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Abstract. This paper presents the design of a distributed
control law for the output regulation and output consen-
sus of a set of N agents. In this approach, each agent
dynamics is represented by a switched linear system.
The representation of the agents is neither constrained
to be the same nor to have the same state dimension,
and communication among agents is considered to be
switching. It is also considered that some agents get
the reference to be followed from the output of a virtual
agent, and every agent gets the output information of its
neighbors. Using this information, every agent computes
the exosystem state to solve its individual regulation
problem. The approach herein proposed employs a local
switched stabilizing feedback for each agent based on
a common Lyapunov function. A numerical example is
provided in order to illustrate the proposed control law.

Keywords. Distributed control, multi-agents, switched
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1 Introduction

In recent years, consensus in multi-agent sys-
tems (MAS) has attracted considerable attention in
Computer Science and Control Theory since it al-
lows to solve complex problems such as formation
control with trajectory tracking.

Some previous results related to consensus
problems in MAS are introduced in [14] and [4],
where an overview of methods for convergence
and analysis of consensus algorithms are pre-
sented. The development of consensus algorithms
for linear and nonlinear systems is presented in

[15] and [12], and a Lyapunov function is proposed
to study the convergence of the consensus algo-
rithms. In [6] and [20], necessary and sufficient
conditions for an appropriate decentralized linear
stabilizing feedback are established.

In [16], the problem of flocking with obstacles is
addressed, where flocking is defined as achieving
both structural and navigational stability. The sys-
tems considered are restricted to have integrator
dynamics, and stability results are not presented.

A feedback control strategy that achieves con-
vergence of a MAS, for single-integrator dynamics,
with a desired formation and avoiding collisions is
proposed in [1]. A connection between formation
infeasibility and a sort of flocking is established.
Consensus of multiple autonomous vehicles is ad-
dressed in [7], by using virtual leaders and artificial
potential fields among neighboring vehicles. Re-
sults are also restricted to vehicles with integra-
tor dynamics. A decentralized dynamic controller
dealing with the problem of cooperation among a
collection of vehicles is presented in [3] and [9].

The problems of consensus (synchronization),
model-reference, and regulation for a network of
identical multi-input, multi-output linear MAS are
considered in [22]. That work proposes a dis-
tributed protocol to solve such problems for net-
work Laplacian topologies and asymmetric topolo-
gies.

In [2], consensus output regulation of network
connected MAS is addressed. Every agent is rep-
resented by a nonlinear system, and has identical
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dynamics. A consensus control design is proposed
to ensure the convergence of all the agents to the
same desired output trajectory by exploiting the
internal model approach. The control design uses
only the relative outputs of the agents, and it does
not require the estimation of agent state variables.

The cooperative output regulation of linear MAS
is considered in [17], where only a subset of sub-
systems can access the reference exogenous sig-
nal. The problem is solved by means of the design
of distributed observers, and a dynamic full infor-
mation distributed control scheme.

The simultaneous problem of consensus and
trajectory tracking of linear multi-agent systems is
considered in [11], where the dynamics of each
agent is represented by a single-input single-output
linear system and neither the structure nor the
dimension of the representation of the agent dy-
namics are restricted to be the same. This problem
was solved by a distributed control strategy, where
the trajectory and the formation of the agents are
achieved asymptotically even in the presence of
switching communication topologies and smooth
formation changes.

An approach to regulation of multi-agent linear
systems is presented in [18], where the authors
demonstrate zero tracking error under switching
topologies using observers, but each agent ob-
server is based on the exosystem output and on
the states of the observers of its neighbors. In
[21], the regulation of MAS with uncertainties on
the matrices of the system is addressed. The
results presented in that paper assure zero tracking
error even when only a subset of the systems
has access to the reference signal based on an
internal model approach. The robust regulation of
multi-agent linear systems considering uncertain-
ties is addressed in [19]. The results obtained pro-
vide sufficient conditions for multi-agent zero track-
ing error under switched communication topologies
based on a canonical internal model approach.

Problems related to multi-agent formation have
been extensively undertaken, however as far as
the authors know, the problem of solving simulta-
neously output regulation and output consensus of
multi-agent switched linear systems has not been
addressed before, and given the switched nature

of the agent dynamics, the application of previ-
ous results on regulation of MAS with switching
topologies based on the canonical internal model is
not straightforward and the existence of a solution
cannot be guaranteed.

This paper presents the design of a distributed
control law for a class of switched linear MAS, with
switching communication topologies, where the
output is the only information transmitted between
the agents, and only a subset of them has access
to the reference (output of the virtual agent). The
virtual agent can be imagined as a transmitter pro-
viding the trajectory information for the group of
agents or a real agent already regulated. The com-
munication among the agents can be represented
by a switching graph, containing a spanning tree.
Given that the present approach focuses on output
consensus, each of the agents is allowed to have
different dynamics and state dimension.

In order to reach output consensus, the agents
should have the same output dimension and it
is considered that each agent has to follow the
same reference provided by an exosystem, whose
structure is known. Under such assumption, ev-
ery agent is capable of computing the exosystem
state by means of an observer. This approach
is similar to the one presented in [18], however,
the difference with the present work is that here,
the observer depends only on the outputs of the
neighbors of each agent. The proposed approach
starts by computing a local feedback control law for
all the linear systems that compose the switching
dynamics of an agent. Such local feedback control
is computed to ensure the existence of a com-
mon Lyapunov function to all linear systems of the
agent, and this global Lyapunov function is used
to guarantee the stability of the switched regulation
and consensus error.

This work is organized as follows. Preliminary
results used for the aims of this work are presented
in Section 2, along with some basic notation. In
Section 3, the problem of distributed output con-
sensus and output regulation of multi-agent sys-
tems under switching communication topologies is
defined. The main result and its development is
shown in Section 4. An illustrative example is pre-
sented in Section 5, and finally, some conclusions
are presented in Section 6.
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2 Notation and Preliminaries

2.1 Graph Theory and Communication
Topology

The exchange of information among the agents
of a system is commonly described by a graph
G = (ϑ, Φ,A), where ϑ is a set of nodes (agents),
Φ ∈ ϑ × ϑ is a set of edges that connect a
node to another (self edges are not allowed), and
A = [αi,j ] ∈ RN×N is its adjacency matrix contain-
ing positive weights describing the relationships
among nodes. The Laplacian L will be defined
as L = diag

{
ΣNj=1α1j · · ·ΣNj=1αNj

}
− A. An

edge (νi, νj) ∈ Φ means that node νj can get
information from node νi. If an edge (νi, νj) is
contained in Φ, this implies that the term αj,i of
the adjacency matrix is different from zero and
vice versa, nevertheless, it does not imply that
the edge (νj , νi) is also contained in Φ. The set
of neighbors of node i will be denoted by Θi =
{νj : (νj , νi) ∈ Φ, j = 1, . . . ,N} and by ρi =|Θi| its
cardinality.

Let G be a connected graph in which no cycles
exist; then it is called a tree. A graph G is said to
have a spanning tree if every one of its nodes and a
subset of its edges form a tree, which means that at
least one of the nodes has a communication path
to every other node.

In this work, given that switching communica-
tion topologies are considered, a switching graph
becomes necessary. A switching graph will be
defined as G%t = (ϑ, Φ%t ,A%t), where %t : [t0,∞)→
{1, . . . , γ} is the switching signal that determines
the communication topology at time t. It will be
considered that the set of nodes ϑ is constant and
that the condition (νi, νj) ∈ Φ%t ⇒ (νj , νi) /∈ Φ%t
is met. The set of neighbors of node i at time
t, Θi%t

, will be defined analogously as Θi%t
=

{νj : (νj , νi) ∈ Φ%t , j = 1, . . . ,N} and ρi%t =|Θi%t
|

its cardinality.

2.2 Switched Linear Systems

A Switched Linear System (SLS) V = 〈F ,σt〉
is a hybrid dynamical system where F =

{Σ1, Σ2, · · · , Σk} is a collection of linear systems
of the form

Σσt

{
ẋ(t) = Aσtx(t) +Bσtu(t); x(t0) = x0,

y(t) = Cx(t),
(1)

where σt : [t0,∞)→ {1, . . . , k} is the switching sig-
nal that determines the evolving linear dynamics,
x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rq, are the state,
input and output variables, respectively, and Aσt

,
Bσt

and C, σt ∈ {1, . . . , k} are constant matrices
of appropriate dimensions.

Remark 1 In systems as (1), it is often considered
that y(t) = Cσt

x(t), but for the objective of this
work we restrict ourselves to consider systems of
the form (1) with Cσt

= C for all σt ∈ {1, . . . , k}.

2.2.1 Lyapunov Stability

The switched linear system (1) under a state feed-
back control

u(t) = −Kσtx(t), (2)

is uniformly asymptotically stable if there exist a
positive constant g and a class KL function f such
that for all switching signals σt the solutions of (1)
with |x(0)| ≤ g satisfy

|x(t)| ≤ f(|x(0)|, t), ∀t ≥ 0. (3)

If the inequality (3) is valid for all switching sig-
nals and all initial conditions, the system (1) under
a state feedback control (2) is globally uniformly
asymptotically stable (GUAS).

A positive definite continuously differentiable
function V : Rn → R is a common Lyapunov
function for the family of systems F if there exists
a positive definite continuous function Q : Rn → R
such that

∂V

∂x
(Aσt

−Bσt
Kσt

)x(t) ≤ −Q(x(t)), ∀x(t), ∀σt.
(4)

Then, the following result on stability can be
stated.

Lemma 1 (Theorem 2.1 [8]) If all systems in
the family F with control (2) share a radially
unbounded common Lyapunov function V (x(t)),
then the switched system (1) is globally uniformly
asymptotically stable (GUAS).
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This result assures the stability of the SLS sys-
tem under any switching sequence. It is important
to mention that if a common Lyapunov function for
the SLS is not found, it is not enough proof to
assert that a SLS is unstable.

The following result from [13] will be used after-
wards.

Lemma 2 If there exist a symmetric positive defi-
nite matrix P ∈ Rn×n and matrices Zσt

∈ Rm×n,
σt = {1, · · · , k}, such that

Aσt
P + PATσt

−Bσt
Zσt
− ZTσt

BTσt
< 0,

then the switched control law (2) with

Kσt = ZσtP
−1,

assures the closed-loop stability of the switched
system (1).

In this way, it is possible to state the problem of
finding a common Lyapunov function for a SLS
system as a Linear Matrix Inequality (LMI) problem
to compute a switched state feedback.

2.2.2 Output Regulation

Let the system

ω̇(t) = Sω(t), (5)

where ω(t) ∈ Rp and S ∈ Rp×p, be an exosystem
from which a reference yr(t) = Rω(t) will be de-
fined for an SLS system and consider the input to
the SLS as

u(t) = −Kσt
x(t) + Γσt

ω(t). (6)

Then, from [10], the problem of Output Regula-
tion via Full Information for SLS (ORFI) consists in,
given Aσt , Bσt , C, R, S and having full access to
x(t), and ω(t), finding a feedback control law of the
form (6) such that

i) system (1) with control (2) is asymptotically
stable under arbitrary switching laws, and

ii) for each initial condition x0, the solution x(t) of
system (1) with (6) is such that y(t)− yr(t) tends to
zero uniformly under arbitrary switching laws.

Consider the following hypotheses.

Hypothesis 1 (H1) System (5) is antistable, i.e.
all the eigenvalues of S have nonnegative real part.

Hence, it is guaranteed that the reference will never
tend to zero and will be continuously changing.

Hypothesis 2 (H2) The pair (R,S) is detectable.

Hypothesis 3 (H3)
a) System (1) with control (2) has a common

Lyapunov function.
b) There exists a solution matrix Πj to the follow-

ing equation

ΠσtS = (Aσt −BσtKσt)Πσt +BσtΓj
0 = CΠσt −R σt = 1, 2, · · · , k.

Hypothesis 4 (H4) It will be considered that the
evolving dynamics of system (1) and its switching
instants are always known.

Lemma 3 ([10], Theorem 1) Assume (H1) and
(H3). Then the ORFI of switched system (1) is
solvable only if ∀h,σt, h,σt = 1, 2, · · · , k, the fol-
lowing condition holds:

C(Al −BlKl)
m(Πh −Πσt) = 0,

m = 0, 1, · · · , s l = h,σt,

where s is the index of the pair ( C, Aσt
−Bσt

Kσt
).

A more restrictive condition is given if (Aσt
−

BσtKσt , C) is observable, as in the following result.

Lemma 4 ([10], Theorem 2) Assume (H1), (H3),
and that (Aσt

− Bσt
Kσt

, C), σt = 1, 2, · · · , k is
observable. Then the ORFI of (1) is solvable if and
only if Πh = Πσt , for h,σt = 1, 2, · · · , k.

From Lemma 3, it is clear that under Hypotheses
(H1) and (H3) a sufficient condition for the problem
of ORFI to be solvable is the following: if the subset
of observable states of every subsystem Σh ∈ F
is the same, the elements of Πh corresponding to
observable states have to be equal to those of Πσt

for h,σt = 1, 2, · · · , k.
A class of SLS systems that satisfies the previ-

ous condition is the class of SLS systems of the
form
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ẋ1

ẋ2

ẋ3

 =

 A1 A2 0
A3,σt A4,σt 0
A5,σt A6,σt A7,σt

x1

x2

x3

+

 0
B1,σt

B2,σt

u
y(t) =

[
C1 0

] [xη(t)
x3(t)

]
,

(7)

for σt = 1, 2, · · · , k, where x1(t) ∈ Rη−q, x2(t) ∈
Rq, x3(t) ∈ Rn−η, u(t) ∈ Rm, q ≤ m, B1,σt

is a
full row rank matrix. The submatrices A1 and A2

represent the non-switching part of the system.

Additionally, let

Aησt
=

[
A1 A2

A3,σt A4,σt

]
, Bησt

=

[
0

B1,σt

]
,

xη(t) =

[
x1(t)
x2(t)

]
,

the subsystem

ẋη(t) = Aησt
xη(t) +Bησt

u(t), (8)

must be controllable.

The values of Πi corresponding to the observ-
able part of the linear subsystems are determined
by their non-switching part, therefore they are
equal for every linear subsystem. The subsystem
ẋ3(t) = A7,σtx3(t) +B2,σtu(t) represents the unob-
servable part of the system.

The previous systems (7) are introduced to be
used in the simulation example. It is worth noting
that the results presented are not restricted to such
systems.

3 Problem Statement

Consider a MAS consisting of N agents with differ-
ent SLS dynamics of class (7) described by

ẋi(t) = Ai,σit
xi(t) +Bi,σit

ui(t) i = 1, . . . ,N
yi(t) = Cixi(t) σit = 1, . . . , ki

(9)
where, xi(t) ∈ Rni is the state, ui(t) ∈ Rmi the
control, and yi(t) ∈ Rq the output of the i-th agent,

and a virtual reference agent whose dynamics is
represented by the exosystem (5) with output

y0(t) = Rω(t) (10)

where R ∈ Rq×p.

Remark 2 It is considered that rank{Ci} = q,∀i.

Let G%t be a switching graph representing com-
munication among the SLS agents of system (9) to-
gether with the exosystem (5) where %t : [t0,∞)→
{1, . . . , v} is the switching signal that determines
the evolving communication topology, then the fol-
lowing hypothesis is assumed.

Hypothesis 5 (H5) The graph G%t does not con-
tain loops, (νi, νj) ∈ Φ%t ⇒ (νj , νi) /∈ Φ%t , and
incorporates a spanning tree with root on νr%t , the
reference agent for a given %t.

For a MAS, the consensus is achieved by the
states of the agent if all of them converge to the
same value. In this work only the output is con-
sidered in the consensus, i.e., it is required that
limt→∞ |yi − yj | = 0 for all i, j = 0, 1, . . . ,N .
Additionally, the output regulation deals with the
problem of a system following an exosystem where
limt→∞ |Cx(t) − Rω(t)| = 0. Now, we define the
switching i-th agent output consensus and output
regulation error as

ζi%t (t) =
N∑
j=1

αi,j,%t [(yi(t)− yj(t))]

+αi,0,%t [(yi(t)− y0(t))] .
(11)

Note that the weight αi,j,%t is zero if agent i does
not receive information from agent j , similarly, the
weight αi,0,%t applies to the difference between the
i-th agent output and the virtual agent (reference)
output (10). Remember that these weights depend
on %t (the evolving communication topology).

Thus, the problem of distributed output regula-
tion and output consensus of SLS multi-agent sys-
tems under switching interaction topologies con-
sists in obtaining a distributed control law such
that every agent output consensus and tracking
error ζi%t (t) tends to zero asymptotically under any
communication switching sequence of %t.

This problem is addressed and solved in the next
section.
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4 Distributed Output Regulation and
Output Consensus Control

For ease of notation and without loss of generality,
consider the controllable part (8) of N SLS agents
in the form (7) as in (9).

Given that only a subset of the SLS agents will
have access to reference (10) and none of them
to the exosystem state (5), the following observers
are proposed:

˙̂ωi(t) = Sω̂i(t) +
κi
ρi%t

( ∑
j∈Θi%t

yj(t) − ρi%tRω̂i(t)

)
,

(12)
where κi is such that the matrix (S − κiR) is Hur-
witz. Now, set the distributed output regulation
control law as

ui(t) = −Ki,σit
xi(t) + Γi,σit

ω̂i(t), (13)

for σit ∈ {1, · · · ki}. Note that control (13) is of form
(6) and depends on the exosystem observer state
ω̂i(t).

Define the i-th observer error as

ω̃i(t) = ω(t)− ω̂i(t), (14)

hence, its dynamics will be described by

˙̃ωi(t) = Sω̃i(t)−
κi
ρi%t

 ∑
j∈Θi%t

yj(t)− ρi%tRω̂i(t)

 .

(15)
Consider that Hypothesis (H3) is met, then the

i-th agent regulation error can be defined as

ei(t) = xi(t)−Πiω̂i(t), (16)

and its dynamics is given by

ėi(t) = (Ai,σit −Bi,σitKi,σit) ei(t)

−Πi
κi
ρi%t

( ∑
j∈Θi%t

yj(t)− ρi%tRω̂i(t)

)
.

(17)
From (14) and (16), we have that

yi(t) = Cixi(t)
= Ci (ei(t) + Πiω̂i(t))
= Ci (ei(t) + Πi (ω(t)− ω̃i(t)))
= Ciei(t) +R (ω(t)− ω̃i(t)) .

(18)

In order to save space, let us work with the
second term in (15) substituting yj as in (18):∑
j∈Θi%t

yj(t)− ρi%tRω̂i(t) = −ρi%tRω̂i(t)

+
∑

j∈Θi%t

{R (ω(t)− ω̃j(t)) + Cjej(t)} .

(19)
Hence,∑

j∈Θi%t

yj(t)− ρi%tRω̂i(t) = −ρi%tRω̂i(t)

+ρi%tRω(t) +
∑

j∈Θi%t

(Cjej(t)−Rω̃j(t))

(20)
and ∑

j∈Θi%t

yj(t)− ρi%tRω̂i(t) = ρi%tRω̃i(t)

+
∑

j∈Θi%t

(Cjej(t)−Rω̃j(t)) .
(21)

Using (21) we can restate the i-th observer and
regulation error dynamics (15), (17) as

˙̃ωi(t) =
κi
ρi%t

( ∑
j∈Θi%t

(Rω̃j(t)− Cjej(t))

)
+ (S − κiR) ω̃i(t)

(22)

ėi(t) = Πi
κi
ρi%t

∑
j∈Θi%t

(Rω̃j(t)− Cjej(t))

+(Ai,σit −Bi,σitKi,σit)ei(t)−ΠiκiRω̃i(t).
(23)

Define the i-th agent observer-regulation error
as

ξi(t) =

[
ω̃i(t)
ei(t)

]
, (24)

and SLS multi-agent observer-regulation error as

ξ(t) =
[
ξT1 (t) ξT2 (t) · · · ξTN (t)

]T
. (25)

Consider that Hypothesis (H5) is met, then given
any communication topology Gγ0 , there exists an
order for the systems (Oγ0 ), such that the Laplacian
Lγ0 is a lower triangular matrix. Thus, reordering
the agents according to the order Oγ0 , the SLS
multi-agent observer-regulation error dynamics will
have a block lower triangular form

ξ̇γ0(t) = Āγ0ξγ0(t) (26)
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where the matrix Āγ0 can be described as follows:

Āγ0 =


Ω1,σ1t

0 · · · 0
β2,1 Ω2,σ2t

· · · 0
...

. . .
...

βN ,1 βN ,2 · · · ΩN ,σNt

 (27)

with indexes according to the order Oγ0 and
switched matrix blocks

Ωi,σit
=

[
S − κiR 0

−ΠiκiR Ai,σit −Bi,σitKi,σit

]
, (28)

on its diagonal, where ξ%t(t) = T%tξ(t) for %t = γ0

and T%t ∈ RΣni×Σni is a transformation matrix,
which changes the order of the agents.

Hence, it is clear that the SLS multi-agent
observer-regulation error will have switched linear
dynamics

ξ̇(t) = Ã%tξ(t), (29)

where Ã%t ∈ RΣni×Σni .
Now the main result of this work can be stated.

Theorem 1 Let N SLS agents be of form (7),
with a switching communication topology such that
Hypothesis (H5) is met. Consider also, that Hy-
potheses (H1)-(H4) are met, then the distributed
output regulation and output consensus of the SLS
multi-agent system can be solved by a control law
of form (13).

Proof: Consider an SLS multi-agent system with
agents of the form (7), an exosystem (5) with output
(10), and control law (13).

Then, under Hypothesis (H5) and a given order
Oγ0 , the corresponding SLS multi-agent observer-
regulation error will have form (26). Given Hypoth-
esis (H3), the switched block matrices Ωi,σit

are
such that there exist positive definite matrices Pi
and Qi,σit , for which the equations

ΩTi,σit
Pi + PiΩi,σit

= −Qi,σit
(30)

are met.
A common Lyapunov function for system (26) is

selected as

V (t) =

N∑
j=1

Vi(t), (31)

where
Vi(t) = ξi(t)

TPiξi(t). (32)

Consider V1(t), whose derivative

V̇1(t) = −ξ1(t)TQ1,σ1tξ1(t), (33)

is clearly negative, independent from the value of
ξ1(t). Thus, the observer-regulation error ξ1(t) is
stable. For V2(t) its derivative is

V̇2(t) = −ξ2(t)TQ2,σ2tξ2(t) + ξ1(t)TβT2,1P2ξ2(t)
+ξ2(t)TP2β2,1ξ1(t),

(34)
hence, given the stability of ξ1(t), the terms with
β2,1 will become zero and the derivative of V2(t)
will be negative, therefore, the observer-regulation
error ξ2(t) is stable. The same reasoning can be
applied to the rest of the Vi(t)’s:

V̇i(t) =
∑

j∈Θi%t

ξi(t)
TβTσit,i

Pσit
ξσit

(t)

+
∑

j∈Θi%t

ξσit
(t)TPσit

βσit,iξi(t)

−ξi(t)TQi,σitξi(t).

(35)

In this way, we conclude that the derivative of the
common Lyapunov function (31) is negative, and
as a result, the observer-regulation error (26) is
stable.

Given that the diagonal blocks are always the
same for a given agent, the previous procedure can
be carried out for any order O%t , then function (31)
is a common Lyapunov function for the observer-
regulation error system (29), which is thus ulti-
mately bounded.

Finally, given the stability of the observer-
regulation error (29), the following holds in steady
state

ω̂i(t) = ω(t), (36)
xi(t) = Πiω(t), (37)
yi(t) = Rω(t), (38)

thus, the i-th output consensus and tracking error
ζi%t (t) = 0 for i = 1, 2, · · · ,N . �
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5 Example

The following example illustrates the results pre-
sented in this paper. Consider 3 agents with the
dynamics

ẋi = Ai,σit
xi +Bi,σit

ui,

yi = Cixi,

where

A1,1 =

 1 2 3 6
9 −2 4 0
0 0 1 −3
7 4 −1 −1

 , B1,1 =

 0 0
0 0
1 2
7 0

 ,

A1,2 =

 1 2 3 6
9 −2 4 0
4 −2 5 1
6 2 5 −3

 , B1,2 =

 0 0
0 0
4 0
0 1

 ,

C1 =

[
0 0 0 1
1 2 0 0

]
, A2,1 =

[
0 1 0

−2 −1 0
4 7 −7

]
,

A2,2 =

[
10 −1 0
−3 1 0

9 −3 −1

]
, A2,3 =

[
1 0 0
1 0 0
0 1 −2

]
,

B2,1 =

[
0 3
1 2
0 1

]
, C2 =

[
1 1 0
0 2 0

]
,

A3 =

 −3 0 0 5
3 2 0 3
1 4 −2 0
0 −2 −2 −1

 , B3,1 =

 1 0
0 0
0 0
2 1

 ,

B3,2 =

 1 2
0 0
0 0
0 1

 , C3 =

[
1 1 0 0
2 0 0 3

]
,

with initial conditions

x1(0) =

[
1
0

−1
3

]
, x2(0) =

[
5
1

−6

]
, x3(0) =

[
5

−2
−4

2

]
.

The communication topology of the multi-agent
system, including the systems above, is consid-
ered to be switching every 250 milliseconds on a

cyclic sequence {1, 2, 3, 4, 1, · · · } according to the
following Laplacian matrices

L1 =


0 0 0 0
−1 1 0 0
0 −1 2 −1
0 −1 0 1

 ,L2 =


0 0 0 0
0 1 −1 0
−1 0 1 0
0 −1 0 1



L3 =


0 0 0 0
0 2 −1 −1
0 0 1 −1
−1 0 0 1

 ,L4 =


0 0 0 0
−1 2 0 −1
0 −1 1 0
−1 0 0 1


Note that the first row corresponds to the refer-

ence node, hence, the minus one in the first column
indicates which agent receives the virtual agent’s
output.

Let the reference exosystem be

ω̇ =

 0 −2 0
2 0 0
0 0 0

ω,

consider the initial conditions

ω(0) =

 1
−1

1

 ,

and take the reference matrix as

R =

[
2 0 1
0 1 1

]
.

From Lemma 2, the stabilizing feedback matri-
ces calculated for the system by a LMI as in [13]
are

K1,1 =

[
1.14 0.63 −0.05 0.63
6.31 1.91 6.31 3.29

]
,

K1,2 =

[
4.47 0.62 4.15 2.81
6.89 2.43 5.53 2.37

]
,

K2,1 =

[
−4 2.33 0

1 0.33 0

]
,

K2,2 =

[
−11.66 5.66 0

4.33 −0.33 0

]
,

K2,3 =

[
−1.66 4 0

1.33 0 0

]
,
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K3,1 =

[
11.05 22.59 2.80 12.38

−22.54 −50 −9.85 −19.83

]
,

K3,2 =

[
12.10 32.63 11.27 2.68
−0.49 −4.94 −4.23 4.88

]
,

and the corresponding Γ matrices are given by

Γ1,1 =

[
1.41 −0.56 0.72

−3.77 1.83 −1.66

]
,

Γ1,2 =

[
−1.54 0.78 −0.65

9.83 −3.96 5.03

]
,

Γ2 =

[
−2.33 5.66 1

1.66 −1.83 0.5

]
,

Γ3,1 =

[
4.73 5.92 −22.35

−16.87 −5.96 44.69

]
,

Γ3,2 =

[
19.31 −5.56 −22.94
−7.32 5.79 0.17

]
.

The references and the trajectories of the out-
puts of the multi-agent system obtained in simu-
lation are shown in Fig. 1 and Fig. 2. As it
can be seen, the outputs yi,1 and yi,2 follow the
same trajectory and converge to the same refer-
ence, respectively. The exosystem ω is in this case
composed by a sine function ω1, a cosine function
ω2, and a constant ω3 = 1. The value of the
reference is attained by every output.

Fig. 1. Outputs reaching formation and tracking

Fig. 3 displays the behavior of the regulation
error (17), while Fig. 4 displays the regulation
error with respect to the state of the exosystem
errori = xi − Πiω. From these figures, it can

Fig. 2. Outputs reaching formation and tracking

be observed that most of the errors tend to zero
except the dashed lines on errors of system 2 that
remain bounded.

The dashed lines on the errors of system 2 do
not decay to zero because the corresponding state
does not share the same terms on the correspond-
ing matrix Π. But this error does not affect the
regulation given that such a state is not observable.

Fig. 3. Output regulation and consensus error ei = xi −
Πiω̂.

6 Conclusions

This work presented the design of a distributed
control law for output consensus and output reg-
ulation for a group of SLS agents of class (7) under
switched communication topologies.
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Fig. 4. Output regulation and consensus error errori =
xi − Πiω.

The proposed strategy achieves the output reg-
ulation and consensus of the SLS multi-agent sys-
tem, under switching communication topologies,
preserving a desired formation even when only a
subset of the agents has access to the reference,
and none of them have access to the state of the
exosystem.

The observer-regulation error stability is guaran-
teed by properly selecting the stabilizing error feed-
back Ki,σit to assure the existence of a common
Lyapunov function for the i-th system.

The results of this paper can be extended by
dropping assumption (H4) applying the results pre-
sented in [5]. Also, a study of other control tech-
niques in order to deal with discrete communication
with delays can be performed.
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5. Gómez-Gutiérrez, D., Celikovský, S., Ramı́rez-
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