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Abstract. Baseball is a top strategic collective game that 

challenges the team manager’s decision-making. A 
classic Nash equilibrium applies for non-cooperative 
games, while a Kantian equilibrium applies for 
cooperative ones. We use both Nash equilibrium (NE) 
and Kantian equilibrium (KE), separate or in 
combination, for the team selection of strategies during 
a baseball match: as soon as the selection of strategies 
by NE or KE carries a team to stay match loosing, a 
change to KE or NE is introduced. From this variation of 
selection of strategies the team that is losing tends to 
close or overcome the score with respect to the team 
with advantage according to the results from computer 
simulations. Hence, combining Nash selfish-gaming 
strategies with Kantian collaboration-gaming strategies, 
a baseball team performance is strengthened. 

Keywords. Baseball strategies, cooperation and non-

cooperation, Nash equilibrium, Kantian equilibrium, 
computer simulations. 

1 Introduction 

Recently, due to the need for strategic reasoning 
to play sports games like baseball or American 
football, the formal modeling of this kind of multi-
player sports has grown. The multi-player game 
modeling is of high complexity, and a strategic 
analysis of these sports should include a huge 
amount of parameters for fairly automated 
decision-making support.  

1.1 Baseball Gaming and Simulation 

Baseball is a bat-and-ball game played on a 
diamond shaped field. Each team has nine players 

and usually a match is nine innings long, but if 
there is no winner in the ninth inning, additional 
innings are allowed until the match is won; the 
team that gets more runs throughout the innings is 
the winner. Runs are scored by an offensive team’s 
players, after they bat the ball and advance from 
home plate to first, second, and third base and 
back to home plate without being given out or 
strikeout by the defense team. The offensive 
team’s batter should hit the ball thrown by the 
pitcher away from adversaries distributed in the 
field [1-3]. A team continues to bat until three outs 
are made by the defensive team and then the 
offence/defense roles are switched.  

In [4] a theoretical model for lift spinning 
baseballs, measures of the inertial trajectories of 
ball surface and the center of mass trajectory are 
used. In [5] factors that determine the direction of 
the spin axis of a pitched baseball are analyzed, 
concluding that the orientation of the hand is 
significant in determining the direction of the ball 
spin axis and for increasing the lift force; the palm 
needs to face home plate. [6] studied contextual 
influences on baseball ball-strike decisions by 
umpires, players, and participants, noting that a 
task as seemingly simple and the objective as 
judging a baseball pitch is complex and influenced 
by contextual factors. 

The automation of baseball gaming comprises 
of the basic and compound defense or offence 
plays by 𝑖 player [7] and are denoted by the 
abbreviations in Table 1. Plays are weighted and 
total ordered regarding their average frequency of 
occurrence from MLB (Major League Baseball) 
statistics (see Figure 1), e.g., strike(s) occurs more 
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frequently than hit (hi), being precision weighted 
from own computer simulation matches.  

Formal CFG (context-free grammar) rules set 
the generation of any simple or complex baseball 
gaming description, including a whole match. The 
baseball context-free language is read by the 
associated push-down automaton (PDA), hence 
any simple or complex baseball expression is 
formal correct. The occurrence of plays is in a real-
life-like manner such that the higher the frequency 
of occurrence of a play in real human matches, the 
higher the probability the play is included in the 
match formal account and simulation [7]. The PDA 
for baseball is shape-of-field-like modeled: the 
home, 1st, 2nd, 3rd bases, and a special base, these 
bases are modeled as the PDA states; the 
transitions between the states (one to one) are the 
plays (movements) the players can perform, (see 
baseball PDA in Figure 2), also see Appendix A.  

 

Fig. 1. Ordered plays 

 

 

Fig. 2. Baseball FSM diagram 

Table 1. ∑ = Terminal symbols to simple plays 

Plays descriptions 

bi: ball 

boi: bolk 

bgi: base hit 

bpi: base on balls 

di: doublet 

fi: foul 

dpi: double play 

fsi: sacrifice fly 

coi: contact of ball 

hi: homerun 

hii: hit 

ri: stealing base 

si: strike 

ti: triple 

tbi: bunt 

tpi: triple play 

wi: wild pitch 

wbi: wait batter´s 
action 

a1
i: move to A1 

a2
i: move to A2 

a3
i: move to A3 

a4
i: move to home 

ce: team change 

oi : out 

pi: punched 

 

si ≥ bi ≥ fi ≥  coi ≥ oi ≥ pi ≥ ce ≥ hii ≥ a1i ≥ a2i ≥ di ≥ dpi ≥a3i ≥ a4i ≥ cai ≥ri ≥ 
fsi ≥ hi ≥ tbi ≥ bpi ≥ bgi ≥ wi ≥ tpi ≥ ti ≥ boi

a1
i

So

S1

S2

S3

S

a2
i

a3
i

a4
i

pi |oi

oi |dpi|tpi

bi| bgi | bpi| boi| di| 
fi | hi | hii | ri | si | ti

|tbi| wi

oi |dpi|tpi

oi |dpi|tpi

bi| bgi | bpi| boi| 
di| fi | hi | hii | ri | 
si | ti |tbi| wi

bi| bgi | bpi| boi| di| 
fi | hi | hii | ri | si | ti

|tbi| wi

bi| bgi | bpi| boi| 
di| fi | hi | hii | ri | 
si | ti |tbi| wi
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There is a generator of baseball plays that 
produces strings that must have a correct 
sequence of moves, i.e., baseball plays should be 
generated according to their average frequency of 
occurrence in real life matches and the sequence 
should be consistent with reality. A generator of 
plays is useful, because it generates valid baseball 
strings randomly, quickly, and easily. The 
generator produces baseball plays and verifies that 

– These strings must be made based on their 
average occurrence frequency, and also 

– Be generated following the rules of the game. 

The generator has a module for generation and 
validation of strings. Once having a baseball play 
to perform, that baseball play has to be 
concatenated with the previous plays. The way to 
do this is as follows: at the right end of a string, 
empty one (𝜀) in the beginning, the play is 
concatenated with the previous ones and also 
indicating the player who performs it. CFG, PDA, 
and the generator of plays are the algorithmic 
fundament for this automation, which attains 
similar scores to the human teams’ matches in 
real life. 

1.2 Strategy Thinking: Cooperation and Non-
Cooperation 

Strategies are organized and weighted actions 
practiced to obtain the maximum available profit up 
to the minimum effort [8-10]. Regarding the game 
rules, a player should determine the order and 
preference of his own actions and strategies joint 
to the threat embodied in the other players’ 
strategies with the purpose to obtain match 
success [11-13]. A successful result in matches of 
collective sports essentially depends on mutual 
team members cooperation,  and non-cooperation 
may carry to unsuccessful results [14]. Team 
games highlight positive participation among 
players as a strategic basis to achieve match 
success, and a loss of every player’s protagonist 
role is needed for a team’s efficient cooperation 
strategy [15]. 

The multi-player baseball game is application of 
the team strategies thoughts obligatory for playing 
[1]. Baseball is, at the same time, cooperative from 
a team’s perspective and sometimes non-
cooperative from a player’s perspective: team 

members are encouraged to aim at best individual 
actions but must cooperate for the team’s best 
benefit. This tension needs to be solved in the best 
possible way to avoid frustration from the whole 
team or from each individual gamer. The strategies 
to organize the actions are indicated by the team 
manager regarding each player profile as well as 
the specific match circumstance aimed to obtain 
the maximum benefit [16]. A fine strategy should 
include both the individual and the 
team motivation. 

Nash equilibrium (NE) mathematical model [17] 
has been a classic in the design of economy 
models around the world. In Game Theory, NE is 
the formal fundament of non-cooperative game 
and commonly used for decision-making in 
competitive scenarios [12]. The automation of 
baseball strategic gaming by applying a Nash 
equilibrium for selection of strategies by a team is 
performed and the strength obtained has been 
analyzed in [7]. However, a NE strategy profile is 
frequently not Pareto optimal and may not lead to 
the best decision-making for a team but just to a 
half-good for individuals, which could, in the long 
term, have negative impact for the whole team. 
Kantian equilibrium (KE) formalism supports the 
design of Pareto models in economy and the 
theoretical optimal team collaboration [18]. KE 
guarantees that commitment to each other allows 
the theoretical optimum on team collaboration [18, 
19]. For decades Pareto efficiency has been well 
known to be a benchmark to select, from a 
population of solutions, the optimal for a problem 
solution in engineering fields, and, in evolutionary 
algorithms, to select the next generation of 
individuals [20]. 

In this paper, the selection of strategies based 
on either Kantian equilibrium [18, 19], or on Nash 
equilibrium, or on both, is analyzed. Kantian 
equilibrium rules the team cooperation keeping in 
mind that people’s mutual confidence is an 
assumed condition for a successful team. The 
abilities of each group member are added in the 
collective procedure facing a complex task 
deployment, which allows a theoretical Pareto-
efficient design of collective strategies to work up a 
complex task. However, this theoretical 
perspective on each member’s best strategies, in 
a real (non-theoretical) match, may not be the 
times followed. The pass from theory to practice 
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enlightens the usefulness of each of Nash or 
Kantian equilibriums in a real baseball match. The 
relevance of use of each of the equilibriums is 
shown from a set of simulations, which apply either 
each or both equilibriums at the opportune moment 
so to strengthen the team performance. Actually, 
the selection of baseball strategies by combining 
Nash and Kantian equilibriums results in a superior 
team performance than by using a single 
equilibrium according to the computer 
simulations results. 

The rest of the paper is organized as follows. 
Section 2 presents the algorithms of a baseball 
match and the selection of strategies. Section 3 
describes experiments and the analysis of results 
of strategy selection by using NE-KE, each by itself 
and emphatically in combination. Discussion in 
Section 4 is followed by the Conclusions. 

2 Selection of Strategies 

The main offensive strategy is the appointment of 
the batting order at a baseball match start: on first 
position place quick-footed people, then the best 
hitters on 3rd and 4th position for a homerun or a 
good hit. Thus, a player on base could advance 
more for one run annotation; besides, a runner’s 
advance can be by base stealing, or by applying a 
sacrifice-plays-based strategy even if it involves an 
out [21]. On the other hand, the defensive team’s 
purpose is to achieve as many outs as possible, 
hence not to receive too many pitches and to limit 
the opposing team’s moves. 

The NE and KE formal account for multi-player 
games follow. The joint actions from all the players 
set the strategy profile vectors; position i 

corresponds to the player 𝑖 action.  

Let 𝑃 = {1, … , 𝑛} be a set of players, 𝑖 ∈ 𝑃, 𝑎𝑥
𝑖 ∈

 Σ𝑖 be an element of a set of simple plays, and 𝑠𝑥
𝑖 

be a strategy of player 𝑖 , 𝑠𝑥
𝑖 ∈  S𝑖; let 𝐺 =

(𝑆1, … , 𝑆𝑛; 𝑢1, … , 𝑢𝑛 ) be a game in normal form  
[17] where:  

– A strategy is a compound sequence 𝑠𝑥
𝑖 =

𝑎1
𝑖 … 𝑎𝑛

𝑖; 

– A strategy profile (𝑠1, … , 𝑠𝑛) is an n-tuple of 
strategies, one strategy per player;  

– S𝑖 is a set of strategies of player 𝑖; 

– {𝑆1, … , 𝑆𝑛} is a set of all the S𝑖  strategies; 

– {𝑢1, … , 𝑢𝑛} is a set of all payoff functions one 
per player; 

– 𝑢𝑖  (𝑠1, … , 𝑠𝑛) = 𝑟,  where (𝑠1, … , 𝑠𝑛) ∈ 𝑆1 ×  … ×
𝑆𝑛 , 𝑟 ∈ ℝ. 

2.1 Nash Equilibrium for Non-Cooperation 
Strategies 

Nash equilibrium [17] is a widely used 
mathematical concept in game theory, especially 
in non-cooperative games. To identify the strategy 
profiles that satisfy the condition of a Nash 
equilibrium, every strategy profile is evaluated with 
the payoff functions of the players, and the chosen 
profiles are those which for every player are the 
options that produce less loss for them individually 
and non-cooperatively, the best options for each 
player. The mathematical definition is given below.  

Each player’s NE strategies are denoted 
𝑠1

∗, … , 𝑠𝑛
∗, and 𝑠𝑖

∗ are the non-cooperative 

answers from 𝑖 to the 𝑛 − 1 other players’ 

strategies. (𝑠1
∗, … , 𝑠𝑖

∗, … , 𝑠𝑛
∗) is the n-tuple of 

players’  strategies that maximizes the payoff 
function in Equation (1):  

             𝑢𝑖( 𝑠1
∗, … , 𝒔𝒊

∗ , … , 𝑠𝑛
∗) ≥

 𝑢𝑖( 𝑠1
∗, … , 𝒔𝒊 , … , 𝑠𝑛

∗)  ∀𝑖 ∈ 𝑃, 𝒔𝒊  ∈ 𝑆𝑖.                  
(1) 

Every strategy profile is each payoff function 
valued and compared with all of the others to 
determine whether it is or is not dominated. 
Analysis of each strategy profile follows: a strategy 
profile 𝑥1 is set for each player 𝑖, the strategy profile 
is modified by altering the player current strategy 
whilst keeping the strategies of the other 𝑛 − 1 
players unchanged; if any deviation in the strategy 
profile evaluated in 𝑢𝑖 dominates 𝑥1, i.e., the player 

𝑖’s profit is higher in that deviation profile, then 𝑥1 
is a dominated profile and it is discarded. The 
dominated profiles are discarded and the non-
dominated profiles fit the Nash equilibrium (see 
Table 2). Any game in (finite) normal form has at 
least one strategy profile that fits the Nash 
equilibrium [17]. Observe that in NE every player 
applies a non-cooperative perspective – less bad 
for him regarding the other players’ strategies. 
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2.2 Kantian Equilibrium for Cooperation 
Strategies 

In Kantian equilibrium [19] all players have a 
common strategy space S. In a normal form game 

𝐺 = (𝑆; 𝑢1, … , 𝑢𝑛 ), a strategy profile 𝐿 = (𝑠1, … , 𝑠𝑛)  
is Kantian if Equation (2) holds: 

           𝑢𝑖  (𝐿) ≥ 𝑢𝑖  (𝛼𝐿)  ∀ 𝑖 ∈ 𝑃, 𝛼 ∈ ℝ+. (2) 

All of the player action values are weighted by 
the same factor α. This is community cooperation 
in theoretically equal conditions and no player 
takes advantage of any other. By KE usage every 
player applies the Pareto efficient best own 
strategy from a cooperative perspective, and there 
is at least one strategy profile for a game in normal 
form that fits Kantian equilibrium, as for NE. For 

KE, all players get the maximum profit; in fact, a 
player changes his strategy if and only if each 
player changes its strategy by the same 
multiplicative factor α (see the algorithm in 
Table 3). 

For each of NE and KE and each team and/or 
player, a set of payoff matrices comprise the 
quantitative analysis by regarding: 1) if the match 
is at the first, middle, or late innings, 2) the score 
conditions (winning, losing, or drawing), 3) the 
number of outs in the inning, and 4) the players’ 
position on the bases following the methodology 
in [7].  

Next, payoff-matrices comprise the payoff 
function valuations of the strategy profiles. Each 
matrix entry arranges each player strategy profile 
valuation. The 𝑀 payoff matrix for 𝑛 players is 

arranged from the set of 𝑀𝑖 payoff matrix of every 

player 𝑖. The 𝑀 entries are the strategy profiles 

joint to the profile payoff value 𝑟𝑧, hence 
((𝑠1, … , 𝑠𝑖 , … , 𝑠𝑛), 𝑟𝑧). The payoff matrices data can 
support the manager’s decision-making in the 
course of a match. The payoff matrix comprises the 
quantitative analysis for a whole baseball match 
based on the combinations from first, middle, and 
late innings, three score conditions, the number of 
outs, and eight players’ position on base. One 

Table 2. Algorithm of Nash equilibrium strategy profile 

Pseudocode 1: Input each strategy profile and its 

payoff value 

1:for every sp = (sp1,…,spm) strategy  

  profile 

2:  for every player i =1,…,n  

3:    if sp is non-dominated  

4:      Do the deviations in sp for  

        player i 

5:      if sp is dominated by at  

        least one deviation of i 

6:         labeled sp as dominated;  

           move to the next strategy  

           profile 

7:      end if 

8:    end if  

9:    else move to the next strategy  

      profile 

10:  end for 

11:end for 

Step 1: For each player, the deviations for each 

profile are analyzed in order to acquire the 
non-dominated profiles and discard the 
others. 

Step 2: The non-discarded profiles fit Nash 

equilibrium. 

Table 3. Algorithm of Kantian equilibrium strategy 

profile 

Pseudocode 2: Input each strategy profile and its 

payoff value 

1:for every sp =  

  (sp1,…,spm)strategy profiles 

2:    for every player i =1,…,n  

3:        benefit-degreesp  

          +=sp.profit  

4:    end for 

5:end for 

6:find the highest benefit- 

  value(s) 

Step 1: For each profile, the benefit value is the sum 

of all the players' profits in this profile. 
Step 2: From the benefit values determine the highest 

one. 
Step 3: Every profile with the highest value fits Kantian 

equilibrium. 
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matrix per each analysis based on NE or KE 
is constructed. 

2.3 Computational Complexity 

The proposed algorithms for baseball match 
analysis make deviations of profiles to rule out 
those profiles that are dominated for all players. 
The Nash profiles are non-dominated, and for the 
case of Kantian equilibrium they are those where 
the players get the maximum profit. The 
computational complexity is kn, with k being the 
number of strategy profiles and n being the number 
of players in the worst case. Actually, by analyzing 
the Nash equilibrium algorithm, the strategy 

profiles dominated by one player are no longer 
analyzed by the successive players.  

2.4 Examples 

An example of NE or KE being applied to identify 
the strategy profiles that fit each in a match gaming 
follows. Let the player p2 be at third base, one out 
in the last inning, and the match score tied. One p2 
option is to try to steal the base (r), or wait for the 
action of player at bat (wb). For the player p1 at bat 
positions an option is to try to make a homerun (h), 
or try to make a sacrifice fly (fs). In Table 4 we 
show the players’ profit for each profile. The NE 
profiles are (h, r) and (fs, wb), and the KE profile is 

 

Fig. 3. Payoff matrices for p1, p2, and p3 

 

Fig. 4. Deviations in the strategy profiles 

Matrix p1

(h, r, r) 0.3

(h, r, wb) 0.3

(h, wb, r) 0.3

(h, wb, wb) 0.3

(hr, r, r) 0.5

(hr, r, wb) 0.2

(hr, wb, r) 0.2

(hr, wb, wb) 0.2

1

5

Matrix p1

(h, r, r) 0.3

(h, r, wb) 0.3

(h, wb, r) 0.3

(h, wb, wb) 0.3

(hr, r, r) 0.5

(hr, r, wb) 0.2

(hr, wb, r) 0.2

(hr, wb, wb) 0.2

6

2

Matrix p1

(h, r, r) 0.3

(h, r, wb) 0.3

(h, wb, r) 0.3

(h, wb, wb) 0.3

(hr, r, r) 0.5

(hr, r, wb) 0.2

(hr, wb, r) 0.2

(hr, wb, wb) 0.2

7

3

Matrix p1

(h, r, r) 0.3

(h, r, wb) 0.3

(h, wb, r) 0.3

(h, wb, wb) 0.3

(hr, r, r) 0.5

(hr, r, wb) 0.2

(hr, wb, r) 0.2

(hr, wb, wb) 0.28

4

Matrix p3

(h, r, r) 0.0

(h, r, wb) 0.1

(h, wb, r) 0.0

(h, wb, wb) 0.2

(hr, r, r) 0.1

(hr, r, wb) 0.2

(hr, wb, r) 0.2

(hr, wb, wb) 0.2

3

4

Matrix p3

(h, r, r) 0.0

(h, r, wb) 0.1

(h, wb, r) 0.0

(h, wb, wb) 0.2

(hr, r, r) 0.1

(hr, r, wb) 0.2

(hr, wb, r) 0.2

(hr, wb, wb) 0.2

5

6
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(h, r). NE profile (h, r) and (fs, wb) are found by 
considering the profile (fs, r): if p1 changes his 
strategy to h, he obtains higher profit, so (fs, r) 
profile is dominated and discarded. Using (h, wb) 
profile if p2 changes his strategy to r, he obtains 
higher profit also, so (hr, wb) profile is discarded. 
Using (fs, wb) or (h, r) profiles, no player gets 
higher profit changing his strategy, so these 
profiles are not dominated NE profiles. Profile (h, r) 
fits KE because both players get the highest profit. 

Complex examples for identifying Nash or 
Kantian equilibrium in some baseball gaming using 
the matrix representation previously explained are 
introduced. Let p1, p2 and p3 be the players; p1 is at 
home-bat position and can make a hit (hi) or a 
home run (h), while p2 is at 2nd base, and p3 is at 1st 
base; p2 and p3 have the same options – steal the 

base (r), or wait for the action of p1 at bat (wb) (see 
the payoff matrices of each player in Figure 3). 

How the NE profiles are found by identifying the 
dominated and non-dominated profiles, when the 
player changes his strategy up to the other players’ 
strategies is shown in Figure 4. Fix a player, x/y 
means that profile x dominates profile y, so for 
player p1 we have 5/1, 2/6, 3/7, and 4/8; for player 
p3 domination is by 4/3, 6/5; and for player p2 there 
are no dominated profiles. Therefore, the non-
dominated profiles for all players are the profile 2, 
(hi, r, wb) and the profile 4, (hi, wb, wb), and both 
fit the NE condition. The only KE profile is (h, r, r) 
because in this case the players’ profits are 
maximum as a team.  

3 Experiments on Merge Selection of 
Strategies 

Experiments concern the performance comparison 
of teams that use a method for selection of 
strategies with regard to the next match gaming 
conditions: 

– Comparing the MLB results from some teams 
against the simulation results by applying 
Nash equilibrium or Kantian equilibrium; 

Table 4. Payoff matrices to analyze NE or KE profiles for 

p1 and p2 

 p2 

p1 

 hr fs 

r (0.3,0.3) (0.2,0.1) 

wb (0.1,0.2) (0.2,0.2) 

 

Table 5. Some MLB baseball players’ statistics 

Player T AB  H 2B 3B HR BB SO SB CS 

Suzuki, I NYY 227  73 13 1 5 5 21 14 5 

Jeter, D NYY 683  216 32 0 15 45 90 9 4 

Cano, R NYY 527  196 48 1 33 61 96 3 2 

Nunez, E NYY 89  26 4 1 1 6 12 11 2 

Chavez, E NYY 278  78 12 0 16 30 59 0 0 

Swisher, N NYY 537  146 36 0 24 77 141 2 3 

Cespedes, Y OAK 487  142 25 5 23 43 102 16 4 

Moss, B OAK 265  77 18 0 21 26 90 1 1 

Gomes, J OAK 279  73 10 0 18 44 104 3 1 

Crisp, C OAK 455  118 25 7 11 45 64 39 4 

Reddick, J OAK 611  148 29 5 32 55 151 11 1 

Smith, S OAK 383  92 23 2 14 50 98 2 2 
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– A team with a score disadvantage changes 
from Nash equilibrium to Kantian equilibrium 
(NE-KE), and vice-versa (KE-NE); 

– Using Kantian equilibrium by a defense team 
for exclusive, versus Nash equilibrium use by 
offensive teams for exclusive.  

3.1 Simulations Using MLB Data and Selection 
of Strategies 

To simulate the players’ actions according to their 
performance, we use MLB real statistics from the 
New York Yankees (NYY) and Oakland Athletics 
(OAK) in the 2012 season (some data are in Table 
5). Shown is the number of times that a player 

makes AB at bat, R for reach home base, H for a 
hit, 2B for a hit and reaches second base, 3B for a 
hit and reach third base, HR for a home run, BB for 
walk by a player (four balls during at bat), SO for 
strikeout (three strakes during at bat), SB for stolen 
a base, CS for a player put out by attempting to 
steal a base.  

Using the MLB statistics [22], the frequency of 
occurrence of each baseball play per player is 
used to induce the probability the play can happen 
in a match, e.g., the probability of a player making 
a hit is given by AB/H, a home run by AB/HR, and 
so on. Thus, when a player is at bat, we can 
simulate his performance in a gaming (e.g., 2012) 
season. Next, we make a comparison among 
simulations of baseball matches using MLB 
statistics, without any concern for analysis of 
strategies, versus simulations that use NE or KE 
as the methods for selection of strategies. Two 
hundred computer simulations per each of the 
following conditions were carried out: 

1. Team 1 (T1) uses NE versus Team 2 (T2) uses 
NYY MLB statistics; 

2. T1 uses NE versus T2 uses OAK MLB 
statistics;  

3. T1 uses KE versus T2 uses NYY MLB statistics; 
4. T1 uses KE versus T2 uses OAK MLB statistics. 

By considering the results in Figure 5, when T1 

uses NE and T2 uses NYY statistics, T1 is 160/40 
superior. The results in Figure 6 show when T1 

uses NE and T2 uses OAK statistics, and T1 is 
168/32 superior. The results in Figure 7 show when  

 
 

Fig. 5. T1 NE vs. T2 NYY 

 
 

Fig. 6. T1 NE vs. T2 OAK   

 

 
 

Fig. 7. T1 KE vs. T2 NYY   

 

 
 

Fig. 8. T1 KE vs. T2 OAK   

 

 
 

 
 

Fig. 9. T1 vs. T2 item (1) 

 

 
 

Fig. 10. T1 vs. T2 item 
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Fig. 11. T1 vs. T2 item (3) 

 

 

Fig. 12. T1 vs. T2 item (4) 

 

 

Fig. 13. T1 vs. T2 item (5) 

 

Fig. 14. T1 vs. T2 item (6) 

 

 

Fig. 15. T1 vs. T2 item (7) 

 

Fig. 16. T1 vs. T2 item (8) 
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T1 uses KE and T2 uses NYY statistics, and 158/42 
wins in favor of T1. The results in Figure 8 illustrate 
when T1 uses KE and T2 uses OAK statistics, and 
T1 won more times 150/50. 

A huge contrast between the results from the 
previous simulations quantifies the relevance of 
the selection of strategies, even for a team having 
top level baseball players, whose inclusion does 
not guarantee a high level team performance. 
Therefore, analysis of methods for guiding players’ 
actions as a team is primordial for selection of 
proper strategies to increase the probability of 
team success in a match. 

3.2 Combining Nash and Kantian Equilibrium 

Two hundred simulations per each of the following 
selection of strategies, sometimes combinations of 
them, were carried out: 

1. T1 uses NE and T2 uses KE; 

2. T1 uses KE and T2 uses NE;  
3. T1 starts using NE and T2 starts using KE, then 

change to KE or NE, respectively; 
4. T1 starts using KE and T2 starts using NE, then 

change to NE or KE, respectively; 
5. T1 uses NE always and T2 uses combination of 

KE-NE; 

 

 

(A) 

 

(B) 

Fig. 19. Analysis of team strategy technique change, 

item (5) 
 

 

(A) 

 

(B) 

Fig. 20. Analysis of team strategy technique change, 

item (6) 
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6. T1 uses KE always and T2 uses NE-KE; 

7. T1 uses combination of KE-NE and T2 uses NE 
always; 

8. T1 uses combination of NE-KE and T2 uses NE 
always. 

Observe that a change of selection of strategies 
occurs at the first middle inning 4th or at the first late 
inning 7th, and if needed at extra 9th inning. 
Considering the results in Figures 9-10, items (1-
2), the team that uses NE for selection of strategies 
in baseball gaming, either for defense or the 
offensive role, has advantage over the team that 
uses KE. In Figures 11-12, items (3-4), when a 
team, as soon as it is losing, changes its strategy 

from NE to KE, or vice versa, the results illustrate 
that the change is beneficial to the team because 
the score is closing, and sometimes the team that 
is losing can overcome the score. Figures 13-16, 
items (5-8), show the results when one team fixes 
the strategy analysis and the other changes, and 
this last obtained an advance.  

3.3 Changes of Strategy 

Next, our analysis focuses on the case when T1 
and T2 change their strategy selection method for 
items (3-8). In Figure 17 the result shows the case 
when T1 begins NE and T2, KE. Both change 
selection of strategies method NE-KE or KE-NE 
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Fig. 17. Analysis of team strategy technique 

change, item (3) 
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Fig. 18. Analysis of team strategy technique 

change, item (4) 
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when losing. In Figure 17 (A) T2 changes KE-NE in 
the 4th inning and the score increased; in the 7th 
inning the T1 changes NE-KE maintaining the 
score. Figure 17 (B) shows the percentage of 
increase, no increase, and score closeness when 
teams change the selection of strategies. For T1 
the 20% increased, 35% did not increase, and 45% 
closed the score when it changed NE-KE. 
Furthermore, for T2 the 55% increased, 25% did 
not increase, and 25% closed the score when it 
changed KE-NE. Observe that in some cases both 
teams change more than once. 

Figure 18 illustrates the case when T1 begins 
KE and T2, NE, then both change strategy. In 
Figure 18 (A) T1 changes KE-NE in the 4th inning 
and the score is improved; in the 7th inning T1 
changes NE-KE and the score is unimproved. 
Figure 18 (B) shows the percentage of increase, 
no increase, and score closing when team change 
selection of strategies method: for T1 60% 
increased, 15% did not increase, and 25% score 
closing when there was change KE-NE; for T2, 
moreover, 30% increased, 30% did not increase, 
and 40% closed the score when changed NE-KE. 

 

(A) 

 

(B) 

Fig. 21. Analysis of team strategy technique 

change, item (7) 
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Fig. 22. Analysis of team strategy technique 

change, item (8) 
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In Figure 20 T1 fixes to KE and T2 begins NE 
and can change selection of strategies. In Figure 
20 (A) T2 changes NE-KE in the 7th inning and it did 
not improve the score. Figure 20 (B) shows the 
percentage of increase, no increase and score 
closing when team changes selection of strategies 
method: for T2 35% increased, 35% did not 
increase and 35% score closing by change. 

In Figure 22 T2 fixes KE and T1 begins NE and 
can change selection of strategies method. In 
Figure 22 (A) T1 changes NE-KE in the 4th inning, 
and does not improve the score, T1 changes NE-
KE in the 7th inning improving his score. Figure 22 
(B) shows percentage of increase, no increase, 
and score closing when team changes selection of 
strategies method; for T1 40% increased, 30% did 

not increase, and 30% score closing when 
selection of strategies method was changed. 

The results obtained revealed the positive 
impact, the percentage of gain or loss, the change 
of strategy selection for a team regarding items (3-
8); thus the advantage of using NE or KE for 
strategy selection in a baseball match.  

3.4 Offensive versus Defensive Strategies 

Now, we analyze the impact of NE for the offensive 
role and KE for the defensive role, to observe 
whether NE/KE is well behaved for the specific 
defensive/offensive role, versus the usage of NE or 
KE during the whole match without any change. 
Two hundred simulations of baseball matches per 
each of the following items were performed (see 
results in Figures 23-25): 

1. Both T1 and T2 use NE for offensive role and 
KE for defensive role; 

2. T1 uses NE for offensive role and KE for 
defensive role, and T2 only uses NE; 

3. T1 uses NE for offensive role and KE for 
defensive role, and T2 only uses KE. 

From the results illustrated in Figures 23-25, it 
may be concluded that the teams using NE for the 
offensive role and KE for the defensive role 
achieve better performance than those that only 
use one method for selection of strategies gaming 
any of the roles. 

The percentage of strategy profiles being 
likewise KE and NE is 58%. The remaining 42% is 
of different strategy profiles. In addition, when the 
analysis determines that NE strategic profiles 
should be done for gaming, the percentage of 
really practiced ones is 71%, whereas for KE, 46% 
is practiced. 

4 Discussion 

In Game Theory a formal account of a game 
models the adversaries’ alternate plays to 
determine the course of actions and strategies of 
each player and the whole team during the match 
[23]. The game rules should be unambiguously 
determined to hold the analysis on competition; the 
benefit to apply the selected actions and strategies 

 

Fig. 23. T1 vs. T2 item 
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Fig. 24. T1 vs. T2 
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Fig. 25. T1 vs. T2 item (3) 
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is evaluated by means of mathematical payoff 
function [24-26].  

In the real circumstance of a baseball match, 
sometimes the sacrifice play occurrences fit a NE 
strategy profile that is beneficial for the team; e.g., 
the batter is able to support a run by applying a 
sacrifice hit, so a teammate can advance to home; 
another way to achieve the run is a batter’s 
homerun. Sacrifice-hit is a more likely combination 
than homerun. The first option is Nash equilibrium, 
while the second is Kantian equilibrium. An 
experienced manager (and team), by regarding 
tied match circumstances, chooses more likely 
options in real life matches, even they are not 
theoretical optimal, whose real occurrence is less 
likely. A baseball match is not a closed and wholly 
controlled process, but diverse and uncertain 
nature eventualities may alter the manager’s 
decision, regardless of whether it is based on a 
formal analysis or on his former experience. In 
spite of the fact NE is not Pareto optimal, the team 
performance is better by applying NE than by using 
KE. Also, the usage of a combination of NE for the 
offensive role and KE for the defensive role shows 
better results than the usage of only NE or KE for 

both roles, respectively. Additionally, a benefit can 
be seen when a team changes selection of 
strategies NE-KE or vice versa.  

In Section 3.3, we presented a set of 
experiments concerning the changes of selection 
of strategies, from Nash to Kantian or vice versa. 
The computational cost of this change is not 
substantial, but the change makes a significant 
improvement on team performance. The 
computational cost of a strategic choice method is 
presented in Section 2.2. 

5 Conclusions  

In this paper, we use a combination of non-
cooperative Nash equilibrium and cooperative 
Kantian equilibrium for the manager’s decision-
making during a baseball match. The manager's 
decisions are fundamental in the gameplay, hence, 
the decisions based on analytical strategic choice 
methods based on Nash and/or Kantian 
equilibrium strengthen team performance, thereby 
increasing the expectations of winning. From a set 
of computer simulations, the relevance of each of 

 

Fig. A.1. Deterministic baseball FSM 
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the equilibriums or both, at the opportune moment, 
is shown, which strengthens team performance. 
Mix gaming of Nash selfish-player strategy with 
Kantian team-cooperation empowers the collective 
gaming when the team is losing, so it closes or 
even overcomes the match score with respect to 
the adversary team. Actually, the tension of selfish 
intentions versus cooperation, being well handled 
and applied during a match, strengthens the 
abilities of the team and the individuals.  

Appendix A 

Here we present a deterministic FSM for baseball 
gaming (see Figure A.1). The FSM presented in 
Figure 2 is non-deterministic, since in some states 
there are no transitions defined for every element 
of the alphabet; but for the smart modeling of 
baseball gaming, this FSA works since it is able to 
recognize any string of the language generated by 
the baseball formal grammar. The deterministic 
FSM that covers all the transitions given any state 
and any element from the alphabet is as follows 
(see Figure A.1).  

Let (𝛴, �̂�, 𝑠0, 𝜑, 𝐻) be a deterministic baseball 
FSM such that 

– 𝛴 is the alphabet, see Table 1;  

– �̂� = {𝑠, 𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠𝑓} is a set of states; 

–  𝜑: �̂� × 𝛴 → �̂� is the transitions function;  

–  𝑠0 ∈  �̂�  is the initial state;  

– 𝐻 = {𝑠, 𝑠0, 𝑠𝑓} ⊆  �̂� is a set of halt states. 
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