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Abstract. This paper presents a novel simple method for 
the direct design of low-pass minimum-phase (MP) 
filters. The method is based on a linear-phase (LP) finite 
impulse response (FIR) prototype, sharpening and IFIR 
(interpolated finite impulse response) techniques, 
usually used for the design of LP filters. As a result, a 
more complex minimum phase filter can be designed by 
using less complex filters. The paper presents the rules 
and the methodology of the design and illustrates them 
with an example. The advantage of the method is 
demonstrated by comparisons with some existing 
designs. 
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1 Introduction 

Minimum-phase (MP) filters find applications in 
communications, speech processing, and 
predictive coding, among others [1, 4]. The special 
feature of an MP filter is that it does not contain 
zeros outside the unit circle. As a consequence, an 
MP filter has several important and interesting 
properties revised in Section 2. 

There exist two main approaches for MP 
filter design: 

– Methods based on the low-pass finite impulse 
response (FIR) prototype filter design [5, 10]. 

– Methods based on complex cepstrum [4, 
11, 14]. 

The design of an MP FIR filter starting from a 
low-pass FIR prototype has many advantages [5]. 
The methods consist of the FIR prototype design 
and finding all zeros of the designed filter. In the 

next step, all zeros which are outside the unit circle 
are reflected to their reciprocal positions inside the 
unit circle. This process is called mipizing [5].  

We consider here the MP FIR filter design 
based on LP FIR prototype design and mipizing. In 
our previous work [8] we proposed the IFIR 
(interpolated finite impulse response) filter for the 
design of MP filters. The sharpening technique for 
the design of MP filters is considered in [9, 10].  

Specifically, we propose a novel procedure for 
the design of high order MP filters based on low 
complexity FIR filters using the sharpening and the 
IFIR techniques. We also introduce the rules for 
sharpening IFIR MP filters. 

The paper is organized in the following way. The 
next section gives a brief review of mipizing and 
properties of MP filters. A review of IFIR filters and 
the sharpening technique is given in Section 3. The 
rules for the MP IFIR sharpening are described in 
Section 4. Section 5 presents the steps for the MP 
filter design based on the rules established in 
Section 4. The algorithm is illustrated with one 
example. Finally, the comparison with existing 
methods is provided in Section 6 to demonstrate 
the benefit of the proposed design. Finally, the 
conclusions are given in Section 7. 

2 Mipizing and Properties of MP Filters 

Mipizing consists in reflecting the zeros of LP FIR 
filter to their reciprocal positions inside the unit 
circle. This process does not change the 
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magnitude response of the filter [4], as illustrated 
in the following example. 

Example 1. We consider the MP filter design 
based on mipizing of LP FIR prototype filter, which 
satisfies the following specification: the normalized 
pass-band frequency ωp = 0.1, the normalized 
stop-band frequency ωs = 0.25, the pass-band 
ripple is of 0.1dB, and the minimum stop-band 
attenuation is of 60 dB.  

The filter is designed in MATLAB using Remez 
algorithm. The obtained LP filter has an order of N 
= 36. The plot of its zeros is shown in Fig. 1(a). 
There are three zeros outside the unit circle.  

Mipizing consists in reflecting those zeros to 
their reciprocal positions, as shown in Fig. 1(b). 
Next, the zeros of the MP filter are converted to the 

polynomial using the MATLAB file poly.m. The 

polynomial coefficients correspond to the impulse 
response coefficients.  

Fig. 2 shows the corresponding impulse and 
gain responses. Note that the gain responses of LP 
filter and the mipized filter are equal. 

The MP filters have a number of interesting and 
important properties [4] illustrated in the following 
subsection using the filters from Example 1. 

2.1 The Minimum Phase-Lag Property 

Mipizing decreases the phase-lag function (the 
negative of the phase), as shown in Fig. 3.  

2.2 The Minimum Energy Delay Property 

The partial energy of MP systems is most 
concentrated around n=0, 

2 2

0 0

| ( ) | | ( ) |
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m
n n
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where hm(n) and h(n) are impulse responses of the 
MP and LP filters, respectively. For this reason MP 
filters are also called minimum energy delay 
systems. 

The group delay (grd) of a system H(ejω) is 
defined as a negative derivation of the 
corresponding phase: 

 

(a) 

 

(b) 

Fig. 1. (a) Zeros of LP and (b) Zeros of MP filters 

 

Fig. 2. Impulse and gain responses for LP and MP 
filters 
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The group delay of an MP system is always less 
than that of non-minimum phase systems having 
the equal magnitude responses, as shown in 
Fig. 4.  

3 Review of IFIR and Sharpening 

The IFIR filter technique designs a more complex 
LP filter using two less complex filters [15]. The 
structure of an IFIR filter is shown in Fig. 5. 

The model filter G(z) is designed using the 
following specification [15]: 

sGspGpsGspGp AARRLL ==== ,,,, ;2/;; ωωωω , (3) 

where ωp and ωs are the pass-band and stop-band 
frequencies, Rp is a maximum pass-band ripple, 
and As is a minimum attenuation of the 
prototype filter.  

From (3), it follows that the transition band is L 
times higher than that of the prototype filter, 
resulting in approximately L times less order of the 
model filter. Next, the model filter is expanded by a 
factor L, becoming G(zL), so that the specification 
of the model filter coincides with that of the 
prototype filter. In this process, each delay z-1 of 
the designed filter G(z) is replaced by z-L, or 
alternatively, L-1 zeros are inserted between the 
consecutive samples of the impulse response of 
the filter G(z). However, the changing from G(z) to 
G(zL) has a consequence that L-1 images of the 
original spectrum are introduced between 0 and 
2π. That is the reason why one needs another filter 
called interpolation filter I(z), which has to eliminate 
images introduced by G(zL). The specification of 
the filter I(z) is given as [15]: 

sIspIpsIspIp RRRRL ==−== ,,,, ;2/;/2; ωπωωω . (4) 

More details can be found in [15]. 
The sharpening technique is introduced in [16] 

for simultaneous improvements of both the pass-
band and stop-band of a linear-phase FIR filter. 
The sharpening technique uses the amplitude 
change function (ACF) which is a polynomial 

relationship of the form )(HfH sh =  between the 

amplitudes of the sharpened and the prototype 
filters, Hsh and H, respectively.  

The improvement in the gain response near the 
pass-band edge H=1, or near the stop-band edge 
H=0, depends on the order of tangencies m and n 
of the ACF at H=1, or at H=0, respectively. 

We will consider here the most popular 
sharpening polynomial (m=1, n=1): 

H s h (z)= 3H 2 (z)- 2H 3 (z ).  (5) 

 
Fig. 3. Phase-lag functions for MP and LP filters 

 

Fig. 4. Group delays for MP and LP filters  

 

Fig. 5. IFIR filter 
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However, the sharpening technique can only be 
applied to LP filters. In [10] it is shown how the 
sharpening can be applied to MP filters. In this 
paper we show how we can also apply sharpening 
to MP IFIR filters. 

4 Rules for Sharpening and Mipizing 
IFIR filters 

Sharpening of an IFIR filter is practically equivalent 
to the cascade of sharpened expanded model and 
interpolation filters: 

)}({)}({)}()({ zIShzGShzIzGSh
LL ≈ , (6) 

where Sh{.} means sharpening. 
Example 2. The IFIR filter is designed satisfying 

the following specification: ωp=0.2, ωs=0.3, L=2, 
Rp=0.2dB, As=40dB. 

Fig. 6(a) shows the gain responses for the 
expanded model, interpolation, and IFIR filters. 
Similarly, Fig. 6(b) compares the sharpened filters 
from left and right sides of (6). 

The sharpening of interpolation and expanded 
model filters can be presented in the following 
forms [10]: 
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From (9) and (10), it follows that the order N of 
both model and interpolator filters must be even. 
The corresponding impulse responses are 

)(2)( ninis −= ; ;,...,0 Nn = 12/ +≠ Nn , (11a) 

)12/(23)12/( +−=+ NiNis
, (11b) 

)(2)( ngngs −= ;,...,0 Nn = 12/ +≠ Nn , (12a) 

)12/(23)12/( +−=+ NgNg s . (12b) 

In what follows we explain how to obtain the 
corresponding MP filters from (9) and (10). 

4.1 Expanded Filter Roots 

In the expanded filter, each zero of the original filter 
ϕj

ii erz =  is mapped into L zeros [8]. 

As an example, Fig. 7 presents zeros of the 
model filter G(z) and the corresponding expanded 
filter G(zL), for L=2.  

 

(a) 

 

(b) 

Fig. 6. (a) IFIR filter (b) Sharpened IFIR 
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' πϕ += , m=0,…,L-1. (13) 

The mipizing of the expanded filter can be 
performed in two steps: 

- Mipize original filter, 

 

(a) 

 

(b) 

Fig. 7. (a) Zeros and poles of model and (b) Expanded model filters 

 

(a) 

 

(b) 

Fig. 8. (a) Zeros of mipized model and (b) Expanded model filters 

 

Fig. 9. Impulse responses of MP filters Gm(z) and Gm(zL) 
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- Generate zeros using (13). 

Fig. 8(a) shows zeros of the mipized filter G(z), 
while Fig. 8(b) shows the zeros of the mipized 
expanded filter. Fig. 9 presents the corresponding 
impulse responses obtained using MATLAB 
file poly.m. 

4.2 Rouche’s Theorem 

We apply the Rouche’s theorem [17] to find the 
number of zeros inside the unit circle for 
polynomials Gs(z) and Is(z). The theorem states the 
following [17]: “Let f(z) and g(z) be analytic 
functions inside and on a positively oriented simple 
closed contour C, and if |f(z)| > |g(z)| at each point 
z on C, the functions f(z) and f(z)+ g(z) have the 
same number of zeros, counting multiplicities, 
inside C.” 

To this end we rewrite Gs(z) as 

/ 2

/ 2 /2

0
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N
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N N n

n

G z z G z
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Considering that the contour C is a unit circle, 
we have |z|=1, resulting in 

| 1|

| | 1

| ( ) | 3,

| ( ) | 2[| ( ) | | ( 1) | ... | (0) |] 2.
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(17) 

Observe that the condition in Rouche’s theorem 
is satisfied because  

|)(||)(| zgzf >  (18) 

on the unit circle. 

Since f(z) has N/2 zeros, counting multiplicities, 
interior to the unit circle |z|=1, the polynomial 
f(z)+g(z), or Gs(z) has also N/2 zeros inside the unit 

circle. Knowing that the filter Gs(z) is a linear-phase 
filter, the rest of its N/2 zeros are outside the unit 
circle in the reciprocal positions of zeros that are 
inside the unit circle. 

Similarly, we can also show that half of zeros of 
a linear-phase filter Is(z) are inside the unit circle, 
and the other half of zeros are in the reciprocal 
positions, i.e., outside the unit circle. 

These statements result in a simple rule for the 
mipizing the filters Gs(z) and Is(z): 

- Eliminate zeros outside the unit circle, and 
double the zeros which are inside the unit 
circle. 

5 Description of the Method 

The sharpened MP filter Hm(z) is obtained using 
the results from section 4 as 

. (19) 

where 

- Gm(zL) is the mipized expanded model filter.  
- Im(z) is the mipized interpolation filter. 
- Gsm(z) is the mipized filter Gs(z). 
- Ism(z)  is the mipized filter Is(z). 

The procedure for the design is described in the 
following steps: 

Step 1. Design the model filter G(z) and the 
interpolator I(z) according to the 
given  specification. 

Step 2. Mipize the filters G(z) and I(z) in order 
to obtain the MP filters Gm(z) and Im(z). 

Step 3. Obtain the expanded filter Gm(zL) from 
the MP filter Gm(z). 

Step 4. Using (11) and (12), find the LP filters 
Gs(z) and Is(z). 

Step 5. Delete all zeros of Gs(z) and Is(z) which 
are outside the unit circle, and double those which 
are inside. 

Step 6. Find Gsm(z) and Ism(z). 
Step 7. Using (19), find the sharpened IFIR 

MP filter. 
Example 3. We illustrate the method by 

sharpening the IFIR filter which satisfies the 
following specification: ωp=0.12, ωs=0.15, L=5, 
Rp=1dB, As=38dB. 

)()()]()([)( 2
zIzGzIzGzH smsmm

L
mm =
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Fig. 10. Zeros of model and interpolation filters 

 

Fig. 11. Mipized model and interpolation filters 
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(b) 

Fig. 12. (a) Zeros of expanded model filter, (b) Impulse response of MP expanded model filter 
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Step 1. We design the model and interpolation 
filters and find their zeros, as shown in Fig. 10. The 
orders of the model and interpolation filters are 18 
and 24, respectively, and the conditions in (9) and 
(10) are satisfied. Observe that the orders of filters 
are even. 

Step 2. We mipize the model and interpolation 
filters, as shown in Fig. 11. 

Step 3. Expand the filter Gm(z) using (13). 
Fig. 12 shows the zeros and impulse response of 
the MP expanded model filter. 

Step 4. Find LP filters Gs(z) and Is(z). 

 

Fig. 13. Zeros of LP and MP filters Gs(z) and Gsm(z) 

 

Fig. 14. Zeros of LP and MP filters Is(z) and Ism(z) 
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Step 5. Find the zeros of the LP filters Gs(z) and 
Is(z) and the zeros of the corresponding MP filters 
Gsm(z) and Ism(z), as shown in Figs. 13 and 14. 

Step 6. Find the corresponding polynomials 
Gsm(z) and Ism(z). 

Step 7. Using (19), find the sharpened IFIR 
MP filter. 

Fig. 15 compares the gain responses of MP IFIR 
and MP sharpened IFIR filters. Note that the 
resulting MP filter has approximately 50% more 
stop-band attenuation and two times less pass-
band ripple than the MP IFIR filter.  

The corresponding MP filter obtained by 
mipizing an LP equiripple FIR filter has an order of 
158. However, in the proposed design, the MP filter 
is obtained using filters of orders 18 and 24. 

6 Comparison with the Method in [4] 

Finally, we compare our proposed design with the 
method described in [4], which uses the cepstrum 
technique. Fig. 16 shows the resulting gain 
responses. Observe that our proposed approach 
has better gain response than the approach given 
in [4]. It is worth to point out that our approach is 
based on the design of low order digital filters, 
while method in [4] is based on the design of a high 
order FIR filter and the complex cepstrum 
technique. 

7 Conclusions 

A simple procedure for sharpening MP FIR filters 
is presented. It is demonstrated that the 
sharpening and IFIR design techniques, developed 
for LP narrow-band filters, can also be used for the 
MP narrow-band filter design. The only restriction 
is that the orders of the model and interpolation 
filters must be even.  

Additionally, our method, like the IFIR 
technique, is useful not only for lowpass filters but 
also for highpass and certain bandpass filters, by a 
simple change of the specification of the 
corresponding interpolation filter. The filters are 
designed using MATLAB Remez algorithm and the 
files roots.m and poly.m. This work is devoted to 
the design of narrow-band MP filters. As a future 

work, we consider the design of minimum phase 
filters using frequency masking approach [2], 
which can be used to design wideband minimum-
phase filters. 
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