regarded as a special case of photomet-
ric stereo where extensive sampling is performed
using a moving light source. Traditional photo-
metric sampling approaches [22, 15] consider only
variations around the azimuth angle of the moving
light source, i.e., a single circle is used to sample
reflectance. Recently, an extended photometric
sampling methodology was introduced in [13] for
the purposes of correcting photometric databases.
The main idea of the method is to include variations
of the illumination source along the zenith direction
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(a) Acquisition pattern (view 1).

HALOGEN LIGHT

(c) Mannequin illuminated by a halogen lamp.

MECHANICAL
STRUCTURE

(d) Mannequin illuminated by a diffuse lamp.

Fig. 2. Photometric sampling. Views of the illumination path for photometric sampling are provided in (a) and (b),
where ¢ and 0 stand for the azimuth and zenith angles of the light source direction, respectively. Views of the two
database acquisition settings used for experimental evaluation are also shown: (c) a robotic arm manipulating a halogen
light and (d) a metallic structure where a diffuse light was manually adjusted to the desired position

in order to build, for each image pixel, a lumi-
nance matrix. The authors showed how fitting sine
functions on the singular vectors of the luminance
matrix diminishes artifacts and noise inherent to
the data acquisition process, therefore improving
the photometric consistency of the database.

Other approaches such as [23] exploit the idea
of determining an object’s shape based on sim-
ilarity of radiance changes observed at its sur-
face points. In [14] the geometry of objects with
general reflectance properties is computed from
images with photometric changes. The method
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is capable of handling objects with arbitrary and
spatially-varying BRDFs while almost no calibra-
tion is required. Unlike the former techniques,
our method is concerned with the characterization
and transference of appearance rather than 3D
shape recovery. To this end, we propose using the
statistical decomposition of the luminance matrix
for reflectance characterization and further trans-
ference. The main idea here is to study the role
of the singular vectors and singular values of the
luminance matrix in the generation of reflectance
features of the object such as color, texture, and
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shininess, as well as the illumination properties of
the light source.

2.1 The Luminance Matrix

A luminance matrix may be thought of as a col-
lection of pixel intensity measurements whose
columns and rows respectively span variations
along the azimuth and zenith angles of the light
source. In this sense, a luminance matrix repre-
sents the energy captured in each pixel for the set
of all the illuminations used during the photometric
sampling process. In order to illustrate how the
sampling is performed, Fig. 2 presents views of
the concentric pattern used to illuminate the object.
The variations in azimuth and zenith angles of the
light source are represented by ¢ (from 0° to 360°)
and @ (from 0° to 90°), respectively. The acquisi-
tion settings used for our experimental evaluation
are also shown in the figure. The first setting is
depicted in (c), where a robotic arm surrounds the
object of interest, sampling the reflected luminance
from a halogen light source attached to the end
effector of the robot. The second setting is shown
in (d), where a metallic structure is used to impose
variations in azimuth and zenith angles of a diffuse
light source.

Let us turn our attention to the core equation
of the extended photometric sampling: for each
image pixel of the source object, the singular value
decomposition of the luminance matrix M can be
defined as

Ma><z = Uaxrzrxrvgxzv (2)

where U and V are the matrices whose columns
contain the left and right singular vectors of the
rank-r matrix M, and X is the diagonal matrix of
the singular values of M, namely [01,09, -0,
The numbers of lighting variations are represented
by a and z respectively for the azimuth and zenith
angles of the light source. An example of the lumi-
nance matrix for an image pixel of a mannequin
is provided at the top panel of Fig. 3 (a). The
highlighted pixel appears below the right eye of the
mannequin. In the exampled pixel, the luminance
matrix presents variations for ten zenith angles of
the light source, i.e., ten concentric circles were

performed during the photometric sampling pro-
cess. Note how the measured intensities along
the columns of the luminance matrix resemble sine
functions, where departures from sine mean de-
partures from Lambertian reflectance.

The main idea of the extended photometric sam-
pling of [13] is to fit sine functions onto the singular
vectors of the luminance matrix of all of the pixels
so as to impose Lambertian-like reflectance. As
a consequence, numerical artifacts that may affect
the photometric consistency of the database are
diminished. Fig. 3 (b) presents results obtained
after applying the photometric correction on our
databases. The correction is performed separately
on each color channel on the RGB space. From left
to right, four different substances covering a styro-
foam mannequin are shown: matte paint, sawdust,
nail varnish, and crayon. The top row of the panel
presents the original images (before correction),
the middle row depicts the corrected images, and
the bottom row shows difference maps between
the original and corrected images. Note how, as
an effect of the sine fitting, the shadowed areas
in the original images appear recovered while the
specular region result lowered.

As far as the statistical decomposition of the
luminance matrix is concerned, the first singular
vectors for two luminance matrices are shown at
the bottom-left diagram of Fig. 3 (a), for Lam-
bertian (diffuse) and specular (Phong [20]) ren-
dered spheres. Let us refer to M, and M, as
the luminance matrices for a pixel of diffuse and
specular synthetic spheres, respectively. The fig-
ure presents plots of the first left singular vector
of the luminance matrices of a highlighted pixel
for both spheres. Note how the singular vector
of the specular pixel exhibits a peak revealing the
nature of its specular reflectance. This suggests
that the singular vectors contain information about
how a surface patch of an object tends to reflect
light. According to this idea, assigning the singular
vectors of a luminance matrix from a source object
onto a similar surface patch of a target object may
result in transferring reflectance information. In this
paper, we explore the role of singular values and
singular vectors in the generation of reflectance
and how this could be further used for the purposes
of reflectance transference.
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Fig. 3. Luminance matrix and reflectance correction. The figure presents in (a) an example of the luminance matrix
of a pixel of a mannequin image. The first left singular vector of luminance matrices for a pixel of Lambertian and
specular synthetic spheres are also shown in (a); M, and M, refer to the diffuse and specular luminance matrices of
the spheres, respectively. The right diagram of the figure presents results after applying the reflectance correction of [13]
on databases of four different materials: matte painting, sawdust, red nail varnish, and orange crayon. The difference
between original and corrected images is shown at the bottom row of the panel

2.2 Pixel-Wise Factorization

It is important to recall that there is one luminance
matrix attached to each image pixel. This ma-
trix spans variations of the light source along its
columns (azimuth angles) and rows (zenith an-
gles). Unlike performing SVD on the database as
a whole (i.e., taking each image in the database
as a long vector), the aim of separately performing
SVD on each luminance matrix is to isolate, pixel
by pixel, the lighting variations imposed by the mov-
ing light source over the object’s surface normals.
Such separation avoids mixing up the reflectance
contribution of all the pixels in the database, fa-
cilitating the characterization of reflectance at the
local (surface patch) level. A pixel-wise decompo-
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sition is also convenient for the reflectance trans-
ference method proposed in this work.

In order to provide further details on the lumi-
nance characterization at the local level, Fig. 4
explores the appearance of the singular values and
singular vectors of the luminance matrices for the
red varnish mannequin. The figure is organized in
two panels: the top panel refers to variations along
the zenith angle of the light source while the az-
imuth angle remains fixed; the opposite case (fixed
zenith angle, varying azimuth angle) is depicted at
the bottom panel of the figure. In the figure, the
first singular value, first left and first right singular
vectors of each image pixel are referred to as o1,
uy, and v, respectively. The first singular value
is shown in (a), for each luminance matrix as a



ISSN 2007-9737

A Photometric Sampling Strategy for Reflectance Characterization and Transference 261

¢ =10°

Fixed azimuth angle, varying zenith angle
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Fig. 4. Decomposing the luminance matrices of a styrofoam mannequin covered with red nail varnish. The figure
illustrates the first singular values and the first singular vectors of the luminance matrices of the mannequin covered with
red nail varnish. The top panel shows the results on varying the zenith angle of the light source while fixing the azimuth
angle. The opposite case is shown in the bottom panel. The singular values are represented by o1 while the left and
right singular vectors are referred to as u; and v7, respectively

pixel map. The visual analysis of the resulting
image suggests that singular values are weighting
factors representing the color variation with which
each surface normal reflects the light source used

in the sampling process. Particularly, the surface
normals with greater slant, (the ones around the
boundaries of the mannequin’s face, and edges of
nose and mouth) appear in a darker tone of red, re-
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vealing that the lighting variation imposed over the
mannequin caused a greater luminance response
over those surface normals with a smaller slant
angle (forehead, cheeks, and continuous areas of
the surface).

As far as the singular vectors are concerned, the
element of the first left singular vector at 10° az-
imuth angle is depicted in (b) as u; along with the
weighted image o,u; (the singular vector scaled
by its corresponding singular value). Similarly, the
pair (vI, a1vT) is shown in (c), where images at
10°, 30°, and 60° zenith angles are depicted from
top to bottom. The scaling of both left and right
singular vectors by its corresponding singular value
is shown in (d) as u;o,vY. The visual analysis of
the pairs (uy, oyu;) and (v¥, oy vl) reveals that the
singular vectors encode information about which
surface normals are illuminated or shadowed at a
particular azimuth and zenith angles of the light
source. Additionally, the singular vectors appear
to include color information (red) around the shad-
owed areas of the mannequin while remaining in a
rather neutral tone (gray) around the illuminated ar-
eas. The former observation indicates that, on one
hand, the singular vectors of the luminance matrix
are responsible of representing intrinsic features
of the object such as color, specularity, and local
shape of the sampled material. Singular values,
on the other hand, determine aspects related with
the light source and the effect it causes over the
object’s material. The color of the light source,
the nature of the ambient light, the color of the
surrounding objects, and inter-reflections might be
mentioned amongst some of the features explained
by singular values.

Results on fixing the zenith angle of the light
source while varying the azimuth angle are shown
in the bottom panel of Fig. 4. The first singular
value is shown as a pixel map in (e), the pair
(v, oyvT) is shown in (f) for a fixed zenith angle
of 30°, the pair (u;, oju;) is depicted in (g) for
variable azimuth angles of 120°, 190°, and 340°.
The final weighting u;o;v? is shown in (h). Similar
observations as those made above can be derived
from the visual analysis of the panel: (1) both the
color and local shape of the object seem to be
characterized by v{ as the shadowed areas of the
mannequin intensify the redness of the nail varnish
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and (2) the singular values have a major influence
around the illuminated areas, providing the color
of the illuminated surface patch in accordance with
the nature of the light source.

To conclude the analysis of Fig. 4, it is worth
commenting that SVD appears to decompose a
luminance matrix into orthogonal basis functions
(singular vectors) spanning the reflectance prop-
erties inherent to the object's material, such as
color, shininess, texture, and local surface orienta-
tion. These orthogonal basis functions are related
through weighting factors (singular values) repre-
senting the characteristics inherent to the particular
lighting with which the luminance matrices were
created, such as color, intensity, and influence of
the ambient and other lighting present at the mo-
ment of sampling. In the next section, it will be
shown how this luminance matrix decomposition
can be used in order to transfer reflectance be-
tween surface normals of different objects.

3 Correspondence and Transference

Each surface point is related to a reflectance his-
tory that can be transferred to another point with
the same or very similar surface orientation. Thus,
knowing the correspondences of the surface nor-
mals between the source and target objects is a
key step. The correspondence process determines
which surface normal locations are more similar
between the source and target objects. This pro-
cess can be achieved by exhaustively searching
the normal maps of both objects. A normal map
contains the surface orientation at each coordinate
axis. However, this search results impractical and
computational time consuming. We take advan-
tage of the nature of Markov Random Fields (MRF)
[5] and propose a method that statistically learns
the surface normal correspondences between the
source and target objects. We explain this method
in what follows.

3.1 MRF Model for Surface Normal
Correspondence

Our MRF model determines the correspondence
distribution w; in a searching area A, of radius
r. In this region, and by using a distance metric
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Fig. 5. Surface normal correspondence. A window of
correspondence w: is searched in the map of normals
N of the transfer object for each window w, of the
source object (face images). The region of search A,
is depicted by the circle (middle image) and is used to
compute the probability distribution of the most probable
window w; that is similar to w,. This type of correspon-
dence works well for source and target objects that are
geometrically similar. The squares at the right show the
distribution of correspondence of normals based on its
grouping. For each distribution w; of sector S;, the distri-
bution of correspondence w; is determined through the
evaluation of a weighted distance d; of each distribution
in T; with w;

d(we, ws), we select the most similar neighborhood
to w, as the correspondence neighborhood wy, i.e.,

wy = {w; € Ap : d(wy,ws) =0} A, € Ny (3)

where w, € Ng and w; € Nr are square windows
centered in ng and n,, respectively. Subindexes s
and ¢ are used to refer to the source and target
objects. Matrices N represent the whole set of
surface normals for each object, while n are used
to depict a single surface normal vector.

In an MRF model, the probability distribution of
each normal n, given the normals of its neighbors,
is considered independent of the rest of locations
in the normal map. The correspondence based on
search regions requires a priori knowledge of some

geometric relation between the source and target
objects. The reason for this is that the initial normal
n; must be located in a geometrically similar region
to the source object where n;, is located. This cor-
respondence works well for objects that are similar
in geometry, such as spherical objects. However,
as we want to be able to transfer the reflectance
properties to objects with different geometry, we
propose to group together the normals according
to their surface orientation. Each normal has three
components that correspond to its orientation at
each axis coordinates. The normal orientations
in the = and y axis contain values in the open
interval (—1, 1) and the orientation in the z axis
is delimited by the interval (0, 1). The grouping
of normals allows to divide the normal maps N,
and N; into eight sectors S and eight sectors T,
respectively, according to the magnitude and sign
of its components. For each neighborhood w; in
a given sector S;, the corresponding neighborhood
in T; is determined by using a similarity distance
between w; with each neighborhood w; in sector
T; (see the right image in Fig. 5). A weighted
Euclidean distance metric between each pair of
neighborhood is used to evaluate w; with each
neighborhood w;.

This distance is described as follows: given wy €
S; and some neighborhood w; € T;, which contain
three layers of components corresponding to the
orientation in axis x, y, and z, matrices W, and
‘W, are build such that each row is formed by two
values of each layer, respectively. The dimension
of each row vector is & = k,,k,,, where k,, and k,,
represent the number of rows and columns of each
neighborhood. The construction of matrices W
allows us to estimate a distance metric between w;
and w; through the sum of the Euclidean distances
between the row vectors of W, and W.

Given that each surface point in each neighbor-
hood is mutually related to its neighboring surface
points, the local surface structure of the surface
must be kept. This is achieved by assigning more
weight to the normals that are close to ns; and n;,
and less weight to those that are far. However, the
Euclidean distance does not maintain the surface
locality as the values of each normal are consid-
ered independent. Furthermore, it is prone to vari-
ations due to surface scale. To preserve locality, a
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Gaussian kernel G(o) is taken into account, which
is contained in a vector g of same dimension of row
vector of matrices W and weights the Euclidean
distance, i.e.,

1
gl(WS(m) - Vvt(i,l))2+ :

dQ(w57wt) = Z gQ(WS(i,z) - Vvt(i,z))z+
=1 A gk(WS(i,k) - Wt(i,k))2

Equation 4 allows the evaluation of distance at
each distribution w, € S; with all distributions wy
of the corresponding sector T;. Each evaluation is
then registered to a vector d, such that the window
of correspondence w; is the window related to the
minimum value of vector d, i.e.,

d = da(wy, ws); Ywy € T, (5)
wy = {wy € T; : do(wy, ws) = min(d)}. (6)

The normals of correspondence n, and n; will
simply be the central elements of the neighbor-
hoods of correspondence w; and w;, which are
obtained from Equation 6. This process of cor-
respondence is repeated for all the normals con-
tained in sectors S of the map of normals of the
source object N,. This way, the correspondence of
normals between the source and transfer object is
obtained.

3.2 Reflectance Transference

In order to calculate the new luminance matrices
to be transferred onto the pixels of the target ob-
ject, the original matrix M is altered in accordance
with the surface normal difference between n, and
n;, where subindexes s and ¢ respectively stand
for source and target objects. As an example
of the error calculation, the first singular value of
M is weighted by the absolute difference of the
z-component between source and target surface
normals as

ol = oy (14w (nesl = In=])?)
L |nss| < |ne )
71; |nsz‘ > |ntz|

where w = {
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where n,, and n;, are respectively the =z-
component of the source and target surface nor-
mals, o1 is the first singular value of the luminance
matrix, and ¢ is the first singular value of the new
luminance matrix. The new second singular value,
oh, is modified in accordance with the difference
between the z-components of the surface normals,
(|nsz| — |n4])?. This similarly holds for the modified
third singular value, %, which is weighted using the
y-component difference (|ns,| — |nty|)%. The new
luminance matrices to be assigned to the pixels of
the target object have now the form

M =UX'VT,
op 0 0 0
0 o, O 0
2 (8)
with = 0 0 o3 0
o o0 O --- 0

X7

where the main diagonal of X/ starts with the three
modified singular values calculated using Eq. 7,
containing zeros in the rest of the diagonal.

The fact that the first three singular values of
the luminance matrices are individually modified
using the z, xz, and y components of the surface
normals relies on two considerations. The first
of these is concerned with the variability of the
luminance matrix mostly retained by only a few
basis vectors. The characterization of reflectance
through low dimensional spaces has been widely
studied [1, 9, 3], leading to the conclusion that
reflectance of convex objects can be linearly ap-
proximated by a small nhumber of principal com-
ponents, in particular, the three first components
suffice to characterize at least 90% of the appear-
ance of the object under the imposed illumination
changes. The second consideration is related with
the influence of the lighting variability on the built
basis functions [21], i.e., the singular vectors of
a database considering photometric changes will
tend to characterize the three main variabilities as
orthogonal basis functions along the z, =, and y
directions.

The effect of using Eq. 7 is explored in Fig. 6.
Here, the surface normals of a Lambertian sphere
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(e) Transfered.

(c) Transfered. (d) Noise added.

(b) Noise added.

(a) Lambertian.

Fig. 6. Altering singular values of the luminance matrix. The figure illustrates the effect of transferring an altered
luminance matrix in accordance with Eq. 8. In (a) a Lambertian sphere used as a source object is shown. The normals
of the sphere are randomly rotated within +20° in (b), i.e., becoming the target surface. Reflectance transference
considering the difference error between surface normals is shown in (c). A further level of noise added (+45°) is
depicted in (d) and its corresponding transference in (e). Note how not considering the surface normal error would have
resulted not only in reflectance, but in shape transference as well

Diffuse lighting Halogen lighting

Matte

Varnish Sawdust

Crayon

Fig. 7. Transferring reflectance onto synthetic spheres. Styrofoam mannequins covered with different substances
such as a matte paint, sawdust, red nail varnish, and orange crayon are shown row-wise. Rendered views of a synthetic
sphere after reflectance transference appear next to each mannequin image for illuminations with diffuse (left panel)
and halogen (right panel) light sources. Note how appearance changes considerably when different light sources are
applied on the same objects

of the luminance matrix of the source object, not
only the reflectance but also the shape would be
transferred, i.e., the rendered views of the target
object would be exactly the same rendered views
of the source object. The result of modifying
the luminance matrix is shown in (d), where it is

are used as those of the source object. A rendered
view of the Lambertian sphere is shown in (a).
In order to create the target surface normal field,
each source surface normal is randomly rotated
within a +20° interval, as shown in (b). Let us
assume the pixel position (z,y) in the Lambertian

sphere corresponds to the pixel position (x,y) in
the disturbed sphere. If the correspondence error
were not considered for altering the singular values

clear the transference process takes into account
the shape of the target object. A further level of
added disturbance (+45°) is depicted in (d) and its
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Matte

(a)

(b)

Sawdust

Varnish  Crayon

Fig. 8. The sphere as an intermediate reflectance object. Results of transferring reflectance from different materials
onto the surface normals of a face from the Max Planck database are shown along the columns of the figure for two
cases: (a) direct reflectance transference, (b) indirect reflectance transference using an intermediate sphere

corresponding transference in (e). Note how the
quadratic term of Eq. 7 tends to punish greater
correspondence errors between surface normals.
This supports the idea of using SVD for luminance
matrix decomposition as opposed to using the orig-
inal values of the luminance matrix directly, since
altering reflectance at the pixel level would be diffi-
cult otherwise.

3.3 A Sphere as a Transference Object

Fig. 7 presents results for transferring reflectance
of different materials onto the surface normals of a
synthetic sphere. The figure contains two panels.
The left panel shows results for the objects illumi-
nated by a diffuse light while the right panel shows
results for illumination with a halogen light. Note
how each light is differently reflected by the same
object, i.e., the color of the mannequin changes
when using different light sources. This makes,
for example, the matte painting look ochre under
diffuse lighting and reflect an orange tonality un-
der halogen lighting. As previously discussed in
Section 2, it was observed that reflectance fea-
tures caused by the nature of the light source are
transferred onto the surface normals of the spheres
through the singular values of its luminance ma-
trices. The weighting process carried out in Eq.
7 assigns a transference confidence depending
on the discrepancy between corresponded surface
normals. It is also noticeable how the specular
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behavior mainly exposed by the crayon and var-
nish materials is conserved after luminance matrix
transference. Similar observations hold for the
diffuse reflectance of the matte paint and the scat-
tered texture of the sawdust.

The importance of using a sphere as an inter-
mediate reflectance object is illustrated in Fig. 8,
where transference results on a face of the Max
Plank database [2] are shown. The top row of the
column presents rendered views of the face after
direct transference, i.e., performing surface normal
correspondence directly between the surface nor-
mals of the different mannequins and the surface
normals of the face model. The bottom row of
the figure depicts results after using a sphere as
an intermediate reflectance object, i.e., luminance
matrices are first transferred from the mannequin
models to a synthetic sphere (as in Fig. 7), then
a new transference process is performed using the
sphere as the source object. The visual compari-
son of the rows of the figure demonstrates a benefit
when the sphere is used to transfer reflectance
between the two gradient fields. Specifically, re-
gions where the surface normals are subject to
change in direction, such as edges around the
face, appear more defined in the results shown
in the bottom row, diminishing abrupt transitions
between neighboring pixels. Interestingly, the main
differences between the images corresponding to
the crayon material are located around the eyes,
eyebrows, and mouth areas, where the crayon
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mannequin was painted on purpose with a black
crayon. For direct transference, it is evident that the
local correspondence between the facial areas of
the mannequin and the face model are responsible
for the black crayon being assigned onto the pixels
of the target object. This effect is nonetheless sup-
pressed after using a sphere as an intermediate
source object.

4 Experimental Results

This section presents experimental results for the
proposed reflectance transference methodology. A
sphere sized 150 x 150 pixels was applied in all
the experiments as an intermediate reflectance ob-
ject. Also, for all experiments, three target objects
were used from the Stanford database [24]: rabbit
(150 x 150 pixels), dragon (150 x 200 pixels), and
Buddah (200 x 80 pixels). The results are organized
in panels, each of them presenting in its first row
the source object (mannequin) as illuminated by
different light source directions. The remaining
rows present reflectance transference for the tar-
get objects. Both scenarios using the diffuse and
halogen lighting are depicted in the figures.

Transference results for the matte paint and the
sawdust mannequins are illustrated in Fig. 9. The
first feature to note from the figure is that the re-
flected color seems to be accurately transferred
onto the Stanford surfaces. The subtle differ-
ence in the orange tone provoked by the halogen
light between the matte paint and the sawdust
mannequins is also noticeable along the rendered
views of the target objects. In a similar way, this
phenomenon is observable for the diffuse lighting
case, where the difference between the ochre and
the golden tones for the matte paint and the saw-
dust is also present after reflectance transference.
Another feature to note from the figure is the scat-
tered texture of the sawdust, which is passed onto
the surface of the target objects.

Fig. 10 presents the specular reflectance cases,
showing results for the nail varnish and crayon
mannequins. Again, the tones of orange and red
color are evidently transferred over the target ob-
jects. The strong specularities of the nail varnish
appear as well strengthened along the novel ren-
dered views, particularly for the halogen lighting.

Also, the wax-like consistency of the crayon is no-
ticeable, especially for the diffuse light renderings.

It is worth commenting on the presence of am-
bient light in the source database. For the dif-
fuse lamp, the data acquisition was performed in
a closed dark room, therefore, the only illumination
affecting the mannequins was the diffuse light itself
and, as a consequence, pronounced shadowed
regions appear over the surface of the illuminated
mannequins. On the contrary, the halogen lamp
was subject to the influence of ambient light, as
experiments were performed in our lab, where ar-
tificial and natural light coming from open windows
intervened in the sampling process. In this case,
transference results obtained using the halogen
lamp reveal more illuminated regions around the
boundaries of the mannequins, as opposed to the
shadowed regions exhibited by the examples cor-
responding to the diffuse lamp setting. This obser-
vation is corroborated in the transferred reflectance
of the Stanford objects, i.e., the ears of the bunny
appear shadowed for the diffuse lighting, while this
effect is lessened for the halogen lighting.

Figures 9 and 10 present individual images from
both the source and transferred databases, allow-
ing a qualitative examination of the transference
results obtained from the method proposed in this
paper. Results at the global level, nonetheless, are
necessary to assess similarity between databases
in a numerical way. To this end, we chose a
methodology similar to the parametric eigenspace
of [19], where each image is projected onto a
considerably lower dimensional space in order to
analyze the behavior of the image ensemble in
the feature space spanned by the database. The
experiment is described as follows: for each image,
a long column vector was created by stacking the
image columns in order to create a big matrix A,
whose SVD was later applied for calculating singu-
lar values and singular vectors as

Ap><n = Up><323><3vg><n' (9)

where p is the number of image pixels and n is the
number of images in the database. The columns
of VT contain the projection of the n database
images in R3. Each database was decomposed
separately for the R, G, and B channels, and re-
sults of this decomposition are shown in Fig. 11.
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(a) Matte paint, diffuse light. (b) Matte paint, halogen light.

(c) Sawdust, diffuse light. (d) Sawdust, halogen light.

Fig. 9. Reflectance transference for matte and scattered surfaces. The figure illustrates how the reflectance
of a styrofoam mannequin is transferred onto the 3D shape of the Stanford database rabbit, dragon, and Buddah.
The mannequin was illuminated using a diffuse and a halogen light. Corresponding rendered views after reflectance
transference are shown in (a) and (b) for the matte paint, while the results for transferring sawdust reflectance are shown
in (c) and (d)

The retained variability for the databases is shown matte paint, red varnish, orange crayon, and saw-
in (a), where four diagrams depict the cumulative dust. Each of the four diagrams is related to one
singular values for the different sampled materials: single material, presenting cumulative plots for the
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(a) Red nail varnish, diffuse light. (b) Red nail varnish, halogen light.

(c) Orange crayon, diffuse light. (d) Orange crayon, halogen light.

Fig. 10. Reflectance transference for specular surfaces. The figure illustrates how the reflectance of a styrofoam
mannequin is transferred to the 3D shape of the Stanford database rabbit, dragon, and Buddah. The mannequin was
illuminated using a diffuse and a halogen light. The corresponding rendered views after reflectance transference are
shown in (a) and (b) for red nail varnish, while the results for transferring orange crayon are shown in (c) and (d)

four objects (mannequin, bunny, Buddha, dragon), of the databases acquired using halogen light are
three color channels (R, G, B) and two illumination shown with blue lines, while those acquired under
sources (diffuse, halogen) for a total of 4x3x2 = 24 diffuse illumination are presented in red. The inten-
line plots for each material. The singular values tion of the plots is to show how the databases can
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(a) Retained variability for the analyzed databases.

Red mannequin, diffuse light Matte mannequin, diffuse light

] -20

Red mannequin, halogen light

Matte mannequin, halogen light

(b) Parametric eigenspace representation for the red varnish and matte paint mannequin databases.

Matte bunny, diffuse light
Red bunny, diffuse light
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——— —
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-0
-0 _an

€0

(c) Parametric eigenspace representation for the red varnish and matte paint generated bunny databases.

Fig. 11. Reflectance analysis in the parametric eigenspace. In (a) the retained variability of the original mannequins
databases and synthetically generated databases is shown for the halogen (blue) and diffuse (red) lines. The purpose
of these diagrams is to show how the databases cluster depending on the light source used in the original experiment,
indicating that this information has been passed onto the target objects after transference. The results of projecting
each image of the database onto the parametric eigenspace are depicted in (b) for the red varnish and matte mannequin
databases (natural reflectance) and (c) for the reflectance transferred bunny databases. Each image is shown in colored
dots, where the color refers to database decomposition for the red, green, and blue color channels

be clustered mainly in accordance with the type of
illumination used to create the source database,
regardless of the shape of the object or whether the
database was generated naturally or by reflectance
transference.

The remaining rows of Fig. 11 show the spacial
arrangement of the eigenvectors of the databases,
i.e., each image in the database is projected onto
the three dimensional eigenspace using v/’ X,i =
{1,2,---,n}, where the row vector v, is a col-
umn of the right singular matrix V. The results
of this projection are depicted in (b) for the red
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varnish and matte mannequin databases (natural
reflectance) and the reflectance transferred bunny
databases appear in (c). In all the diagrams, the
projected images are shown in colored dots, where
the color refers to database decomposition for the
red, green, and blue color channels. The visual
analysis of the plots reveals a resemblance be-
tween the natural and the transferred reflectance
behaviors, suggesting that both original and syn-
thetically generated databases span the similar illu-
mination subspaces, corroborating the success of
the reflectance transference process.
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5 Conclusions

A method for characterization and transference
of reflectance has been proposed in this paper.
Ideas borrowed by extended photometric sampling,
which decomposes luminance matrices into singu-
lar vectors and singular values are used to rep-
resent reflectance variations of a source object
acquired by a camera and a moving light source.
A method based on Markov Random Fields is also
introduced to solve the correspondence problem
between the surface normals of a source object
and the surface normals of a sphere, which is later
used to transfer reflectance of the source object
onto a target object. Experiments demonstrate
that our method successfully transfers reflectance
behavior for a variety of materials and under dif-
ferent illumination settings. Given that the statis-
tical decomposition of reflectance allows a further
analysis, the parametrization of the luminance ma-
trices, i.e., through the manipulation of the singular
values is considered as future work for generating
synthetic reflectance.
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