
Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 445–456
doi: 10.13053/CyS-19-3-2023

ISSN 2007-9737

Integration of an Inverse Optimal Neural Controller with Reinforced-
SLAM for Path Panning and Mapping in Dynamic Environments

Alma Y. Alanis, Nancy Arana-Daniel, Carlos Lopez-Franco, Edgar Guevara-Reyes

Universidad de Guadalajara, CUCEI, Zapopan, Jalisco,
Mexico

{almayalanis, nancyaranad, clzfranco}@gmail.com, guevara_1@hotmail.com

Abstract. This work presents an artificial intelligence

approach to solve the problem of finding a path and
creating a map in unknown environments using
Reinforcement Learning (RL) and Simultaneous
Localization and Mapping (SLAM) for a differential
mobile robot along with an optimal control system. We
propose the integration of these approaches (two of the
most widely used ones) for the implementation of robot
navigation systems with an efficient method of control
composed by a neural identifier and an inverse optimal
control in order to obtain a robust and autonomous
system of navigation in unknown and dynamic
environments.

Keywords. Optimal neural control, reinforced-SLAM,

path panning, mapping, dynamic environments.

1 Introduction

In order to achieve autonomous navigation, a
robotic system must be able to interact with the
environment, recognize, and reconstruct it, and
choose and execute an appropriate action using a
low level control system to accomplish its goal
[1, 2, 3]. However, for a robot to be truly
independent and able to cope with real
environments, it has to solve many subtasks [4]
such as 1) to map the environment and know
where it itself is located in this map, this is the
Simultaneous Localization and Mapping (SLAM)
problem, 2) to plan paths and react to unexpected
changes in the environment (the local and global
path planning problem) and to have an efficient
control algorithm, 3) to follow the paths planned
(the control problem).

For autonomous robot navigation, an extensive
class of controllers has been proposed for mobile
robots [3–10]. Most of these references present

only simulation results and the controllers are
implemented in continuous time. A common
problem when applying the standard control theory
is that the required parameters are often either
unknown at times or are subject to a change during
operation. For example, the inertia of a robot as
seen at the drive motor has many components
which might include the rotational inertia of the
motor rotor, the inertia of gears and shafts, the
rotational inertia of its tires, the robot’s empty
weight, and its payload. Worse yet, there are
elements between these components such as
bearings, shafts, and belts which may have spring
constants and friction loads [11].

Additionally, it is required to have an efficient
method that integrates the algorithms which solve
the above problems into a robust and real time
system. This last issue is the one that this work
solves with the use of intelligent algorithms that
belong to the state of the art of robot navigation,
control, and mapping for a kind of robots known as
electrically nonholonomic mobile robots (Figure 1).
The kind of robots used within this work is a
common class of very popular robots with many
useful applications in different fields: industrial,
military, medical, search and rescue, and even
educational fields. The state space model of the
robot shown in Figure 1 can be expressed as
follows [3, 12, 13, 14]:

 

  

 

1 1 2

1

2 1 2 2 3

1

3 3 2

,

,

,

d t

a a E

x J x x

x M C x x Dx NK x

x L u R x NK x







    

  

(1)

where each subsystem is defined as

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 445–456
doi: 10.13053/CyS-19-3-2023

Alma Y. Alanis, Nancy Arana-Daniel, Carlos Lopez-Franco, Edgar Guevara-Reyes446

ISSN 2007-9737

1

2

11

1 12

13

21 1

2

22 2

31

3

32

,

,

a

a

x X

x x Y

x

x v
x

x v

ix
x

x i



   
   

 
   
      

   
    
   

  
    

    

(2)

in which 11x = X , 12x = Y are the coordinates of

0P ; 13x =  is the heading angle of the mobile

robot; 21x = 1v , 22x = 2v represent the angular

velocities of the right and left wheels; and

31x =
1ai , 32x =

2ai represent motor currents of

the right and left wheels; and

 

   

   

 

13 13

1 13 13

1 1

13 12

12 11

131 2

13

11

22

cos cos

0.5 sin sin ,

,

0
0.5 ,

0

0
,

0

c

x x

J x r x x

R R

m m
M

m m

x
C k rR r m d

x

d
D

d

 



 
 

  
 
 

 
  
 

 
  

 

 
  
 

(3)

 

 

 

1 2

2 2 2

11

2 2 2

12

2 2

1 2

0.25 ,

0.25 ,

2 ,

2 2 ,

,

,

w

c w

c w c m

T

T

d d d

m R r mR I I

m R r mR I

m m m

I m d m R I I

  

  





  

 

 

   



   

(4)

where R is half of the width of the mobile robot

and r is the radius of the wheel, d is the distance

from the center of mass cP of the mobile robot to

the middle point 0P between the right and left

driving wheels, cm and wm are the masses of the

body and the wheel with a motor, respectively, cI ,

wI , and mI are the moments of inertia of the body

about the vertical axis through cP , the wheel with

a motor about the wheel axis, and the wheel with a
motor about the wheel diameter, respectively. The

positive terms iid , 1, 2i  , are the damping

coefficients,
2  is the control torque applied to

the wheels of the robot,
2

d  is a vector of

disturbances including unmodeled dynamics.

1 2T t tK diag k k    is the motor torque constant,

1 2

T

a a ai i i    is the motor current vector,

2u is the input voltage,
1 2a a aR diag r r   

is the resistance,
1 2a a aL diag l l    is the

inductance,
1 2E e eK diag k k    is the back

electromotive force coefficient, and

 1 2N diag n n is the gear ratio. Here,  diag 

denotes the diagonal matrix. The model is
discretized using the Euler Methodology.

The paper is organized as follows. Section 2
presents the method that integrates the SLAM
algorithm with a Reinforcement Learning (RL)
algorithm in order to obtain a system which
simultaneously maps the environment, localizes
the robot, and learns a navigation policy which
allows the robot to plan paths (global and local
paths) which is needed to deal with dynamic

Fig. 1. Nonholonomic mobile robot (or car-like
robot) with two actuated wheels

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 445–456
doi: 10.13053/CyS-19-3-2023

Integration of an Inverse Optimal Neural Controller with Reinforced-SLAM for Path Panning and Mapping in Dynamic ... 447

ISSN 2007-9737

environments. In Section 3, a Neural Control is
developed using a Recurrent High Order Neural
Network to identify the robot model; also it shows
an inverse optimal controller designed with the
Lyapunov Control Function to guide the robot to
follow the path planned with the navigation policy
learned with the RL in the map constructed with
SLAM. Section 4 shows the integration of the
described system (Planning-Identifier-Controller),
applied on a mobile robot in real time through
wireless communication.

2 Reinforcement Learning-SLAM

In this section we present the subsystem dedicated
to solve the tasks of path planning and mapping.
The system described [15] integrates RL with a
SLAM algorithm; it implements RL to learn to
define a relation between situations and actions to
maximize a numerical reward generated by the
response of the environment. RL begins with a
complete system that involves the environment
and a definite goal [16]. The task consists in a
series of actions that the robot has to perform to
achieve its goal; then the mission of the learner is
to find the action rules (policies) to optimally
achieve a certain goal through its interaction with
the environment. In this case the robot uses the RL

algorithm known as Q -Learning [17]. The optimal

Q value is defined as the sum of rewards obtained

by performing an action on a state and following
the optimal policy [17, 18]:

     

 

10

1 1

1 1

,

(,) ...

... max (,) (,)

k

k k k k k nn

k k

n

k k k k k

Q s a E R s E r

Q s a

r Q s a Q s a



 



 

 

 

 

 

  



 (5)

where from a state ks , the action ka selected from

the set A is performed by an agent; as a result the
agent receives a reward with an expected value

 ,k kR s a , and the current state changes to the

following state  1s k  according to the

probability transition function   1 ,k kP s k s a .

The  n parameter stands for the learning rate that

determines how much importance the system
gives to the reward 𝑟𝑘 obtained at time 𝑘 by taking

an action at state 𝑠𝑘, 𝛾 is the forgetting factor used
to weight the importance that the system gives to
long term rewards against immediate rewards. So
a Q-value tells us how good an action is given a
certain state.

Q-Learning algorithm was implemented in this
work to obtain an intelligent exploration agent with
capabilities to learn and to deal with dynamic
environments while it is mapping and locating itself
in its environments. The classic SLAM deals with
environments which are considered by definition,
static over time, so in dynamic environments, a
SLAM algorithm must somehow manage moving
objects. It can detect and ignore them; it can track
them as moving landmarks, but it must not add a
moving object to the map and assume it is
stationary. The conventional SLAM solution is
highly redundant. As noted in [19], landmarks can
be removed from the map without loss of
consistency, and it is often possible to remove
large numbers of landmarks with little change in
convergence rate. This property has been
exploited to maintain a contemporaneous map by
removing landmarks that have become obsolete
due to changes in the environment. To explicitly
manage moving objects, [20, 21] implemented an
auxiliary identification routine and then removed
the dynamic information from a data scan before
sending it to their SLAM algorithm. Conversely, in
[22] moving objects are added to their estimated
state and models are provided for tracking both
stationary and dynamic targets. Simultaneous
estimation of moving and stationary landmarks is
very costly due to the added predictive model. For
this reason, our implemented solution involves a
stationary fast-SLAM update combined with a
simple RL module to deal with moving objects.

The agent continues selecting and executing
actions (learned with RL), creating a path of states
visited until it arrives to the desired position. When
the training (RL process) is complete, the system
uses SLAM during the exploration phase to make
a reconstruction of the environment. When the
system faces a dynamic environment in which it is
hard to locate itself through SLAM, it uses the
experience previously obtained with RL to guide
the robot to a goal with the correct action, and the
new environment information which is obtained by

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 445–456
doi: 10.13053/CyS-19-3-2023

Alma Y. Alanis, Nancy Arana-Daniel, Carlos Lopez-Franco, Edgar Guevara-Reyes448

ISSN 2007-9737

navigating with RL is added to the map constructed
with the SLAM algorithm [1, 2]. The SLAM problem
requires a probability distribution function which is

calculated for any time k . This probability

distribution describes the posterior density of the
location of both the robot and the characteristics of

the map at a time k [23, 24]:

 

   
 

0: 0: 0

0: 1 0: 0

0: 0:

, , ,

, , , ,

,

k k k

k k k k k

k k k

P x m Z U x

P z x m P x m Z U x

P z Z U




 (6)

where kx is the robot position at the time k , m is

the map of the environment, 0: 1kZ  and 0: 1kU  are

the sequence of observations and the sequence of

control actions, respectively, from time 0 to time

1k  , 0x is the initial position of the robot. Eq. 6 is

known as the Bayes filter, and it is a popular form
of inference mapping due to its recursive
formulation, allowing additional observations to be
incorporated into the posterior density efficiently.

A lot of techniques have been proposed so far
to implement the solution to the SLAM problem; the
main difference between the different approaches
is the representation of the environment and the
representation of uncertainty when a technique
builds the map and estimates the position of the
robot [25]. Two of the most important solutions that
have gained great acceptance are the Extended
Kalman Filter (EKF) SLAM and the fast-SLAM [18],
of which the second approach will be used
because of the advantages provided by it [26] such
as the number of features that can de handled
(near 50,000 in simulated environments) and the
logarithmic execution time (against quadratic time
of EKF-SLAM). The reader can found in [24] a
profound explanation of the algorithms mentioned.

With the obtained information, the system is
capable of getting a path and constructing a map
of the environment; however, to move the agent
mobile robot, a control system is needed. Such
system must give the correct action as the robot
moves through the path designed by the RL.

3 Controller

To deal with the problem of following the path
planned in the map created in Section 2, the
implemented low control system uses a neural
network approach that is presented in this section.
When the neural network control approaches are
presented, it is generally understood that a neural
network is responsible for calculating the control
action, but this can be divided in two groups: direct
control and indirect one. In the first method, the
control is performed by the neural network, in the
second method indirect control is always based on
models, and the objective is to use a neural
network to identify the system model [27, 28].

The plant information is obtained by running the
application in order to acquire a lot of data to
describe the system behavior. This process
consists in obtaining the parameters that best
arrange the association between inputs and
outputs. The goal of this stage is focused on giving
the system a known input and observing how the
system output behaves [27].

3.1 Neural Control

For control tasks, we use the high order extension
of the Hopfield model called RHONN, which has a
greater interaction between neurons; it is very
flexible and allows the incorporation of a priori
information about the structure of systems to the
neural model. Now consider a MIMO system
(multiple inputs, multiple outputs) [13]

      1
,

k k k
x F x u


 . (7)

To identify the system we use a RHONN [16,
17] defined as

        1
ˆ ˆ ,T

ii k i k i k k
x w z x u


 , (8)

where ˆ
ix is the state of the i -th neuron with

 1,2, ,i n , iw is the online adapted weight

vector, and
    ˆ ,i i k k

z x u is given by

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 445–456
doi: 10.13053/CyS-19-3-2023

Integration of an Inverse Optimal Neural Controller with Reinforced-SLAM for Path Panning and Mapping in Dynamic ... 449

ISSN 2007-9737

    

 

 

 

1

1
1

2

2
2ˆ ,

ij

ij

Li
ijL

Li

d

ijj I
i

d

i ijj I
i i k k

di

ijj I

z

z
z x u

z













 
  
  
  

    
  
   
 
 







, (9)

iL is the number of high order connections,

1 2, , ,
iLI I I is a collection of non-ordered

subsets, 1,2,3, ,n m , n is the state

dimension, and m is the number of external inputs,

with  ijd  being non-negative integers, and i

defined as

  

  
 

 

1
1

1
1

k
i

in n k
i

in
k

in m

m k

S x

S x

u

u














 
   
   
   
   

    
   
   
   
    

 

, (10)

in which  1 2

T

mu u u u is the input vector

to the neural network and  S  is defined as

 
1

, 0
1

S
e 

 


 


, (11)

where  is a real value variable.

Consider the problem to approximate the
general discrete time nonlinear system (7) by the
following RHONN representation [17]:

        1
ˆ ,

i

T

i zi k i k i k k
x w z x u e


  . (12)

In this case ix represent the state model,
ize is

a bounded approximation error which can be
reduced by increasing the value of the adjustable

weights. Assume that an ideal weight vector *

iw

exists, the ideal weight vector iw is an artificial

quantity required for analytical purpose, such that

ize can be minimized on i

i

L

z  ; iw is an

estimation defined as

   
*

ii k i k
w w w  , (13)

iw is used for the stability analysis and *

iw is a

constant:

       1 1i k i k i k i k
w w w w

 
   . (14)

Training of neural networks with EKF for both
static networks and recurrent networks has proven
reliable and practical for many applications. For the
training of a neural network based on EKF, the
weights become the state to be estimated. The
objective of training is to find the optimal weight
values that minimize the prediction errors. EKF is
described as [18, 23]

       

       

           

1

1

1

,

,

,

i k i k i k i k

ii k i k i k i k

T

i k i k i k i k i k i k

K P H M

w w K e

P P K H P Q











 

  

 (15)

with

         

     

,

ˆ ,

T

i k i k i k i k i k

i k i k i k

M R H P H

e x x

  
 

 
 (16)

where  
iL m

i k
K


 is the Kalman gain matrix,

 
iL

i k
w  is the weight (state) vector,

 
i iL L

i k
P


 is the prediction error associated

covariance matrix,  
i iL L

i k
Q


 is the state noise

associated covariance matrix,  
m m

i k
R  is the

measurement noise associated covariance matrix,

 
iL m

i k
H


 is a matrix for which each entry (ijH

) is the derivative of one of the neural network

outputs (ˆ
ix) with respect to one neural network

weight (ijw)

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 445–456
doi: 10.13053/CyS-19-3-2023

Alma Y. Alanis, Nancy Arana-Daniel, Carlos Lopez-Franco, Edgar Guevara-Reyes450

ISSN 2007-9737

 

 

ˆ
i k

ij

ij k

x
H

w

 
  

  

, (17)

iL is the total number of weights of the neural

network, ix is the i -th plant state component, ˆ
ix

is the i -th neural state component, i is a design

parameter. Usually, , ,i i iP Q R are initialized as

diagonal matrices with entries      0 , 0 , 0i i iP Q R

, besides they are bounded [23, 24].

3.2 Controller

The main purpose of an optimal control is to obtain
a control signal that causes the process to satisfy
some physical restrictions [27, 28]. Then for the
inverse optimal controller, the Lyapunov Control
Function (LCF) is designed in order to satisfy the
passivity condition. This states that a passive
system can be stabilized by making a negative

feedback from the output  k k
u y  , with 0 

              1
, ,

2

T
T

k ref k k ref k k ref k
V x x x x K PK x x   (18)

where  ref k
x is the desired path and K is a gain

matrix further introduced to modify the rate of
convergence of the tracking error [29, 30]:

           

         

1
,

.

k k k k k

k k k k

x f x g x u d

y h x j x u


  

 
 (19)

This solution is applied on the neural identifier
developed in Section 3 to obtain a discrete-time
neural model for the electrically driven

nonholonomic mobile robot with 5n  trained with

the EKF as follows:

           

           

           

           

           

           

           

1 1 11 11 12 12

2 1 21 11 22 12

31 1 31 11 32 12

4 1 41 11 42 12

143 21 44 31 11

5 1 51 11 52 12

253 22 54 32 12

ˆ ,

ˆ ,

ˆ ,

ˆ ,

,

ˆ ,

.

k k k k k

k k k k k

k k k k k

k k k k k

k k k k k

k k k k k

k k k k k

x w S x w S x

x w S x w S x

x w S x w S x

x w S x w S x

w S x w S x G u

x w S x w S x

w S x w S x G u











 

 

 

 

  

 

  

(20)

In order to facilitate the development of
equations, we rewrite the RHONN as

1

4 6

2

5 7

3

ˆ
ˆ ˆ

ˆ ˆ ˆ ˆ, ,
ˆ ˆ

ˆ

a b c

x
x x

x x x x
x x

x

 
    

      
     

. (21)

The goal is to force ˆ
bx to follow the desired

reference signal  ,
ˆ

T

a refx X Y  , this is

achieved with the designed control. In addition, we

force ˆ
cx to follow the previous control law

        1

2 2 1c bk k k k
u x w w z u    ; therefore,

 2
ˆ

c k
x u is the reference signal for the control law

 3 k
u leaving control laws as

             

        

         

1 1

1

1

ˆ ˆ ˆ, ,

1
ˆ ˆ ˆ ,

2

ˆ ˆ , .

T

i ii k iref k i k i k iref k

T

i i ii k i k i k

m i ii k i k i k iref k

h x x g x P f x x

J x g x Pg x

u I J x h x x

 





 



   
 

(22)

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 445–456
doi: 10.13053/CyS-19-3-2023

Integration of an Inverse Optimal Neural Controller with Reinforced-SLAM for Path Panning and Mapping in Dynamic ... 451

ISSN 2007-9737

Finally, the pseudo-code of the algorithm which
performs the integration between the planning (RL-
SLAM)-identifier-controller is shown in Algorithm 1.

4 Experimental Results

The proposed schemes are carried out in a
Matlab® and Simulink® (Matlab and Simulink are
registered trademarks of the MathWorks, Inc.)
environment, applied on a differential robot model
with sensors of vision and movement and sensor
readings corrupted by noise caused by wireless
transmission. The anatomy, various components,
and body axes of the Quanser (Quanser is a
registered trademark of Quanser Inc.) are shown
in Figure 2.

The Quanser Qbot is an innovative autonomous
ground robot system [31]. The vehicle is comprised
of an iRobot Create robotic platform, an array of
optional infrared and sonar sensors, and a
Logitech (Logitech is a registered trademark of

Logitech Inc.) Quickcam Pro 9000 USB camera,
the diameter of the vehicle is 34 cm, and its height
(without camera attachment) is 7 cm, it is driven by
two differential drive wheels and comes with a
bumper sensor and an omni-directional infrared
receiver. The Quanser Controller Module (QCM) is
an embedded system mounted on the vehicle,
which uses the Gumstix computer to run QuaRC,
Quanser’s real-time control software [31].

The Qbot is accessible through three different
block sets: the Roomba block set to drive the
vehicle, the HIL block set to read from sensors
and/or write to servo outputs, and, finally, the
OpenCV block set to access the camera. The
controllers are developed in Simulink with QuaRC
on the host computer through wireless
communication. This type of communication
implies noise, delays, and uncertainties, which are
absorbed by the neural network which learns in
real time the system behavior and is capable of
predicting the next state in order to avoid the
lost/corrupted information.

Fig. 2. Robot specifications

Algorithm.1 Planning-Identifier-Controller

1: Establish initial state and goal.

2: Obtain initial desired route Qk.

3: Initialize SLAM map P0 = 0, initial pose.

4: Get observations z0.

5: Add new features.

6: while current state (xk) ≠ Goal do

7: Update state map with zk, xk.

8: Update Qk based on the observed.

9: Search obstacles.

10: if obstacle then

11: Look for a new route in Qk and update map.

12: if No path found in Qk then

13: It is not possible to find a route.

14: else

15: Upgrade Path.

16: end if

17: end if

18: Neural identification.

19: Perform next control action uk.

20: Get odometry.

21: Get observations z0.

22: Perform prediction step of SLAM.

23: Perform measurement update of SLAM.

24: Add new features.

25: end while

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 445–456
doi: 10.13053/CyS-19-3-2023

Alma Y. Alanis, Nancy Arana-Daniel, Carlos Lopez-Franco, Edgar Guevara-Reyes452

ISSN 2007-9737

To test the proposed system, the environment
is established by a map which represents almost
completely the environment to explore, with initial
state (05; 01) and final goal (07; 13) (Figure 3). In
this case a map of 33x19 pixels is used obtaining
a total of 627 possible states and 5016 possible

actions, in this case each state represents
21/ 3 .m

Several experiments were conducted in order
to show the system capability to complete its goal
despite changing environments. The experiments
were performed with a sampling time of 0:05
seconds, a range of 33 cm vision for SLAM, an
ability to detect an obstacle 33 cm away, a rate of
0:05 m/s, and some positions blocked, then the
tests performed were adapted to the workbench.

As it was mentioned, the communication with
the robot is wireless, which implies loss of
information, noise, delays, uncertainties,
attenuations, fading, among other problems. Due
to the nature of the neural network used, the
algorithm is able to learn from the previous
experience generating its own weight distributions
on the links. This learning ability to organize the
information causes the power to appropriately
respond to data or situations to which the robot has
not been previously exposed.

Once the initial route is obtained, the navigation
is started following the path, but once an obstacle
is encountered by the SLAM observations, it
checks the map state action and avoids the
obstacle by decisions that come from the previous
experience. It is important to note that each optimal
route is modified by the robot in order to avoid
obstacles, since there is a little displacement
between the error in the pose estimation from
SLAM and the noise that the control actions and
data measurement have. Thus, the state map is
corrupted each time with noise in the route
planning part. This noise is discarded each time
the planning takes places, thus, each time the
system perceives a different map. The peaks on
the graphics are caused by dynamic obstacles or
unexpected changes on the environment; when
this occurs, RL is used to correct the path with the
learned optimal policy. Even though the changes
are fast, the RL responds in real time to these
changes as it can be seen in the figures. The
results obtained on the different tests between the
model (reference) and the system output for the X,

Y position and an angle  are shown in Figures 4

Fig. 3. Map and expected route for the test, where 1

pixel represents 1/3 meters and * are landmarks

Fig. 4. System and reference behavior, in which 1) X

position y 2) Y position in meters 3) angle in radians
(Test 1)

Fig. 5. System and reference, changing environment

with some obstacles in real time (Test 2)

Fig. 6. Position error between system and reference,

red: X position (cm), green: Y position (cm), blue:
angle (radians) (Test 1)

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 445–456
doi: 10.13053/CyS-19-3-2023

Integration of an Inverse Optimal Neural Controller with Reinforced-SLAM for Path Panning and Mapping in Dynamic ... 453

ISSN 2007-9737

and 5, including environment movement. Position
errors in tracking the trajectory can be seen in
Figures 6 and 7, respectively.

The results of on-line neural identification

performance for robot states  , ,X Y  are shown

in Figures 8 and 9. Finally, Figure 10 shows the
maps created in the performed tests from a real
environment as shown in Figure 11.

It is important to note that in this paper we do
not consider a comparative analysis with previous
works. In [32] a comparative analysis of the neural
controller against sliding mode controllers is
included, showing the superiority of the neural
controllers for mobile robot control.

Regarding the RL-SLAM system, it is also
relevant to mention that this integration allows the
robot to solve the simultaneous localization and
mapping problem (as it is done using any classical
SLAM solver) but, in addition and at the same time
and with the same information that is used to solve
the SLAM problem, the path planning problem is
solved thanks to the Reinforcement Learning
algorithm. So, on each navigation episode the
navigation agent 1) produces the map of the
unknown environment, 2) localizes itself at each
step of the navigation on this map, and at the same
time 3) solves the global path planning problem as
well as evades dynamic obstacles thanks to the RL
system (this last step is not performed by the SLAM
classical algorithms).

To summarize, in this work we achieved the
integration of RL with a SLAM algorithm and a
neural controller into a cycle in which the position
on the map of the navigation agent estimated by
SLAM is provided to the RL algorithm as input in
order for this to be capable to compute the action
that the neural controller has to execute to produce
and follow a path from a start to a goal state. The
action produced by the RL algorithm is sent as
feedback to SLAM to follow the cycle until the goal
state is reached.

4 Conclusions

A robot system capable of navigating unknown
environments even with uncertainties in the robot
model or in the environment has been developed.
This can be attained because a RHONN structure

Fig. 7. Details of a disturbance rejection made for the

neural network controller (Test 2)

Fig. 8. Identification errors, where (X,Y) positions are

in meters and  is angle in radians (Test 1)

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 445–456
doi: 10.13053/CyS-19-3-2023

Alma Y. Alanis, Nancy Arana-Daniel, Carlos Lopez-Franco, Edgar Guevara-Reyes454

ISSN 2007-9737

is used to design a neural identifier which is flexible
and robust to noise. The results show the
effectiveness of the proposed schemes; in
addition, the qualities of RL are added to the
algorithm to obtain a robust system capable of
handling unknown and long state dynamic noisy
environments.

Acknowledgements

The authors are thankful for the support by
CONACYT Mexico through Projects 103191Y,
106838Y, 156567Y, and INFR-229696.

References

1. Durrant-Whyte, H. & Bailey, T. (2006).

Simultaneous localization and mapping: part I. IEEE
Robotics & Automation Magazine, Vol. 13, No. 2,
pp. 99–110, doi: 10.1007/978-3-540-30301-5_38.

2. Durrant-Whyte, H. & Bailey, T. (2006).

Simultaneous localization and mapping (slam), part
II: State of the art. IEEE Robotics & Automation
Magazine, Vol. 13, No. 2, pp. 108–117.

3. Do, K., Jiang, Z.P., & Pan, J. (2004). Simultaneous

tracking and stabilization of mobile robots: an
adaptive approach. IEEE Transactions on
Automatic Control, Vol. 49, No. 7, pp.1147–1151.

4. Fu, K.S., Gonzalez, R.C., & Lee, C.S.G (1987).
Robotics: control, sensing, vision, and intelligence.
New York: McGraw-Hill.

5. Salome, A., Alanis, A.Y., & Sanchez, E.N. (2011).

Discrete-time sliding mode controllers for
nonholonomic mobile robots trajectory tracking
problem. Proc. of the 8th International Conference
on Electrical Engineering, Computing Science and
Automatic Control (CCE 2011), pp. 1–6, doi:
10.1109/ICEEE.2011.6106564.

6. Fierro, R. & Lewis, F.L. (1998). Control of a

nonholonomic mobile robot using neural networks.
IEEE Transactions on Neural Networks, Vol. 9, No.
4, pp. 589–600, doi: 10.1109/72.701173.

7. Jiang, Z.-P. & Nijmeijer, H. (1999). A recursive

technique for tracking control of nonholonomic
systems in chained form. IEEE Transactions on
Automatic Control, Vol. 44, No. 2, pp. 265–279, doi:
10.1109/9.746253.

8. Kumbla, K.K. & Jamshidi, M. (1997). Neural

network based identification of robot dynamics used
for neuro-fuzzy controller. IEEE International
Conference on Robotics and Automation (ICRA

Fig. 9. Identification errors (X,Y,) respectively (Test 2).

Fig. 10. Constructed maps in the performed tests

Fig. 11. Real environment

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 445–456
doi: 10.13053/CyS-19-3-2023

Integration of an Inverse Optimal Neural Controller with Reinforced-SLAM for Path Panning and Mapping in Dynamic ... 455

ISSN 2007-9737

1997), Vol. 2, No. 1, pp. 1118–1123, doi:
10.1109/ROBOT.1997.614286.

9. Raghavan, V. & Jamshidi, M. (2007). Sensor

fusion based autonomous mobile robot navigation.
IEEE International Conference on System of
Systems Engineering (SOSE 2007), doi:
10.1109/SYSOSE.2007.4304295.

10. Yang, J.-M. & Kim, J.-H. (1999). Sliding mode

control for trajectory tracking of nonholonomic
wheeledmobile robots. IEEE Transactions on
Robotics and Automation, Vol. 5, No. 3, pp. 578–
587, doi: 10.1109/70.768190.

11. Holland, J. (2003). Designing Autonomous Mobile
Robots: Inside the Mind of an Intelligent Machine.
Newnes, Melbourne, Australia.

12. Das, T. & Kar, I. (2006). Design and implementation

of an adaptive fuzzy logic-based controller for
wheeled mobile robots. IEEE Transactions on
Control Systems Technology, Vol. 14, No. 3, pp.
501–510, doi: 10.1109/TCST.2006.872536.

13. Park, B.S., Yoo, S.J., Park, J.-B., & Choi, Y.-H.
(2010). A simple adaptive control approach for

trajectory tracking of electrically driven
nonholonomic mobile robots. IEEE Transactions on
Control Systems Technology, Vol. 18, No. 5, pp.
1199–1206, doi: 10.1109/TCST.2009.2034639.

14. Lopez-Franco, M., Salome-Baylon, A., Alanis,
A.Y., & Arana- Daniel, N. (2011). Discrete super

twisting control algorithm for the nonholonomic
mobile robots tracking problem. 8th International
Conference on Electrical Engineering Computing
Science and Automatic Control (CCE), pp. 1–5, doi:
10.1109/ICEEE.2011.6106692.

15. Arana-Daniel, N., Rosales-Ochoa, R., & Lopez-
Franco, C. (2011). Reinforced slam for path

planning and mapping in dynamic environments.
8th International Conference on Electrical
Engineering Computing Science and Automatic
Control (CCE), pp. 1–6, doi:
10.1109/ICEEE.2011.6106563.

16. Sutton, R.S. & Barto, A.G. (1998). Reinforcement
Learning: An Introduction. MIT Press.

17. Watkins, C.J.C.H. & Dayan, P. (1992). Q-learning.
Machine Learning, Vol. 8, No. 3, pp. 279–292, doi:

10.1007/BF00992698.

18. Smart, W. & Kaelbling, L. (2002). Effective

reinforcement learning for mobile robots. IEEE
International Conference on Robotics and
Automation, Vol. 4, pp. 3404–3410, doi:
10.1109/ROBOT.2002.1014237.

19. Andrade-Cetto, J. & Sanfeliu, A. (2003). Temporal
landmark validation in cml. IEEE Int. Conf. Robot.
Automat., pp. 1576–1581, doi:
10.1109/ROBOT.2003.1241819.

20. Davison, A.J. (1998). Mobile Robot Navigation
Using Active Vision. PhD thesis, Univ. of Oxford.

21. Davison, A.J. (2001). 3d simultaneous localization

and map-building using active vision for a robot
moving on undulating terrain. IEEE Conf. Comput.
Vision Pattern Recognition, pp. 384–391, doi:

10.1109/CVPR.2001.990501.

22. Grisetti, G., Grzonka, S., Stachniss, C., Pfaff, P.,
& Burgard, W. (2007). Efficient estimation of

accurate maximum likelihood maps in 3D.
IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pp. 3472–3478, doi:
10.1109/IROS.2007.4399030.

23. Watkins, C.J.C.H. (1989). Learning from delayed

rewards. Ph.D. dissertation, King’s College,
Cambridge, UK.

24. Huang, S., Wang, Z., & Dissanayake, G. (2004).

Time optimal robot motion control in simultaneous
localization and map building (slam) problem.
IEEE/RSJ International Conference on Intelligent
Robots and Systems, 3, pp. 3110–3115, doi:
10.1109/IROS.2004.1389884.

25. Garulli, A., Giannitrapani, A., Rossi, A., & Vicino,
A. (2005). Mobile robot slam for line-based
environment representation. European Decision
and Control Conference, pp. 2041–2046, doi:

10.1109/CDC.2005.1582461.

26. Montemerlo, M., Thrun, S., Koller, D., &
Wegbreit, B. (2002). Fastslam: A factored solution

to the simultaneous localization and mapping
problem. AAAI National Conference on Artificial
Intelligence, pp. 593–598.

27. Viñuela P. & Leon, I. (2004). Redes de neuronas
artificiales: un enfoque práctico. Pearson

Education-Prentice Hall.

28. Ricardo, V.G., (1999). Control de sistemas
mediante redes neuronales, aprendizaje por
refuerzo. Master’s thesis, Universidad Carlos III de

Madrid, Madrid.

29. Narendra, K. & Parthasarathy, K. (1990).

Identification and control of dynamical systems
using neural networks. IEEE Transactions on
Neural Networks, Vol. 1, No. 1, pp. 4–27, doi:
10.1109/72.80202.

30. Rovithakis, G. & Christodoulou, M. (2000).

Adaptative Control with Recurrent High-order
Neural Networks: Theory and Industrial
Applications. Advances in Industrial Control.
Springer Verlag.

31. Qbot (2014). Quanser qbot: User manual. Number

830, revision 7, https://www.gumstix.com.

32. Lopez-Franco, C., Lopez-Franco, M., Alanis, A.
Y., Gomez-Avila, J. & Arana-Daniel, N. (2014).

Real-time inverse optimal neural control for image
based visual servoing with nonholonomic mobile

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 445–456
doi: 10.13053/CyS-19-3-2023

Alma Y. Alanis, Nancy Arana-Daniel, Carlos Lopez-Franco, Edgar Guevara-Reyes456

ISSN 2007-9737

robots. Mathematical Problems in Engineering, pp.
1–13, doi: 10.1155/2015/347410.

Alma Y. Alanis received the B.Sc. degree from
Instituto Tecnologico de Durango (ITD), Durango
Campus, Durango, Durango, in 2002, the M.Sc.
and the Ph.D. degrees in Electrical Engineering
from the Center of Research and Advanced
Studies of the National Polytechnic Institute
(CINVESTAV-IPN), Guadalajara Campus, Mexico,
in 2004 and 2007, respectively. Since 2008 she
has been with the University of Guadalajara, where
she is currently a Chair Professor at the
Department of Computer Science and member of
the Intelligent Systems Research Group. She is
also a member of the Mexican National Research
System (SNI-1). Her research interest centers on
neural control, backstepping control, block control,
and their applications to electrical machines, power
systems, and robotics.

Nancy Arana-Daniel received the M.Sc. degree in
Computer Science in 2003 and the Ph.D. in
Computer Science in 2007, both from the Center of
Research and Advanced Studies (CINVESTAV-
IPN), Guadalajara Campus, Mexico. She is
currently a research fellow at the Department of
Computer Science of the University of

Guadalajara, Mexico, where she works together
with other researchers of the Intelligent Systems
Research Group. Her research interests focus on
applications of geometric algebra, machine
learning, optimization, computer vision, pattern
recognition, and visually guided robot navigation.

Carlos Lopez-Franco received the Ph.D. degree
in Computer Science from the Center of Research
and Advanced Studies (CINVESTAV-IPN),
Mexico, in 2007. He is currently a professor at the
Department of Computer Science of the University
of Guadalajara, Mexico, and a member of the
Intelligent Systems Research Group. His research
interests include geometric algebra, computer
vision, robotics, and intelligent systems.

Edgar Guevara-Reyes received the B.Sc. in
Computer Engineering in 2011 and the M.Sc. in
Electrical and Computer Engineering from the
University of Guadalajara in 2014. His interests
include optimal and adaptive control and neural
network controllers for dynamic systems.

Article received on 03/12/2014; accepted 24/04/2015.
Corresponding author is Alma Y. Alanis.

