
Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 445–456
doi: 10.13053/CyS-19-3-2023

ISSN 2007-9737

Integration of an Inverse Optimal Neural Controller with Reinforced-
SLAM for Path Panning and Mapping in Dynamic Environments 

Alma Y. Alanis, Nancy Arana-Daniel, Carlos Lopez-Franco, Edgar Guevara-Reyes 

Universidad de Guadalajara, CUCEI, Zapopan, Jalisco, 
Mexico 

{almayalanis, nancyaranad, clzfranco}@gmail.com, guevara_1@hotmail.com  

Abstract. This work presents an artificial intelligence 

approach to solve the problem of finding a path and 
creating a map in unknown environments using 
Reinforcement Learning (RL) and Simultaneous 
Localization and Mapping (SLAM) for a differential 
mobile robot along with an optimal control system. We 
propose the integration of these approaches (two of the 
most widely used ones)  for the implementation of robot 
navigation systems with an efficient method of control 
composed by a neural identifier and an inverse optimal 
control in order to obtain a robust and autonomous 
system of navigation in unknown and dynamic 
environments. 
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1 Introduction 

In order to achieve autonomous navigation, a 
robotic system must be able to interact with the 
environment, recognize, and reconstruct it, and 
choose and execute an appropriate action using a 
low level control system to accomplish its goal 
[1, 2, 3]. However, for a robot to be truly 
independent and able to cope with real 
environments, it has to solve many subtasks [4] 
such as 1) to map the environment and know 
where it itself is located in this map, this is the 
Simultaneous Localization and Mapping (SLAM) 
problem, 2) to plan paths and react to unexpected 
changes in the environment (the local and global 
path planning problem) and to have an efficient 
control algorithm, 3) to follow the paths planned 
(the control problem). 

For autonomous robot navigation, an extensive 
class of controllers has been proposed for mobile 
robots [3–10]. Most of these references present 

only simulation results and the controllers are 
implemented in continuous time. A common 
problem when applying the standard control theory 
is that the required parameters are often either 
unknown at times or are subject to a change during 
operation. For example, the inertia of a robot as 
seen at the drive motor has many components 
which might include the rotational inertia of the 
motor rotor, the inertia of gears and shafts, the 
rotational inertia of its tires, the robot’s empty 
weight, and its payload. Worse yet, there are 
elements between these components such as 
bearings, shafts, and belts which may have spring 
constants and friction loads [11]. 

Additionally, it is required to have an efficient 
method that integrates the algorithms which solve 
the above problems into a robust and real time 
system. This last issue is the one that this work 
solves with the use of intelligent algorithms that 
belong to the state of the art of robot navigation, 
control, and mapping for a kind of robots known as 
electrically nonholonomic mobile robots (Figure 1). 
The kind of robots used within this work is a 
common class of very popular robots with many 
useful applications in different fields: industrial, 
military, medical, search and rescue, and even 
educational fields. The state space model of the 
robot shown in Figure 1 can be expressed as 
follows [3, 12, 13, 14]: 
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where each subsystem is defined as 
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in which 11x  = X , 12x  = Y  are the coordinates of 

0P ; 13x  =   is the heading angle of the mobile 

robot; 21x  = 1v , 22x  = 2v  represent the angular 

velocities of the right and left wheels; and 

31x  = 
1ai , 32x  = 

2ai  represent motor currents of 

the right and left wheels; and 
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where R  is half of the width of the mobile robot 

and r  is the radius of the wheel, d  is the distance 

from the center of mass cP  of the mobile robot to 

the middle point 0P  between the right and left 

driving wheels, cm  and wm  are the masses of the 

body and the wheel with a motor, respectively, cI , 

wI , and mI  are the moments of inertia of the body 

about the vertical axis through cP , the wheel with 

a motor about the wheel axis, and the wheel with a 
motor about the wheel diameter, respectively. The 

positive terms iid , 1, 2i  , are the damping 

coefficients, 
2   is the control torque applied to 

the wheels of the robot, 
2

d   is a vector of 

disturbances including unmodeled dynamics. 

1 2T t tK diag k k     is the motor torque constant, 

1 2

T

a a ai i i     is the motor current vector, 

2u  is the input voltage, 
1 2a a aR diag r r     

is the resistance, 
1 2a a aL diag l l     is the 

inductance, 
1 2E e eK diag k k     is the back 

electromotive force coefficient, and 

 1 2N diag n n  is the gear ratio. Here,  diag   

denotes the diagonal matrix. The model is 
discretized using the Euler Methodology. 

The paper is organized as follows. Section 2 
presents the method that integrates the SLAM 
algorithm with a Reinforcement Learning (RL) 
algorithm in order to obtain a system which 
simultaneously maps the environment, localizes 
the robot, and learns a navigation policy which 
allows the robot to plan paths (global and local 
paths) which is needed to deal with dynamic 

 

Fig. 1. Nonholonomic mobile robot (or car-like 
robot) with two actuated wheels 
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environments. In Section 3, a Neural Control is 
developed using a Recurrent High Order Neural 
Network to identify the robot model; also it shows 
an inverse optimal controller designed with the 
Lyapunov Control Function to guide the robot to 
follow the path planned with the navigation policy 
learned with the RL in the map constructed with 
SLAM. Section 4 shows the integration of the 
described system (Planning-Identifier-Controller), 
applied on a mobile robot in real time through 
wireless communication. 

2 Reinforcement Learning-SLAM 

In this section we present the subsystem dedicated 
to solve the tasks of path planning and mapping. 
The system described [15] integrates RL with a 
SLAM algorithm; it implements RL to learn to 
define a relation between situations and actions to 
maximize a numerical reward generated by the 
response of the environment. RL begins with a 
complete system that involves the environment 
and a definite goal [16]. The task consists in a 
series of actions that the robot has to perform to 
achieve its goal; then the mission of the learner is 
to find the action rules (policies) to optimally 
achieve a certain goal through its interaction with 
the environment. In this case the robot uses the RL 

algorithm known as Q -Learning [17]. The optimal 

Q  value is defined as the sum of rewards obtained 

by performing an action on a state and following 
the optimal policy [17, 18]: 
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where from a state ks , the action ka  selected from 

the set A  is performed by an agent; as a result the 
agent receives a reward with an expected value 

 ,k kR s a , and the current state changes to the 

following state  1s k   according to the 

probability transition function   1 ,k kP s k s a . 

The  n parameter stands for the learning rate that 

determines how much importance the system 
gives to the reward 𝑟𝑘 obtained at time 𝑘 by taking 

an action at state 𝑠𝑘, 𝛾 is the forgetting factor used 
to weight the importance that the system gives to 
long term rewards against immediate rewards. So 
a Q-value tells us how good an action is given a 
certain state.  

Q-Learning algorithm was implemented in this 
work to obtain an intelligent exploration agent with 
capabilities to learn and to deal with dynamic 
environments while it is mapping and locating itself 
in its environments. The classic SLAM deals with 
environments which are considered by definition, 
static over time, so in dynamic environments, a 
SLAM algorithm must somehow manage moving 
objects. It can detect and ignore them; it can track 
them as moving landmarks, but it must not add a 
moving object to the map and assume it is 
stationary. The conventional SLAM solution is 
highly redundant. As noted in [19], landmarks can 
be removed from the map without loss of 
consistency, and it is often possible to remove 
large numbers of landmarks with little change in 
convergence rate. This property has been 
exploited to maintain a contemporaneous map by 
removing landmarks that have become obsolete 
due to changes in the environment. To explicitly 
manage moving objects, [20, 21] implemented an 
auxiliary identification routine and then removed 
the dynamic information from a data scan before 
sending it to their SLAM algorithm. Conversely, in 
[22] moving objects are added to their estimated 
state and models are provided for tracking both 
stationary and dynamic targets. Simultaneous 
estimation of moving and stationary landmarks is 
very costly due to the added predictive model. For 
this reason, our implemented solution involves a 
stationary fast-SLAM update combined with a 
simple RL module to deal with moving objects. 

The agent continues selecting and executing 
actions (learned with RL), creating a path of states 
visited until it arrives to the desired position. When 
the training (RL process) is complete, the system 
uses SLAM during the exploration phase to make 
a reconstruction of the environment. When the 
system faces a dynamic environment in which it is 
hard to locate itself through SLAM, it uses the 
experience previously obtained with RL to guide 
the robot to a goal with the correct action, and the 
new environment information which is obtained by 
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navigating with RL is added to the map constructed 
with the SLAM algorithm [1, 2]. The SLAM problem 
requires a probability distribution function which is 

calculated for any time k . This probability 

distribution describes the posterior density of the 
location of both the robot and the characteristics of 

the map at a time k  [23, 24]:  
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where kx  is the robot position at the time k , m  is 

the map of the environment, 0: 1kZ   and 0: 1kU  are 

the sequence of observations and the sequence of 

control actions, respectively, from time 0  to time 

1k  , 0x  is the initial position of the robot. Eq. 6 is 

known as the Bayes filter, and it is a popular form 
of inference mapping due to its recursive 
formulation, allowing additional observations to be 
incorporated into the posterior density efficiently. 

A lot of techniques have been proposed so far 
to implement the solution to the SLAM problem; the 
main difference between the different approaches 
is the representation of the environment and the 
representation of uncertainty when a technique 
builds the map and estimates the position of the 
robot [25]. Two of the most important solutions that 
have gained great acceptance are the Extended 
Kalman Filter (EKF) SLAM and the fast-SLAM [18], 
of which the second approach will be used 
because of the advantages provided by it [26] such 
as the number of features that can de handled 
(near 50,000 in simulated environments) and the 
logarithmic execution time (against quadratic time 
of EKF-SLAM). The reader can found in [24] a 
profound explanation of the algorithms mentioned.  

With the obtained information, the system is 
capable of getting a path and constructing a map 
of the environment; however, to move the agent 
mobile robot, a control system is needed. Such 
system must give the correct action as the robot 
moves through the path designed by the RL. 

3 Controller 

To deal with the problem of following the path 
planned in the map created in Section 2, the 
implemented low control system uses a neural 
network approach that is presented in this section. 
When the neural network control approaches are 
presented, it is generally understood that a neural 
network is responsible for calculating the control 
action, but this can be divided in two groups: direct 
control and indirect one. In the first method, the 
control is performed by the neural network, in the 
second method indirect control is always based on 
models, and the objective is to use a neural 
network to identify the system model [27, 28]. 

The plant information is obtained by running the 
application in order to acquire a lot of data to 
describe the system behavior. This process 
consists in obtaining the parameters that best 
arrange the association between inputs and 
outputs. The goal of this stage is focused on giving 
the system a known input and observing how the 
system output behaves [27]. 

3.1 Neural Control 

For control tasks, we use the high order extension 
of the Hopfield model called RHONN, which has a 
greater interaction between neurons; it is very 
flexible and allows the incorporation of a priori 
information about the structure of systems to the 
neural model. Now consider a MIMO system 
(multiple inputs, multiple outputs) [13] 

      1
,

k k k
x F x u


 . (7) 

To identify the system we use a RHONN [16, 
17] defined as 

        1
ˆ ˆ ,T

ii k i k i k k
x w z x u


 , (8) 

where ˆ
ix  is the state of the i -th neuron with 

 1,2, ,i n , iw  is the online adapted weight 

vector, and 
    ˆ ,i i k k

z x u  is given by 
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iL  is the number of high order connections, 

1 2, , ,
iLI I I  is a collection of non-ordered 

subsets, 1,2,3, ,n m , n  is the state 

dimension, and m is the number of external inputs, 

with  ijd   being non-negative integers, and i  

defined as 
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in which  1 2

T

mu u u u  is the input vector 

to the neural network and  S   is defined as 

 
1

,   0
1

S
e 

 

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where   is a real value variable. 

Consider the problem to approximate the 
general discrete time nonlinear system (7) by the 
following RHONN representation [17]: 
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In this case ix  represent the state model, 
ize  is 

a bounded approximation error which can be 
reduced by increasing the value of the adjustable 

weights. Assume that an ideal weight vector *

iw  

exists, the ideal weight vector iw  is an artificial 

quantity required for analytical purpose, such that 

ize  can be minimized on i

i

L

z  ; iw  is an 

estimation defined as 
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iw  is used for the stability analysis and *

iw  is a 

constant: 
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Training of neural networks with EKF for both 
static networks and recurrent networks has proven 
reliable and practical for many applications. For the 
training of a neural network based on EKF, the 
weights become the state to be estimated. The 
objective of training is to find the optimal weight 
values that minimize the prediction errors. EKF is 
described as [18, 23] 
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with 
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where  
iL m

i k
K


 is the Kalman gain matrix, 

 
iL

i k
w   is the weight (state) vector, 

 
i iL L

i k
P


 is the prediction error associated 

covariance matrix,  
i iL L

i k
Q


  is the state noise 

associated covariance matrix,  
m m

i k
R   is the 

measurement noise associated covariance matrix, 

 
iL m

i k
H


  is a matrix for which each entry ( ijH

) is the derivative of one of the neural network 

outputs ( ˆ
ix ) with respect to one neural network 

weight ( ijw ) 
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iL  is the total number of weights of the neural 

network, ix  is the i -th plant state component, ˆ
ix

is the i -th neural state component, i  is a design 

parameter. Usually, , ,i i iP Q R  are initialized as 

diagonal matrices with entries      0 , 0 , 0i i iP Q R

, besides they are bounded [23, 24]. 

3.2 Controller 

The main purpose of an optimal control is to obtain 
a control signal that causes the process to satisfy 
some physical restrictions [27, 28]. Then for the 
inverse optimal controller, the Lyapunov Control 
Function (LCF) is designed in order to satisfy the 
passivity condition. This states that a passive 
system can be stabilized by making a negative 

feedback from the output  k k
u y  , with 0   
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where  ref k
x  is the desired path and K  is a gain 

matrix further introduced to modify the rate of 
convergence of the tracking error [29, 30]: 
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This solution is applied on the neural identifier 
developed in Section 3 to obtain a discrete-time 
neural model for the electrically driven 

nonholonomic mobile robot with 5n   trained with 

the EKF as follows: 
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.
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


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

 
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 

 
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(20) 

In order to facilitate the development of 
equations, we rewrite the RHONN as 

1

4 6

2

5 7

3

ˆ
ˆ ˆ

ˆ ˆ ˆ ˆ,   ,   
ˆ ˆ

ˆ

a b c

x
x x

x x x x
x x

x

 
    

      
     

. (21) 

The goal is to force ˆ
bx  to follow the desired 

reference signal  ,
ˆ

T

a refx X Y  , this is 

achieved with the designed control. In addition, we 

force ˆ
cx  to follow the previous control law 

        1

2 2 1c bk k k k
u x w w z u    ; therefore, 

 2
ˆ

c k
x u  is the reference signal for the control law 

 3 k
u  leaving control laws as 

             

        

         

1 1

1

1

ˆ ˆ ˆ, ,

1
ˆ ˆ ˆ ,

2

ˆ ˆ , .

T

i ii k iref k i k i k iref k

T

i i ii k i k i k

m i ii k i k i k iref k

h x x g x P f x x

J x g x Pg x

u I J x h x x

 





 



   
 

 
(22) 
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Finally, the pseudo-code of the algorithm which 
performs the integration between the planning (RL-
SLAM)-identifier-controller is shown in Algorithm 1. 

4 Experimental Results 

The proposed schemes are carried out in a 
Matlab® and Simulink® (Matlab and Simulink are 
registered trademarks of the MathWorks, Inc.) 
environment, applied on a differential robot model 
with sensors of vision and movement and sensor 
readings corrupted by noise caused by wireless 
transmission. The anatomy, various components, 
and body axes of the Quanser (Quanser is a 
registered trademark of Quanser Inc.) are shown 
in Figure 2.  

The Quanser Qbot is an innovative autonomous 
ground robot system [31]. The vehicle is comprised 
of an iRobot Create robotic platform, an array of 
optional infrared and sonar sensors, and a 
Logitech (Logitech is a registered trademark of 

Logitech Inc.) Quickcam Pro 9000 USB camera, 
the diameter of the vehicle is 34 cm, and its height 
(without camera attachment) is 7 cm, it is driven by 
two differential drive wheels and comes with a 
bumper sensor and an omni-directional infrared 
receiver. The Quanser Controller Module (QCM) is 
an embedded system mounted on the vehicle, 
which uses the Gumstix computer to run QuaRC, 
Quanser’s real-time control software [31]. 

The Qbot is accessible through three different 
block sets: the Roomba block set to drive the 
vehicle, the HIL block set to read from sensors 
and/or write to servo outputs, and, finally, the 
OpenCV block set to access the camera. The 
controllers are developed in Simulink with QuaRC 
on the host computer through wireless 
communication. This type of communication 
implies noise, delays, and uncertainties, which are 
absorbed by the neural network which learns in 
real time the system behavior and is capable of 
predicting the next state in order to avoid the 
lost/corrupted information. 

 
Fig. 2. Robot specifications 

Algorithm.1 Planning-Identifier-Controller 

1: Establish initial state and goal. 

2: Obtain initial desired route Qk. 

3: Initialize SLAM map P0 = 0, initial pose. 

4: Get observations z0. 

5: Add new features. 

6: while current state (xk) ≠ Goal do 

7:  Update state map with zk, xk. 

8:  Update Qk based on the observed. 

9:  Search obstacles. 

10:  if obstacle then 

11:       Look for a new route in Qk and update map. 

12:       if No path found in Qk then 

13:        It is not possible to find a route. 

14:       else 

15:        Upgrade Path. 

16:        end if 

17:  end if 

18:  Neural identification. 

19:  Perform next control action uk. 

20:  Get odometry. 

21:  Get observations z0. 

22:  Perform prediction step of SLAM. 

23:  Perform measurement update of SLAM. 

24:  Add new features. 

25: end while 
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To test the proposed system, the environment 
is established by a map which represents almost 
completely the environment to explore, with initial 
state (05; 01) and final goal (07; 13) (Figure 3). In 
this case a map of 33x19 pixels is used obtaining 
a total of 627 possible states and 5016 possible 

actions, in this case each state represents
21/ 3  .m  

Several experiments were conducted in order 
to show the system capability to complete its goal 
despite changing environments. The experiments 
were performed with a sampling time of 0:05 
seconds, a range of 33 cm vision for SLAM, an 
ability to detect an obstacle 33 cm away, a rate of 
0:05 m/s, and some positions blocked, then the 
tests performed were adapted to the workbench. 

As it was mentioned, the communication with 
the robot is wireless, which implies loss of 
information, noise, delays, uncertainties, 
attenuations, fading, among other problems. Due 
to the nature of the neural network used, the 
algorithm is able to learn from the previous 
experience generating its own weight distributions 
on the links. This learning ability to organize the 
information causes the power to appropriately 
respond to data or situations to which the robot has 
not been previously exposed.  

Once the initial route is obtained, the navigation 
is started following the path, but once an obstacle 
is encountered by the SLAM observations, it 
checks the map state action and avoids the 
obstacle by decisions that come from the previous 
experience. It is important to note that each optimal 
route is modified by the robot in order to avoid 
obstacles, since there is a little displacement 
between the error in the pose estimation from 
SLAM and the noise that the control actions and 
data measurement have. Thus, the state map is 
corrupted each time with noise in the route 
planning part. This noise is discarded each time 
the planning takes places, thus, each time the 
system perceives a different map. The peaks on 
the graphics are caused by dynamic obstacles or 
unexpected changes on the environment; when 
this occurs, RL is used to correct the path with the 
learned optimal policy. Even though the changes 
are fast, the RL responds in real time to these 
changes as it can be seen in the figures. The 
results obtained on the different tests between the 
model (reference) and the system output for the X, 

Y position and an angle  are shown in Figures 4 

 

Fig. 3. Map and expected route for the test, where 1 

pixel represents 1/3 meters and * are landmarks 

 

 

Fig. 4. System and reference behavior, in which 1) X 

position y 2) Y position in meters 3) angle in radians 
(Test 1) 

 

Fig. 5. System and reference, changing environment 

with some obstacles in real time (Test 2) 

 

Fig. 6. Position error between system and reference, 

red: X position (cm), green: Y position (cm), blue: 
angle (radians) (Test 1) 
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and 5, including environment movement. Position 
errors in tracking the trajectory can be seen in 
Figures 6 and 7, respectively. 

The results of on-line neural identification 

performance for robot states  , ,X Y   are shown 

in Figures 8 and 9. Finally, Figure 10 shows the 
maps created in the performed tests from a real 
environment as shown in Figure 11.  

It is important to note that in this paper we do 
not consider a comparative analysis with previous 
works. In [32] a comparative analysis of the neural 
controller against sliding mode controllers is 
included, showing the superiority of the neural 
controllers for mobile robot control. 

Regarding the RL-SLAM system, it is also 
relevant to mention that this integration allows the 
robot to solve the simultaneous localization and 
mapping problem (as it is done using any classical 
SLAM solver) but, in addition and at the same time 
and with the same information that is used to solve 
the SLAM problem, the path planning problem is 
solved thanks to the Reinforcement Learning 
algorithm. So, on each navigation episode the 
navigation agent 1) produces the map of the 
unknown environment, 2) localizes itself at each 
step of the navigation on this map, and at the same 
time 3) solves the global path planning problem as 
well as evades dynamic obstacles thanks to the RL 
system (this last step is not performed by the SLAM 
classical algorithms). 

To summarize, in this work we achieved the 
integration of RL with a SLAM algorithm and a 
neural controller into a cycle in which the position 
on the map of the navigation agent estimated by 
SLAM is provided to the RL algorithm as input in 
order for this to be capable to compute the action 
that the neural controller has to execute to produce 
and follow a path from a start to a goal state. The 
action produced by the RL algorithm is sent as 
feedback to SLAM to follow the cycle until the goal 
state is reached. 

4 Conclusions 

A robot system capable of navigating unknown 
environments even with uncertainties in the robot 
model or in the environment has been developed. 
This can be attained because a RHONN structure 

 

Fig. 7. Details of a disturbance rejection made for the 

neural network controller (Test 2) 

 

Fig. 8. Identification errors, where (X,Y) positions are 

in meters and  is angle in radians (Test 1) 
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is used to design a neural identifier which is flexible 
and robust to noise. The results show the 
effectiveness of the proposed schemes; in 
addition, the qualities of RL are added to the 
algorithm to obtain a robust system capable of 
handling unknown and long state dynamic noisy 
environments. 
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