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Abstract. A simple and straightforward formula for 

computing the inverse of a submatrix in terms of the 
inverse of the original matrix is derived. General 
formulas for the inverse of submatrices of order 𝑛 − 𝑘 as 

well as block submatrices are derived. The number of 
additions (or subtractions) and multiplications (or 
divisions) on the formula is calculated. A variety of 
numerical results are shown. 
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1 Introduction 

There are a number of situations in which the 
inverse of a matrix must be computed. For 
example, in statistics [17], where the inverse can 
provide important statistical information in certain 
matrix iterations arising in eigenvalue-
related problems. 

Direct methods for calculating the inverse of 
matrices include LU Decomposition, Cholesky 
Decomposition, and Gaussian Elimination [12, 17]. 

In Vandermonde matrices 

𝑉 = 𝑉(𝛼0, … , 𝛼𝑛) = (

1  1  ⋯    1
𝛼0 𝛼1    ⋯ 𝛼𝑛
⋮ ⋮    ⋱ ⋮

𝛼0
𝑛 𝛼1

𝑛     ⋯ 𝛼𝑛
𝑛

), 

which arise in many approximation and 
interpolation problems, 𝑉 is non-singular if scalars 

𝛼𝑖 , 𝑖 = 0, … , 𝑛 are different. The inverse of 𝑉 can 

be calculated explicitly with 6𝑛2 flops (see [17], 
p. 416). El-Mikkawy [11] provides an explicit 
expression for the inverse of generalized 

Vandermonde matrices by using elementary 
symmetric functions. Fourier matrices obtained 
from the Discrete Fourier Transform (DFT) are 
Vandermonde matrices with known inverses 
[12, 17].  

Let 𝐴 be a non-singular matrix and 𝐴−1 be its 
inverse. Sometimes, it is necessary to determine 
the inverse of an invertible submatrix of 𝐴. This 
situation is common in applied physics for 
superconductivity computations [15], photonic 
crystals [8, 21], metal-dielectric materials [25], and 
bianisotropic metamaterials [22]. 

In general, computation of the inverse of a 
submatrix from a matrix with the known inverse is 
not direct. Quite recently, Chang [9] provided a 
recursive method for calculating the inverse of 
submatrices located at the upper left corner of 𝐴. 

In this paper, we aim to calculate the inverse of 
a non-singular submatrix in terms of the elements 
of the inverse of the original matrix. We compare 
the number of operations in our method with those 
of the Sherman-Morrison method and the 
LU Decomposition. 

This problem is directly related to how to 
calculate the inverse of a perturbed matrix  (𝐴 +
𝐷)−1, where 𝐷  is a perturbation matrix of 𝐴  [10, 
14, 19, 24]. This matrix inverse has been 
calculated in various disciplines with different 
applications, derived from the Sherman-Morrison 
formula [5, 23]: 

(𝐴 −  𝑢𝑣𝑇)−1  =  𝐴−1  +
(𝐴−1𝑢)(𝑣𝑇𝐴−1)

1 − 𝑣𝑇𝐴−1𝑢
, (1) 
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where  𝑢, 𝑣 ∈ ℝ𝑛 are column vectors, from the 
Sherman-Morrison-Woodbury formula [14, 16]: 

[𝐴 − 𝑈𝑉 ]−1  =  𝐴−1  + 𝐴−1𝑈 (𝐼 − 𝑉𝐴−1𝑈)−1 𝑉𝐴−1, 

or from its block-partitioned matrix form [14]: 

𝑀−1  = (𝐴
−1  + 𝐴−1𝑈𝐶−1𝑉𝐴−1 −𝐴−1𝑈𝐶−1

−𝐶−1𝑉𝐴−1 𝐶−1
), (2) 

where  

𝑀 = (
𝐴 𝑈
𝑉 𝐷

), (3) 

and  𝐶 = 𝐷 − 𝑉𝐴−1𝑈  is the Schur complement 

of 𝐴. 

Particularly, formula (2) has been applied by 
inverting a matrix with the enlargement method 
[13], which uses the same formula to express the 
inverse of a leading principal submatrix of order 𝑘 
in terms of a previously calculated submatrix of 
order (𝑘 − 1).  

Applications of these formulas have been 
described in various papers. For example, Hager 
[14] discusses applications in statistics, networks, 
structural analysis, asymptotic analysis, 
optimization, and partial differential equations; 
Maponi [18] and Bru et al., [7] in solving linear 
systems of equations; Arsham, Grad, and Jaklič [4] 
in linear programming; Akgün, Garcelon, and 
Haftka [1] in structural reanalysis; and Alshehri [3] 
in the multi-period demand response 
management problem. 

Now, we show a case where the perturbation 

matrix 𝐴 −  𝑢𝑣𝑇 can be used to solve the problem 
of calculating the inverse of an invertible submatrix 
of order  𝑛 − 1 of a known invertible matrix. 

Let 𝐴�̅�;�̅� be the submatrix obtained from 𝐴 by 

eliminating the 𝑝 − th row and 𝑞 − th column. We 

state 𝐴 −  𝑢𝑣𝑇 by defining  𝑢 = 𝐴𝑞 −  𝑒𝑝, 

where 𝐴𝑞 is the 𝑞 − th column vector of 𝐴,  𝑒𝑝 ∈ ℝ
𝑛 

is the 𝑝 − th canonical column vector, and 𝑣 =  𝑒𝑞 

is the  𝑞 − th canonical column vector. With these 

definitions,  𝐴 −  𝑢𝑣𝑇    is equal to 𝐴 except in its   
𝑞 − th column, which is equal to  𝑒𝑝. By applying 

the Sherman-Morrison formula to calculate   (𝐴 −

 𝑢𝑣𝑇)−1, then   (𝐴�̅�;�̅�)
−1
 is obtained by eliminating 

the 𝑞 − th row and  𝑝 − th column of (𝐴 −  𝑢𝑣𝑇)−1. 

The following example illustrates 
this procedure. 

Let 𝐴 and  𝐴−1  be 

𝐴 = (
1 4 6
2 −1 3
3 2 5

) ,  𝐴−1 =
1

27
(
−11 −8 18
−1 −13 9
7 10 −9

). 

Let  𝐴2̅,3̅ = (
1 4
3 2

),   then 

𝑢 = 𝐴3 −  𝑒2 = (6, 3 − 1, 5)
𝑇 , 𝑣 = (0, 0, 1)𝑇 , 

and 

𝐴 − 𝑢𝑣𝑇 = (
1 4 0
2 −1 1
3 2 0

). 

Since 𝐴 − 𝑢𝑣𝑇    is invertible, by using the 
Sherman-Morrison formula we obtain 

(𝐴 − 𝑢𝑣𝑇)−1 =
1

27
(
−11 −8 18
−1 −13 9
7 10 −9

) + 

(
1
27
(
−11 −8 18
−1 −13 9
7 10 −9

)(
6
2
5
))((0, 0, 1)

1
27
(
−11 −8 18
−1 −13 9
7 10 −9

))

1 − (0, 0, 1)
1
27
(
−11 −8 18
−1 −13 9
7 10 −9

)(
6
2
5
)

=
1

10
(
−2 0 4
3 0 −1
7 1 −9

). 

By eliminating the 3rd row and the 2nd column, 
we obtain 

(𝐴 −  𝑢𝑣𝑇)3̅;2̅
−1 =

1

10
(
−2 4
3 −1

) = 𝐴2̅;3̅
−1, 

which is the inverse of the submatrix. 

If the number of additions and subtractions 
(𝑁𝐴𝑆) and the number of multiplications and 
divisions (𝑁𝑀𝐷) are considered separately, the 
Sherman-Morrison formula provides a method for 
calculating the inverse of a submatrix of order 𝑛 −
1, with 

𝑁𝐴𝑆 = 2𝑛(2𝑛 − 1);  𝑁𝑀𝐷 = 𝑛(5𝑛 + 1), (4) 
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where 𝑛 is the order of the original matrix. The 
result is obtained by doing a simple sum of each 
algebraic operation performed on the different 
steps of the algorithm. 

In this paper, we show a simpler, more direct 
formula with 

𝑁𝐴𝑆 = (𝑛 − 1)(𝑛 − 1);  

𝑁𝑀𝐷 = 2(𝑛 − 1)(𝑛 − 1). 
(5) 

The paper is organized as follows. In the next 
section, we show a formula for calculating each 
element of the inverse of a non-singular submatrix 
of order 𝑛 −  1 in terms of the elements of the 
inverse of the original matrix. An example of the 
use of the formula is illustrated in Section 3. The 
formula is implemented computationally in Section 
4 on MatLab and Fortran 90 for a Fourier matrix, 
comparing the formula's runtime with respect to the 
already implemented algorithms in each 
programming language that are based on LU 
decomposition. Then, in Section 5, a general 
formula for the inverse of any square submatrix of 
a given 𝑛 × 𝑛 matrix is obtained. Finally, in Section 
6, the relationship between the inverses of block 
submatrices and their original matrix, which was 
used in [8, 22, 25], is derived. 

2 Submatrices of Order 𝒏 – 𝟏 

In the sequel, we consider the vector space 𝐹𝑛×𝑛 
of matrices over the real or complex field.  

Let 𝐴 ∈ 𝐹𝑛×𝑛, 𝐴 = (𝑎𝑖𝑗), 𝑖, 𝑗 = 1,… , 𝑛 be 

invertible, and let 𝐴 −1 = (𝑏𝑖𝑗), 𝑖, 𝑗 = 1,… , 𝑛 be its 

inverse. Then, we obtain 

𝑏𝑖𝑗  =  (−1)
𝑖+𝑗
det𝐴�̅�;𝑖̅

det𝐴
. (6) 

Let 𝑀 =  𝐴�̅�;�̅� be a submatrix of 𝐴. For our 

purposes, we will use the following notation: 

𝑀 =  (𝑎𝑖𝑗),   𝑖 = 1, … , 𝑝 − 1, 𝑝 +  1, … , 𝑛, 

𝑗 = 1,… , 𝑞 − 1, 𝑞 +  1, … , 𝑛, 
or, in short, 

𝑀 =  (𝑎𝑖𝑗),   𝑖, 𝑗 =  1: 𝑛, 𝑖 ≠ 𝑝, 𝑗 ≠ 𝑞. 

Note that 𝐴�̅�;�̅� is invertible ⟺ 𝑏𝑞𝑝 ≠  0. 

Next, we derive the formula for the calculation 

of the inverse of  𝑀−1 = (𝑚𝑖𝑗). 

Theorem 2.1. Let 𝐴 = (𝑎𝑖𝑗) be a nonsingular 

matrix of order  𝑛, and let 𝐴 −1 = (𝑏𝑖𝑗) be its 

inverse. If 𝑎𝑝𝑞 and 𝑏𝑞𝑝 are both not null for 

certain  𝑝, 𝑞 ∈ {1, … , 𝑛}, then the submatrix 𝑀 =

 𝐴�̅�;�̅� is invertible, and its inverse 𝑀−1 = (𝑚𝑖𝑗) is a 

matrix of order (𝑛 − 1) defined as 

𝑚𝑖𝑗 = 𝑏𝑖𝑗  −
𝑏𝑖𝑝𝑏𝑞𝑗

𝑏𝑞𝑝
, 𝑖, 𝑗 =  1: 𝑛, 𝑖 ≠ 𝑞, 𝑗 ≠ 𝑝. (7) 

Proof. Since 𝐴 −1 is the inverse of 𝐴 and, 

reciprocally, 𝐴 −1𝐴 = 𝐴𝐴 −1 = 𝐼𝑛 , where 𝐼𝑛 is the 

identity matrix of order 𝑛. Thus, 

∀𝑖, 𝑗 =  1: 𝑛,∑ 𝑏𝑖𝑘𝑎𝑘𝑗
𝑛

𝑘=1
= 𝛿𝑖𝑗 , 

∀𝑖, 𝑗 =  1: 𝑛,∑ 𝑎𝑖𝑘𝑏𝑘𝑗
𝑛

𝑘=1
= 𝛿𝑖𝑗 , 

where 𝛿𝑖𝑗 is the Kronecker's delta, being equal to 1 

if 𝑖 =  𝑗 and to 0 if  𝑖 ≠ 𝑗. These equations can be 
expressed as 

∀𝑖, 𝑗 =  1: 𝑛, ∑ 𝑏𝑖𝑘𝑎𝑘𝑗
𝑛

𝑘=1,𝑘≠𝑝

= 𝛿𝑖𝑗 − 𝑏𝑖𝑝𝑎𝑝𝑗 , 
(8) 

∀𝑖, 𝑗 =  1: 𝑛, ∑ 𝑎𝑖𝑘𝑏𝑘𝑗
𝑛

𝑘=1,𝑘≠𝑞

= 𝛿𝑖𝑗 − 𝑎𝑖𝑞𝑏𝑞𝑗 . 
(9) 

We define 𝐷 = (𝑑𝑖𝑗) ∈ 𝐹
(𝑛−1)×(𝑛−1) as the matrix  

𝑑𝑖𝑗 ∶=  𝛿𝑖𝑗 − 𝑏𝑖𝑝𝑎𝑝𝑗 , 𝑖, 𝑗 =  1: 𝑛;  𝑖 ≠ 𝑞, 𝑗 ≠ 𝑞, 

where 𝑝 and 𝑞 indicate the number of the row and 
the column, respectively, which are eliminated 
from matrix 𝐴 to obtain the submatrix   𝑀 =  𝐴�̅�;�̅�. 

Matrix 𝐷 can be expressed as 

𝐷 =  𝐼𝑛−1 − 𝑢𝑣
𝑇 , (10) 

where  𝑢 = (𝑏1𝑝, … , 𝑏(𝑞−1)𝑝, 𝑏(𝑞+1)𝑝. . . , 𝑏𝑛𝑝)
𝑇
 is the 

𝑝 − 𝑡ℎ column of 𝐴 −1 after eliminating its 𝑞 − th 

component. Analogously, vector 𝑣 =
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(𝑎𝑝1, … , 𝑎𝑝(𝑞−1), 𝑎𝑝(𝑞+1). . . , 𝑎𝑝𝑛)
𝑇
 is the 𝑝 − th row of 

matrix 𝐴 after eliminating its 𝑞 − th component. 

The inverse of 𝐷 in Eq. (10) can be calculated 
by using the Sherman-Morrison formula (1), which 

contains the scalar 1 − 𝑣𝑇𝑢, and by using Eq. (9) 
we can see that 

1 − 𝑣𝑇𝑢 = 1 −∑ 𝑎𝑝𝑘𝑏𝑘𝑝
𝑛

𝑘=1,𝑘≠𝑞
= 𝑎𝑝𝑞𝑏𝑞𝑝. 

Thus, if 𝑎𝑝𝑞𝑏𝑞𝑝 ≠ 0 (i.e., both 𝑎𝑝𝑞 and 𝑏𝑞𝑝 are 

nonzero), 𝐷 is invertible and, according to Eq. (1), 
we obtain 

𝐷−1  = [𝐼𝑛−1 − 𝑢𝑣
𝑇]−1 = 𝐼𝑛−1  +

𝑢𝑣𝑇

1 − 𝑣𝑇𝑢
 

= 𝐼𝑛−1 +
𝑢𝑣𝑇

𝑎𝑝𝑞𝑏𝑞𝑝
. 

 

On the other hand, 𝐷 can be expressed as a 
matrix form by using Eq. (8) such that 

𝑁𝑀 =  𝐷, (11) 

where 𝑁 is the submatrix of 𝐴−1 defined as 

𝑁 =  𝐴�̅�;�̅�
−1 = (𝑏𝑖𝑗),   

𝑖, 𝑗 =  1: 𝑛, 𝑖 ≠  𝑞, 𝑗 ≠  𝑝. 
(12) 

According to Eq. (11), 𝐷−1𝑁𝑀 = 𝐼𝑛−1. Then, 

𝑀−1 = 𝐷−1𝑁 = 𝑁 +
𝑢𝑣𝑇𝑁

𝑎𝑝𝑞𝑏𝑞𝑝
. 

Substituting 𝑢, 𝑣𝑇and using matrix 𝑁 in Eq. (12), 

the elements 𝑚𝑖𝑗 of matrix 𝑀−1 are given by 

𝑚𝑖𝑗 = 𝑏𝑖𝑗  +
𝑏𝑖𝑝

𝑎𝑝𝑞𝑏𝑞𝑝
∑ 𝑎𝑝𝑘𝑏𝑘𝑗𝑘≠𝑞 ,  

𝑖, 𝑗 = 1: 𝑛, 𝑖 ≠ 𝑞, 𝑗 ≠ 𝑝. 

Finally, using Eq. (9) we obtain the formula 

𝑚𝑖𝑗 = 𝑏𝑖𝑗  −
𝑏𝑖𝑝𝑏𝑞𝑗

𝑏𝑞𝑝
, 𝑖, 𝑗 =  1: 𝑛, 𝑖 ≠ 𝑞, 𝑗 ≠ 𝑝.∎ 

In this theorem, the condition 𝑎𝑝𝑞 ≠ 0 is 

necessary due to the use of the Sherman-Morrison 
formula; however, this hypothesis is removed in 
the theorem below. 

Theorem 2.2. Let 𝐴 be an invertible matrix of 
order 𝑛, and let 𝐴 −1 = (𝑏𝑖𝑗) be its inverse. If  𝑏𝑞𝑝 ≠

0 for some 𝑞, 𝑝 ∈ {1, … , 𝑛}, then 𝑀 =  𝐴�̅�;�̅� is 

invertible and its inverse 𝑀−1 = (𝑚𝑖𝑗) is given by 

Eq. (7). 

Proof. It is sufficient to prove that submatrices 

𝑀 and 𝑀−1 satisfy the relation 𝑀−1𝑀 = 𝐼𝑛−1  (see 

[6]). Since 𝑀 = (𝑎𝑖𝑗), 𝑖, 𝑗 = 1: 𝑛, 𝑖 ≠ 𝑝, 𝑗 ≠ 𝑞 and 

𝑀−1 = (𝑚𝑖𝑗), 𝑖, 𝑗 =  1: 𝑛, 𝑖 ≠ 𝑞, 𝑗 ≠ 𝑞, the elements 

of their product 𝑀−1𝑀 =  (𝑐𝑖𝑗) are 

𝑐𝑖𝑗 =∑ 𝑚𝑖𝑘𝑎𝑘𝑗
𝑛

𝑘=1,𝑘≠𝑝
, 𝑖, 𝑗 =  1: 𝑛, 𝑖 ≠ 𝑞, 𝑗 ≠ 𝑞. 

Substituting 𝑚𝑖𝑘 in Eq. (7), 

𝑐𝑖𝑗 =∑ (𝑏𝑖𝑘  −
𝑏𝑖𝑝𝑏𝑞𝑘

𝑏𝑞𝑝
) 𝑎𝑘𝑗

𝑛

𝑘=1,𝑘≠𝑝
 

=∑ 𝑏𝑖𝑘𝑎𝑘𝑗
𝑛

𝑘=1,𝑘≠𝑝
−∑

𝑏𝑖𝑝𝑏𝑞𝑘

𝑏𝑞𝑝
𝑎𝑘𝑗

𝑛

𝑘=1,𝑘≠𝑝
 

=∑ 𝑏𝑖𝑘𝑎𝑘𝑗
𝑛

𝑘=1,𝑘≠𝑝
−
𝑏𝑖𝑝

𝑏𝑞𝑝
∑ 𝑏𝑞𝑘𝑎𝑘𝑗 .

𝑛

𝑘=1,𝑘≠𝑝
 

by Eq. (8) 

 = 𝛿𝑖𝑗 − 𝑏𝑖𝑝𝑎𝑝𝑗 −
𝑏𝑖𝑝

𝑏𝑞𝑝
(𝛿𝑞𝑗 − 𝑏𝑞𝑝𝑎𝑝𝑗) 

= 𝛿𝑖𝑗 − 𝑏𝑖𝑝𝑎𝑝𝑗 −
𝑏𝑖𝑝

𝑏𝑞𝑝
𝛿𝑞𝑗 + 𝑏𝑖𝑝𝑎𝑝𝑗 = 𝛿𝑖𝑗 . 

since 𝑗 ≠ 𝑞, we obtain 𝛿𝑞𝑗 = 0.∎ 

By doing a simple sum of the operations 
required to obtain the inverse of submatrix 𝑀 =
 𝐴�̅�;�̅� in Eq. (7), 𝑁𝐴𝑆 and 𝑁𝑀𝐷 are confirmed to be 

as in Eq. (5). 

3 Example 

Consider the DFT ℱ of the sequence of 𝑛 complex 

numbers 𝑥0, … , 𝑥𝑛−1 into the 𝑛 complex numbers 
𝑦0, … , 𝑦𝑛−1 according to the formula: 
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𝑦𝑘 = ∑ 𝑥𝑚

𝑛−1

𝑚=0

𝑒−
2𝜋𝑖
𝑛
𝑘𝑚, 𝑘 = 0: (𝑛 − 1). 

This linear transformation can be expressed in 
terms of the 𝑛 × 𝑛 Vandermonde matrix 𝐹 as 

𝑦 = ℱ{𝑥} = 𝐹𝑥, 

where 𝑦 = (𝑦0 , … , 𝑦𝑛−1)
𝑇 , 𝑥 = (𝑥0, … , 𝑥𝑛−1)

𝑇 ∈ ℂ𝑛, 

and 𝐹 is 

𝐹 =

(

  
 

(𝑒−
2𝜋𝑖
𝑛 )

0(0)

⋯ (𝑒−
2𝜋𝑖
𝑛 )

0(𝑛−1)

⋮ ⋱ ⋮

(𝑒−
2𝜋𝑖
𝑛 )

(𝑛−1)(0)

⋯ (𝑒−
2𝜋𝑖
𝑛 )

(𝑛−1)(𝑛−1)

)

  
 
. (13) 

The inverse of matrix 𝐹 corresponds to the 
Inverse Discrete Fourier Transform 

𝑥 = ℱ−1{𝑦} = 𝐹−1𝑦, 

where 𝐹−1 is given by 𝐹−1  =
1

𝑛
𝐹∗ (the asterisk 

denotes complex conjugate): 

𝐹−1 =
1

𝑛

(

 
 

(𝑒
2𝜋𝑖

𝑛 )
0(0)

⋯ (𝑒
2𝜋𝑖

𝑛 )
0(𝑛−1)

⋮ ⋱ ⋮

(𝑒
2𝜋𝑖

𝑛 )
(𝑛−1)(0)

⋯ (𝑒
2𝜋𝑖

𝑛 )
(𝑛−1)(𝑛−1)

)

 
 

. 

Now, let us apply Theorem 2.2 to calculate the 
inverses of submatrices of order 𝑛 − 1 of the matrix 

𝐹 in Eq. (13). To achieve this purpose, it is 
convenient to express matrices 𝐹 and 𝐹−1 in 
the form 

𝐹 = (𝑓𝑘𝑙),   𝑓𝑘𝑙 = (𝑒
−
2𝜋𝑖
𝑛 )

(𝑘−1)(𝑙−1)

,

𝑘, 𝑙 = 1: 𝑛   

(14) 

𝐹−1  = (𝑔𝑘𝑙),   𝑔𝑘𝑙 =
1

𝑛
(𝑒

2𝜋𝑖

𝑛 )
(𝑘−1)(𝑙−1)

,  𝑘, 𝑙 = 1: 𝑛. 

Note that  𝑔𝑞𝑝 ≠ 0, for all  𝑞, 𝑝 ∈ {1, … , 𝑛}, then 

any submatrix 𝑀 =  𝐹�̅�;�̅� of 𝐹 is invertible by using 

Theorem 2.2, and its inverse 𝑀−1  = (𝑚𝑘𝑙) is given 
by (7) as 

𝑚𝑘𝑙 =
1

𝑛
(𝑒
2𝜋𝑖
𝑛 )

−(𝑙+𝑘−1)

[(𝑒
2𝜋𝑖
𝑛 )

𝑘𝑙

− (𝑒
2𝜋𝑖
𝑛 )

𝑘𝑝+𝑞𝑙−𝑝𝑞

] , 𝑘, 𝑙

= 1: 𝑛, 𝑘 ≠ 𝑞, 𝑙 ≠ 𝑝. 

(15) 

It should be emphasized that Eq. (15) provides 
the inverse of any submatrix of order  𝑛 − 1 of 

matrix 𝐹 in (13). 

For the specific case 𝑛 =  4, 𝐹 has the form 

𝐹 = (

1        1          1        1
 1 (−𝑖)1    (−𝑖)2 (−𝑖)3

1 (−𝑖)2    (−𝑖)4 (−𝑖)6

1 (−𝑖)3    (−𝑖)6 (−𝑖)9

), 

or equivalently 

(

1 1     1  1
1 −𝑖    −1 𝑖
1 −1     1 −1
1   𝑖    −1 −𝑖

). 

And its inverse is given by 

𝐹−1 =
1

4
(

1 1     1 1
1 𝑖1    𝑖2 𝑖3

1 𝑖2    𝑖4 𝑖6

1 𝑖3    𝑖6 𝑖9

) =
1

4
(

1 1     1  1
1   𝑖    −1 −𝑖
1 −1    1 −1
1 −𝑖   −1 𝑖

). 

𝑀 = 𝐹4̅;2̅ = (
1 1 1
1 −1 𝑖
1 1 −1

). 

i. If 𝑀 = 𝐹4̅;2̅, then by using formula (15), we 

directly obtain 

𝑀−1= 

(

 
 
 

1

4
𝑖−1(𝑖 − 𝑖−2)  

1

4
𝑖−2(𝑖2 − 𝑖0)

1

4
𝑖−3(𝑖3 − 𝑖2)

1

4
𝑖−3(𝑖3 − 𝑖6)

1

4
𝑖−4(𝑖6 − 𝑖8)

1

4
𝑖−5(𝑖9 − 𝑖10)

1

4
𝑖−4(𝑖4 − 𝑖10)

1

4
𝑖−5(𝑖8 − 𝑖12)

1

4
𝑖−6(𝑖12 − 𝑖14))

 
 
 
. 

𝑀 = 𝐹4̅;4̅ = (
1 1 1
1 −𝑖 −1
1 −1 1

) 
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=

(

 
 
 
 
1

4
−
1

4
𝑖

1

2

1

4
+
1

4
𝑖

1

4
+
1

4
𝑖 −

1

2
 
1

4
−
1

4
𝑖

1

2
0 −

1

2 )

 
 
 
. 

ii. If 𝑀 = 𝐹4̅;4̅ is a principal submatrix then we 

obtain 

𝑀−1

=

(

 
 
 
 
 
 
 
 
1

4
−

1
4
(
1
4
)

𝑖
4

1

4
−

1
4
(
−𝑖
4
)

𝑖
4

1

4
−

1
4
(
−1
4
)

𝑖
4

1

4
−

−𝑖
4
(
1
4
)

𝑖
4

𝑖

4
−

−𝑖
4
(
−𝑖
4
)

𝑖
4

−
1

4
−

−𝑖
4
(
−1
4
)

𝑖
4

1

4
−

−1
4
(
1
4
)

𝑖
4

−
1

4
−

−1
4
(
−𝑖
4
)

𝑖
4

1

4
−

−1
4
(
−1
4
)

𝑖
4 )

 
 
 
 
 
 
 
 

=

(

 
 
 

1

4
+
1

4
𝑖

1

2

1

4
−
1

4
𝑖

1

2
0 −

1

2
1

4
−
1

4
𝑖 −

1

2

1

4
+
1

4
𝑖)

 
 
 
. 

4 Computational Implementation 

First, we calculate the number of operations of the 
Sherman-Morrison method, formula in Eq. (7), and 
the LU algorithm. By using equations (4) and (5), 
the total number of operations to compute the 
matrix inverse with the Sherman-Morrison formula 

in Eq. (1) is 2𝑛(2𝑛 − 1) + 𝑛(5𝑛 + 1) = 9𝑛2 − 𝑛 =
 𝑂(𝑛2); with the formula in Eq. (7),  3(𝑛 − 1)2 =
 𝑂(𝑛2); and with LU Decomposition, 𝑂(𝑛3) 
operations are required [2]. In the specific case of 

Vandermonde matrices, we need 6𝑛2 flops. 

Although the number of operations with the 
Sherman-Morrison formula and the formula in Eq. 
(7) are of the same order, the slopes of the 
polynomial functions given by the number of 
operations of each method are 18 and 6, 
respectively, so we argue that the algorithm 
provided in this paper is more efficient. With the 
Vandermonde matrices, the slope of the function 
given by the number of operations is 12. 

In the remaining part of this section, we 
compare the results of the implementation of 
formula (7) with LU MatLab algorithm on v.R2008a 
and Fortran 90 for the specific case of 
Vandermonde matrices of DFT (see Section 3). 
The algorithms were executed on a notebook with 
2.27 GHz Intel Core i3 processor and a 4 GB RAM 
memory. 

To implement the algorithm, row 4 and column 
2 were eliminated in order to obtain the submatrix 
of order 𝑛 − 1. 

Figure 1 shows the results of comparing the 
matrix size with runtime on MatLab. For matrices 
of order 600 approximately, the algorithm 
performance in Equation (7) is similar to the 
performance of MatLab’s LU algorithm. However, 
for higher orders, the traditional algorithm requires 
higher runtimes, whereas formula (7) maintains 

small values for matrices of order 3 × 103 
approximately. 

In this case, the runtime is about 3 seconds in 
comparison to 90 seconds of the LU algorithm. 

In Figure 2, the implementation results in 
Fortran 90 are presented. Note that the same 
pattern with the runtime variant increases 
significantly. Therefore, for a matrix of order 3 ×
103 approximately, the LU algorithm runtime is 
about 1300 seconds. 

Finally, in Figure 3, the performance of 
Equation (7) in both computational programs is 
exposed. Note that there is no significant 
difference on runtime performance, obtaining 
values of the same order of magnitude. For 

 

Fig. 1. Implementation of Equation (7) in comparison 

to the LU algorithm on MatLab 
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matrices of order 3 × 103 approximately, the 
runtime does not exceed three seconds. This is an 
indicator that algorithm performance does not 
depend on software. 

5 Submatrices of Order 𝒏 −  𝒌 

5.1. Iterative Procedure 

The derived relation (7) between the inverse of a 
submatrix 𝐴�̅�;�̅� of order 𝑛 − 1 with the inverse 

𝐴 −1 = (𝑏𝑖𝑗) of the original matrix 𝐴 can be 

iteratively applied to calculate the inverse of a 
submatrix of order (𝑛 − 𝑘), 1 ≤ 𝑘 < 𝑛. 

Let 𝑀𝑘 = 𝐴𝑝1̅̅̅̅ ,⋯,𝑝𝑘̅̅ ̅̅ ;𝑞1̅̅̅̅ ,⋯,𝑞𝑘̅̅ ̅̅  be a submatrix of order 

(𝑛 − 𝑘) obtained from a matrix 𝐴 of order 𝑛 by 

eliminating its 𝑝1−, . . . , 𝑝𝑘 − th rows and its 

𝑞1−, . . . , 𝑞𝑘 − th columns. Then, the inverse 𝑀𝑘
−1 =

 (𝑚𝑖𝑗
(𝑘)
) of the submatrix 𝑀𝑘 can be obtained by 

applying the iterative procedure: 

𝑚𝑖𝑗
(1)
= 𝑏𝑖𝑗  −

𝑏𝑖𝑝1𝑏𝑞1𝑗

𝑏𝑞1𝑝1
, 

 𝑖, 𝑗 =  1: 𝑛, 𝑖 ≠ 𝑞1, 𝑗 ≠ 𝑝1, 

𝑚𝑖𝑗
(2)
=  𝑚𝑖𝑗

(1)
 −
𝑚𝑖𝑝2
(1)
𝑚𝑞2𝑗
(1)

𝑚𝑞2𝑝2
(1)

, 

 𝑖, 𝑗 =  1: 𝑛, 𝑖 ≠ 𝑞1, 𝑞2,   𝑗 ≠ 𝑝1, 𝑝2, 

𝑚𝑖𝑗
(𝑘)
= 𝑚𝑖𝑗

(𝑘−1)
 −
𝑚𝑖𝑝𝑘
(𝑘−1)

𝑚𝑞𝑘𝑗
(𝑘−1)

𝑚𝑞𝑘𝑝𝑘
(𝑘−1)

, 

𝑖, 𝑗 =  1: 𝑛, 𝑖 ≠ 𝑞1, … , 𝑞𝑘   𝑗 ≠ 𝑝1, , … , 𝑝𝑘. 

(16) 

This algorithm is applicable by using Theorem 
2.2 if 

𝑏𝑞1𝑝1 ≠ 0,𝑚𝑞2𝑝2
(1)

≠ 0,⋯ ,𝑚𝑞𝑘𝑝𝑘
(𝑘−1)

≠ 0, (17) 

i.e., all submatrices 𝑀𝑙 , (𝑙 =  1: 𝑘) are invertible. 

5.2 General Formula 

Let us apply the iterative procedure described 
above to obtain explicit expressions for the 

elements 𝑚𝑖𝑗
(𝑙)

 of the inverses of square 

submatrices in terms of determinants containing 
the elements 𝑏𝑖𝑗 of 𝐴 −1. 

Case 𝑀1. We can express formula (7) for 𝑚𝑖𝑗
(1)

 

of matrix 𝑀1
−1 in (16) as follows: 

𝑚𝑖𝑗
(1)
=  
𝑏𝑞1𝑝1𝑏𝑖𝑗 − 𝑏𝑖𝑝1𝑏𝑞1𝑗

𝑏𝑞1𝑝1
=

|
𝑏𝑞1𝑝1 𝑏𝑞1𝑗
𝑏𝑖𝑝1 𝑏𝑖𝑗

|

𝑏𝑞1𝑝1
. 

(18) 

In particular, 𝑚𝑞2𝑝2
(1)

 is given by 

𝑚𝑞2𝑝2
(1)

=

|
𝑏𝑞1𝑝1 𝑏𝑞1𝑝2
𝑏𝑞2𝑝1 𝑏𝑞2𝑝2

|

𝑏𝑞1𝑝1
. 

(19) 

Case 𝑀2. Consider the invertible submatrix 

𝑀1 = 𝐴𝑝1̅̅̅̅ ;𝑞1̅̅̅̅   (i.e., 𝑏𝑞1𝑝1 ≠ 0), and let 𝑀1
−1 = (𝑚𝑖𝑗

(1)
) 

 

Fig. 2. Implementation of Eq. (7) in comparison to the 

LU algorithm on Fortran 90 

 
Fig. 3. Computational comparison between MatLab and 

Fortran 90 programs 
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be its inverse. Let 𝑝2,𝑞2 ∈ {1, … , 𝑛} such that 𝑝1 ≠

𝑝2, 𝑞1 ≠ 𝑞2. If the element 𝑚𝑞2𝑝2
(1)

 (17) of the matrix 

𝑀1
−1 is not null (𝑚𝑞2𝑝2

(1)
≠ 0), then the submatrix 

𝑀2 = 𝐴𝑝1̅̅̅̅ ,𝑝2̅̅̅̅ ;𝑞1̅̅̅̅ ,𝑞2̅̅̅̅  of order (𝑛 − 2), obtained from 

𝑀1 = 𝐴𝑝1̅̅̅̅ ;𝑞1̅̅̅̅  by eliminating its 𝑝2-th row and 𝑞2-th 

column, is invertible. By (16) and (18), the 

elements 𝑚𝑖𝑗
(2)

 of matrix 𝑀2
−1 can be expressed as 

|
𝑏𝑞1𝑝1 𝑏𝑞1𝑝2
𝑏𝑞2𝑝1 𝑏𝑞2𝑝2

| |
𝑏𝑞1𝑝1 𝑏𝑞1𝑗
𝑏𝑖𝑝1 𝑏𝑖𝑗

| − |
𝑏𝑞1𝑝1 𝑏𝑞1𝑝2
𝑏𝑖𝑝1 𝑏𝑖𝑝2

| |
𝑏𝑞1𝑝1 𝑏𝑞1𝑗
𝑏𝑞2𝑝1 𝑏𝑞2𝑗

|

𝑏𝑞1𝑝1 |
𝑏𝑞1𝑝1 𝑏𝑞1𝑝2
𝑏𝑞2𝑝1 𝑏𝑞2𝑝2

|

. 

After simplifying, we obtain 

𝑚𝑖𝑗
(2)
=
𝑏𝑞1𝑝1(𝑏𝑞2𝑝2𝑏𝑖𝑗 − 𝑏𝑖𝑝2𝑏𝑞2𝑗)

|
𝑏𝑞1𝑝1 𝑏𝑞1𝑝2
𝑏𝑞2𝑝1 𝑏𝑞2𝑝2

|

 

−
𝑏𝑞1𝑝2(𝑏𝑖𝑗𝑏𝑞2𝑝1 − 𝑏𝑖𝑝1𝑏𝑞2𝑗)

|
𝑏𝑞1𝑝1 𝑏𝑞1𝑝2
𝑏𝑞2𝑝1 𝑏𝑞2𝑝2

|

 

+
𝑏𝑞1𝑗(𝑏𝑞2𝑝1𝑏𝑖𝑝2 − 𝑏𝑖𝑝1𝑏𝑞2𝑝2)

|
𝑏𝑞1𝑝1 𝑏𝑞1𝑝2
𝑏𝑞2𝑝1 𝑏𝑞2𝑝2

|

. 

 

Thus, 

𝑚𝑖𝑗
(2)
=  

 |

𝑏𝑞1𝑝1 𝑏𝑞1𝑝2 𝑏𝑞1𝑗
𝑏𝑞2𝑝1 𝑏𝑞2𝑝2 𝑏𝑞2𝑗
𝑏𝑖𝑝1 𝑏𝑖𝑝2 𝑏𝑖𝑗

|

|
𝑏𝑞1𝑝1 𝑏𝑞1𝑝2
𝑏𝑞2𝑝1 𝑏𝑞2𝑝2

|

, 

 𝑖, 𝑗 =  1: 𝑛, 𝑖 ≠ 𝑞1, 𝑞2,   𝑗 ≠ 𝑝1, 𝑝2. 

In this case, therefore, we have the 
following theorem. 

Theorem 5.1. Let A be a nonsingular matrix of 

order  𝑛 ≥  3, and let 𝐴 −1 = (𝑏𝑖𝑗) be its inverse. If 

the submatrix of order 2 

(
𝑏𝑞1𝑝1 𝑏𝑞1𝑝2
𝑏𝑞2𝑝1 𝑏𝑞2𝑝2

) (20) 

of 𝐴 −1 has non-null leading principal minors, for 

certain 𝑝1, 𝑝2, 𝑞1, 𝑞2 ∈ {1,2, … , 𝑛}  with 𝑝1 ≠ 𝑝2, 𝑞1 ≠
𝑞2, then 𝑀2 = 𝐴𝑝1̅̅̅̅ ,𝑝2̅̅̅̅ ;𝑞1̅̅̅̅ ,𝑞2̅̅̅̅  is invertible and its 

inverse 𝑀2
−1 = (𝑚𝑖𝑗

(2)
)is given by 

 |

𝑏𝑞1𝑝1 𝑏𝑞1𝑝2 𝑏𝑞1𝑗
𝑏𝑞2𝑝1 𝑏𝑞2𝑝2 𝑏𝑞𝑗𝑗

𝑏𝑖𝑝1 𝑏𝑖𝑝2 𝑏𝑖𝑗

|

|
𝑏𝑞1𝑝1 𝑏𝑞1𝑝2
𝑏𝑞2𝑝1 𝑏𝑞2𝑝2

|

, 

𝑖, 𝑗 =  1: 𝑛, 𝑖 ≠ 𝑞1, 𝑞2,   𝑗 ≠ 𝑝1, 𝑝2𝑚𝑖𝑗
(2)
. 

(21) 

Proof. The leading principal minors of 
submatrix (20) are: 

𝑏𝑞1𝑝1 , |
𝑏𝑞1𝑝1 𝑏𝑞1𝑝2
𝑏𝑞2𝑝1 𝑏𝑞2𝑝2

|. 

If these minors are different from zero, then 

𝑚𝑞2𝑝2
(1)

 in (19) is not null. Subsequently, if conditions 

in (17) (𝑏𝑞1𝑝1 ≠ 0, 𝑚𝑞2𝑝2
(1)

≠ 0) are fully satisfied, 

then 𝑀2 is invertible. The elements of  𝑀2
−1 can be 

calculated by using formulas in (16), which can be 
expressed again in the form of (21).∎ 

Case 𝑀𝑘. The above results obtained for cases 

𝑀1 and 𝑀2 allow us to infer a general formula for 
𝑀𝑘, with  1 ≤ 𝑘 < 𝑛. 

Theorem 5.2. Let 𝐴 be a nonsingular matrix of 
order  𝑛, and let 𝐴 −1 = (𝑏𝑖𝑗) be its inverse. Let 𝑘 ∈

𝑁 such that 𝑘 <  𝑛. If the submatrix of order 𝑘 × 𝑘 

(

 

𝑏𝑞1𝑝1 𝑏𝑞1𝑝2      ⋯ 𝑏𝑞1𝑝𝑘
𝑏𝑞2𝑝1 𝑏𝑞2𝑝2     ⋯ 𝑏𝑞2𝑝𝑘
⋮          ⋮        ⋱   ⋮

𝑏𝑞𝑘𝑝1 𝑏𝑞𝑘𝑝2     ⋯ 𝑏𝑞𝑘𝑝𝑘)

  (22) 

of 𝐴 −1 has non-null leading principal minors for 

certain 𝑝1, … , 𝑝𝑘 , 𝑞1, … , 𝑞𝑘 ∈ {1, … , 𝑛} satisfying 

 𝑝𝑗1 ≠ 𝑝𝑗2 for 𝑗1 ≠ 𝑗2 and  𝑞𝑖1 ≠ 𝑞𝑖2  for 𝑖1 ≠ 𝑖2, then 

the submatrix 𝑀𝑘 = 𝐴𝑝1̅̅̅̅ ,⋯,𝑝𝑘̅̅ ̅̅ ;𝑞1̅̅̅̅ ,⋯,𝑞𝑘̅̅ ̅̅  of 𝐴 is invertible 

and its inverse 𝑀𝑘
−1 = (𝑚𝑖𝑗

(𝑘)
) is a matrix of order 

(𝑛 − 𝑘) with elements defined by 
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𝑚𝑖𝑗
(𝑘)
=

||

  𝑏𝑞1𝑝1    ⋯ 𝑏𝑞1𝑝𝑘     𝑏𝑞1𝑗
⋮         ⋱    ⋮          ⋮

𝑏𝑞𝑘𝑝1     ⋯ 𝑏𝑞𝑘𝑝𝑘    𝑏𝑞𝑘𝑗

𝑏𝑖𝑝1     ⋯     𝑏𝑖𝑝𝑘   𝑏𝑖𝑗

||

|

𝑏𝑞1𝑝1 ⋯ 𝑏𝑞1𝑝𝑘
⋮ ⋱ ⋮

𝑏𝑞𝑘𝑝1 ⋯ 𝑏𝑞𝑘𝑝𝑘

|

, 

𝑖, 𝑗 =  1,… , 𝑛, 𝑖 ≠ 𝑞1, … , 𝑞𝑘 , 𝑗 ≠ 𝑝1, … , 𝑝𝑘 . 

(23) 

Proof. Let us demonstrate the theorem by 
mathematical induction. 

Step 1. Let us verify that the proposition of the 

theorem is true for case 𝑀1. If the 1 × 1 submatrix  

(𝑏𝑞1𝑝1) 

of 𝐴 −1 has non-null leading principal minors, i.e., 

𝑏𝑞1𝑝1 ≠ 0, then the submatrix 𝑀1 = 𝐴𝑝1̅̅̅̅ ;𝑞1̅̅̅̅   is 

invertible and its inverse 𝑀1
−1 = (𝑚𝑖𝑗

(1)
) is given by 

formula (7) from Theorem 2.2. The general 
expression (23) is another form of Eq. (7) as shown 
in Eq. (18). 

Step 2. Let us suppose that the proposition is 

true for case 𝑀𝑘−1. Thus, if the submatrix of 𝐴 −1 of 
order 𝑘 − 1 

(

𝑏𝑞1𝑝1 ⋯ 𝑏𝑞1𝑝𝑘
⋮ ⋱ ⋮

𝑏𝑞𝑘−1𝑝1 ⋯ 𝑏𝑞𝑘−1𝑝𝑘−1

) 

has non-null leading principal minors, the 
submatrix 𝑀𝑘−1 = 𝐴𝑝1̅̅̅̅ ,⋯,𝑝𝑘−1̅̅ ̅̅ ̅̅ ̅;𝑞1̅̅̅̅ ,,⋯,𝑞𝑘−1̅̅ ̅̅ ̅̅ ̅ of 𝐴 is 

invertible and its inverse 𝑀𝑘−1
−1 = (𝑚𝑖𝑗

(𝑘−1)
)  is the 

matrix of order (𝑛 − 𝑘 + 1) given by 

𝑚𝑖𝑗
(𝑘−1)

=

||

  𝑏𝑞1𝑝1       ⋯ 𝑏𝑞1𝑝𝑘−1        𝑏𝑞1𝑗
⋮            ⋱       ⋮             ⋮

𝑏𝑞𝑘−1𝑝1     ⋯ 𝑏𝑞𝑘−1𝑝𝑘−1    𝑏𝑞𝑘−1𝑗

𝑏𝑖𝑝1        ⋯        𝑏𝑖𝑝𝑘−1        𝑏𝑖𝑗

||

|

𝑏𝑞1𝑝1 ⋯ 𝑏𝑞1𝑝𝑘−1
⋮ ⋱ ⋮

𝑏𝑞𝑘−1𝑝1 ⋯ 𝑏𝑞𝑘−1𝑝𝑘−1

|

, 

𝑖, 𝑗 =  1: 𝑛, 𝑖 ≠ 𝑞1, … , 𝑞𝑘−1,   𝑗 ≠ 𝑝1, … , 𝑝𝑘−1. 

(24) 

If the conditions in (17) are satisfied, the 

elements 𝑚𝑖𝑗
(𝑘)

 of matrix 𝑀𝑘
−1 are expressed in 

terms of the elements 𝑚𝑖𝑗
(𝑘−1)

 of 𝑀𝑘−1
−1  according to 

Eq. (16). Such conditions demand that leading 

principal minors of matrix (22) be non-null. In fact, 

note that the elements 𝑏𝑞1𝑝1 , 𝑚𝑞2𝑝2
(1) , ⋯ ,𝑚𝑞𝑘𝑝𝑘

(𝑘−1), 

appearing in the denominators of Eq. (16), turn out 
to be proportional to those minors, see Eq. (24). In 

the sequel, we denote the elements 𝑚𝑖𝑗
(𝑘)

 (16) as 

𝑚𝑖𝑗
(𝑘)
=
𝑚𝑞𝑘𝑝𝑘
(𝑘−1)

𝑚𝑖𝑗
(𝑘−1)

−𝑚𝑖𝑝𝑘
(𝑘−1)

𝑚𝑞𝑘𝑗
(𝑘−1)

𝑚𝑞𝑘𝑝𝑘
(𝑘−1)

 

=
|
𝐴 𝑈1
𝑉1 𝐷1

| |
𝐴 𝑈2
𝑉2 𝐷2

| − |
𝐴 𝑈1
𝑉2 𝐷3

| |
𝐴 𝑈2
𝑉1 𝐷4

|

|𝐴| |
𝐴 𝑈1
𝑉1 𝐷1

|
, 

(25) 

where we have used the following notation: 

𝐴 = (

𝑏𝑞1𝑝1 ⋯ 𝑏𝑞1𝑝𝑘−1
⋮ ⋱ ⋮

𝑏𝑞𝑘−1𝑝1 ⋯ 𝑏𝑞𝑘−1𝑝𝑘−1

), 

𝑈1 = (𝑏𝑞1𝑝𝑘  𝑏𝑞2𝑝𝑘   ⋯ 𝑏𝑞𝑘−1𝑝𝑘)
𝑇 , 

𝑈2 = (𝑏𝑞1𝑗 𝑏𝑞2𝑗  ⋯ 𝑏𝑞𝑘−1𝑗)
𝑇 , 

𝑉1 = (𝑏𝑞𝑘𝑝1  𝑏𝑞𝑘𝑝2   ⋯ 𝑏𝑞𝑘𝑝𝑘−1),  

𝑉2 = (𝑏𝑖𝑝1  𝑏𝑖𝑝2   ⋯ 𝑏𝑖𝑝𝑘−1), 

𝐷1 = 𝑏𝑞𝑘𝑝𝑘 , 𝐷2 = 𝑏𝑖𝑗 , 𝐷3 = 𝑏𝑖𝑝𝑘 , 𝐷4 = 𝑏𝑞𝑘𝑗 . 

Using Eq. (2) for the determinant of a block-
partitioned matrix (3), we directly obtain 

𝑚𝑖𝑗
(𝑘)
=
|𝐴|(𝐷1 − 𝑉1𝐴

−1𝑈1)(𝐷2 − 𝑉2𝐴
−1𝑈2)

|
𝐴 𝑈1
𝑉1 𝐷1

|
 

−
|𝐴|(𝐷3 − 𝑉2𝐴

−1𝑈1)(𝐷4 − 𝑉1𝐴
−1𝑈2)

|
𝐴 𝑈1
𝑉1 𝐷1

|
. 

(26) 

This result agrees with formula (23). In fact, by 
expressing (23) as 

𝑚𝑖𝑗
(𝑘)
=  

 |
𝐴 𝑈1 𝑈2
𝑉1 𝐷1 𝐷4
𝑉2 𝐷3 𝐷2

|

|
𝐴 𝑈1
𝑉1 𝐷1

|
 

and using Eq. (2) for the determinant of a block-
partitioned matrix (3), we directly obtain 
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𝑚𝑖𝑗
(𝑘)
=
|𝐴|(𝐷1 − 𝑉1𝐴

−1𝑈1)(𝐷2 − 𝑉2𝐴
−1𝑈2)

|
𝐴 𝑈1
𝑉1 𝐷1

|
 

−
|𝐴|(𝐷3 − 𝑉2𝐴

−1𝑈1)(𝐷4 − 𝑉1𝐴
−1𝑈2)

|
𝐴 𝑈1
𝑉1 𝐷1

|
. 

(26) 

This result agrees with formula (23). In fact, by 
expressing (23) as 

𝑚𝑖𝑗
(𝑘)
=  

 |
𝐴 𝑈1 𝑈2
𝑉1 𝐷1 𝐷4
𝑉2 𝐷3 𝐷2

|

|
𝐴 𝑈1
𝑉1 𝐷1

|
 

and using Eq. (5), we obtain 

𝑚𝑖𝑗
(𝑘)
=
det𝐴 det [(

𝐷1 𝐷4
𝐷3 𝐷2

) − (
𝑉1
𝑉2
)𝐴−1(𝑈1 𝑈2)]

|
𝐴 𝑈1
𝑉1 𝐷1

|
. 

Subsequently, this formula is reduced to the 
expression 

𝑚𝑖𝑗
(𝑘)
=

|𝐴| det [
𝐷1 − 𝑉1𝐴

−1𝑈1 𝐷4−𝑉1𝐴
−1𝑈2

𝐷3 − 𝑉2𝐴
−1𝑈1 𝐷2 − 𝑉2𝐴

−1𝑈2
]

|
𝐴 𝑈1
𝑉1 𝐷1

|
, 

which evidently agrees with (26). It implies that this 
proposition is true for all 𝑘 values.∎ 

Note that in the specific case of 𝑘 =  𝑛 − 1 in 

Theorem 5.2, the submatrix 𝑀𝑛−1 =
𝐴𝑝1̅̅̅̅ ,…,𝑝𝑛−1̅̅ ̅̅ ̅̅ ̅;𝑞1̅̅̅̅ ,…,𝑞𝑛−1̅̅ ̅̅ ̅̅ ̅ of 𝐴 is a 1 × 1 matrix and its 

inverse is   𝑀𝑛−1
−1 = (𝑚𝑖𝑗

(𝑛−1)
), where 

𝑚𝑖𝑗
(𝑛−1)

=

||

  𝑏𝑞1𝑝1       ⋯ 𝑏𝑞1𝑝𝑛−1        𝑏𝑞1𝑗
⋮            ⋱       ⋮             ⋮

𝑏𝑞𝑛−1𝑝1     ⋯ 𝑏𝑞𝑛−1𝑝𝑛−1    𝑏𝑞𝑛−1𝑗

𝑏𝑖𝑝1        ⋯        𝑏𝑖𝑝𝑛−1        𝑏𝑖𝑗

||

|

𝑏𝑞1𝑝1 ⋯ 𝑏𝑞1𝑝𝑛−1
⋮ ⋱ ⋮

𝑏𝑞𝑛−1𝑝1 ⋯ 𝑏𝑞𝑛−1𝑝𝑛−1

|

, 

𝑖, 𝑗 =  1: 𝑛, 𝑖 ≠ 𝑞1, … , 𝑞𝑛−1, 𝑗 ≠ 𝑝1, … , 𝑝𝑛−1. 

(27) 

Then, indexes 𝑖 and 𝑗, respectively, take the 
remaining value from the integers in {1, … , 𝑛}.  
Permutating the rows and columns of the 

determinant in the numerator of expression (27), 
we obtain 

𝑚𝑖𝑗
(𝑛−1)

=
(−1)𝑖+𝑗|𝐴−1|

|𝐴�̅�𝑖̅
−1|

. 

By using (6) to calculate the elements of the 
matrix inverse of 𝐴−1 ((𝐴−1)−1 = 𝐴), we obtain the 
expected result 

𝑚𝑖𝑗
(𝑛−1)

=
1

𝑎𝑖𝑗
. 

6 Block Submatrices 

We generalize the relationship between the 
inverses of a matrix and their submatrices, which 
is derived in Section 2, to the case of block-
partitioned matrices having square blocks of the 
same size. 

Theorem 6.1. Let  𝐀 = (𝐴𝑖𝑗) be a nonsingular 

block matrix of order  𝑛𝑠, and let 𝐀−1 = (𝐵𝑖𝑗) be its 

inverse, where 𝐵𝑖𝑗 is a 𝑠 × 𝑠 square block 

matrix, (1 ≤ 𝑖;  𝑗 ≤ 𝑛). If  𝐵𝑞𝑝 is invertible for certain 

𝑞, 𝑝 ∈ {1, … , 𝑛}, then the block-partitioned 
submatrix 𝐌 = 𝐀�̅��̅� obtained by eliminating the 𝑝 −

th block row and the q − th block column of 𝐀 is 

invertible, and its inverse 𝐌−1 = (𝑀𝑖𝑗) of order (𝑛 −

1)𝑠 is given by 

𝑀𝑖𝑗 = 𝐵𝑖𝑗 − 𝐵𝑖𝑝𝐵𝑞𝑝
−1𝐵𝑞𝑗 , 

𝑖, 𝑗 = 1: 𝑛, 𝑖 ≠ 𝑞, 𝑗 ≠ 𝑝. 
(28) 

Proof. The demonstration follows the same 
procedure as Theorem 2.2. 

7 Conclusions 

In summary, we have obtained a formula (Eq. (7)) 
that allows us to calculate the inverse of a 
submatrix of order (𝑛 − 1) in terms of the inverse 
𝐴−1 of the original 𝑛 × 𝑛 matrix 𝐴. By applying such 
a formula iteratively, we have been able to derive 
an explicit relationship (23) between the inverse of 
an arbitrary square submatrix and its inverse 𝐴−1. 
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In addition, we have tested the computational 
efficiency of the formula's runtime when compared 
with the LU Decomposition for the case of Fourier 
matrices. We have also generalized formula (5) for 
the case of inverses of block-partitioned matrices 
with square blocks of the same size  𝑠, see Eq. 
(28). The relationship in Eq. (28) is particularly 
useful when the known inverse of the matrix is a 
very large order (𝑛𝑠 ≫ 1), and it is necessary to 
calculate the inverse of a submatrix of order 
(𝑛 −  1)𝑠. 

References 

1. Akgün, M.A., Garcelon, J.H., & Haftka, R.T. 
(2001). Fast exact linear and non‐linear structural 

reanalysis and the Sherman–Morrison–Woodbury 
formulas. International Journal for Numerical 
Methods in Engineering, Vol. 50, Vol. 7, pp. 1587–
1606. DOI: 10.1002/nme.87. 

2. Allaire, G. & Kaber, S.M. (2008). Numerical linear 
algebra, Vol. 55, New York: Springer. 

3. Alshehri, K.M.A. (2015). Multi-period demand 
response management in the smart grid: a 
Stackelberg game approach. 

4. Arsham, H., Grad, J., & Jaklič, G. (2007). 

Perturbed matrix inversion with application to LP 
simplex method. Applied mathematics and 
computation, Vol. 188, No. 1, pp. 801–807. DOI: 
10.1016/j.amc.2006.10.038. 

5. Bartlett, M.S. (1951). An inverse matrix adjustment 

arising in discriminant analysis. The Annals of 
Mathematical Statistics, Vol. 22, No. 1, pp. 107–
111.  

6. Birkhoff, G. & Mac Lane, S. (1965). A survey of 
modern algebra. Universities Press. 

7. Bru, R. Cerdán, J., Marín, J., & Mas, J. (2003). 

Preconditioning Sparse Nonsymmetric Linear 
Systems with the Sherman--Morrison Formula. 
SIAM Journal on Scientific Computing, Vol. 25, No. 

2, pp. 701–715. DOI: 10.1137/ 
S1064827502407524. 

8. Cerdán-Ramírez, V., Zenteno-Mateo, B., 
Sampedro, M.P., Palomino-Ovando, M.A., 
Flores-Desirena, B., & Pérez-Rodríguez F. 
(2009). Anisotropy effects in homogenized 
magneto-dielectric photonic crystals. Journal of 
Applied Physics, Vol. 106, No. 10. DOI. 
10.1063/1.3261758.  

9. Chang, F.C. (2016). Matrix Inverse as by-Product of 
Determinant. British Journal of Mathematics & 
Computer Science, Vol. 12, No. 4, p. 1. 

10. Edelblute, D.J. (1966). Matrix inversion by rank 
annihilation. Mathematics of Computation, Vol. 20, 
No. 93, pp. 149–151. DOI: 10.2307/2004280. 

11. El-Mikkawy, M.E. (2003). Explicit inverse of a 

generalized Vandermonde matrix. Applied 
Mathematics and Computation, Vol. 146, No. 2, pp. 
643–651. DOI: 10.1016/S0096-3003(02)00609-4. 

12. Golub, G.H. & Van Loan, C.F. (2012). Matrix 
computations (Vol. 3). JHU Press. 

13. Guttman, L. (1946). Enlargement methods for 
computing the inverse matrix. The annals of 
Mathematical Statistics, Vol. 17, No. 3, pp. 335–
343. 

14. Hager, W.W. (1989). Updating the inverse of a 
matrix. SIAM Rev., Vol. 31, No. 2, pp. 221–239. 
DOI: 10.1137/1031049. 

15. Heath, M.T., Geist, G.A., & Drake, J.B. (1991). 

Early experience with the Intel iPSC/860 at Oak 
Ridge National Laboratory. International Journal of 
High Performance Computing Applications, Vol. 5, 
No. 2, pp. 10–26. DOI: 10.1177/ 
109434209100500202. 

16. Henderson, H.V. & Searle, S.R. (1981). On 
deriving the inverse of a sum of matrices. SIAM 
Rev., Vol. 23, No. 1, pp. 53–60. DOI: 
10.1137/1023004. 

17. Higham, N. (1996). Accuracy and Stability of 
Numerical Algorithms. SIAM, pp. 203–206. 

18. Maponi, P. (2007). The solution of linear systems 

by using the Sherman-Morrison formula. Linear 
Algebra and its Applications, Vol. 420, No. 2, pp. 
276–294. DOI: 10.1016/j.laa.2006.07.007. 

19. Miller, K.S. (1981). On the inverse of the sum of 
matrices. Mathematics Magazine, Vol. 54, No. 2, pp. 
67–72. DOI: 10.2307/2690437. 

20. Press, W.H., Teukolsky, S.A., Vetterling, W.T., & 
Flannery, B.P. (1996). Numerical Recipes in 
Fortran 90: The Art of Parallel Scientific Computing. 
Cambridge University Press. 

21. Reyes-Avendaño, J.A., Algredo-Badillo, U., 
Halevi, P., & Pérez-Rodríguez, F. (2011). From 

photonic crystals to metamaterials: the bianisotropic 
response. New Journal of Physics, Vol. 13, No. 7. 

22. Reyes-Avendaño, J.A., Sampedro, M. P., Juárez-
Ruiz, E., & Pérez-Rodríguez, F. (2014). 

Bianisotropic metamaterials based on twisted 
asymmetric crosses. Journal of Optics, Vol. 16, 
No. 6. 

23. Sherman, J. & Morrison, W.J. (1950). Adjustment 

of an inverse matrix corresponding to a change in 

http://dx.doi.org/10.1137/S1064827502407524
http://dx.doi.org/10.1137/S1064827502407524
http://dx.doi.org/10.1063/1.3261758
http://dx.doi.org/10.1016/S0096-3003(02)00609-4
http://dx.doi.org/10.1137/1031049
http://dx.doi.org/10.1137/1023004
http://dx.doi.org/10.1016/j.laa.2006.07.007


Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 251–262
ISSN 1405-5546
doi: 10.13053/CyS-20-2-2083

E. Juárez-Ruiz, R. Cortés-Maldonado, F. Pérez-Rodríguez262

one element of a given matrix. The Annals of 
Mathematical Statistics, Vol. 21, No. 1, pp. 124–
127. 

24. Wilf, H.S. (1959). Matrix inversion by the 

annihilation of rank. Journal of the Society for 
Industrial and Applied Mathematics, Vol. 7, No. 2, 
pp. 149–151. DOI: 10.1137/0107013. 

25. Zenteno-Mateo, B., Cerdan-Ramirez, V., Flores-
Desirena, B., Sampedro, M. P., Juarez-Ruiz, E., & 
Perez-Rodriguez, F. (2011). Effective permittivity 
tensor for a metal-dielectric superlattice. Progress in 
Electromagnetic Research Letters, 22, pp. 165–
174.  

E. Juárez Ruiz has a Ph.D. degree in Mathematics 
from Benemérita Universidad Autónoma de 
Puebla. She works as a Research Professor at the 
Faculty of Electronics in the same university. Her 

research interests include applied mathematics 
and educational models mediated by Information 
and Communications Technologies (ICT). 

R. Cortés Maldonado has a B.Sc. degree in 
Electronics and an M.Sc. degree in Physics from 
Benemérita Universidad Autónoma de Puebla. 
Currently, he works on his Ph.D. research project 
on magnetic properties of superconductors. 

F. Pérez Rodríguez has a Ph.D. degree in Physics 
and Mathematics from Kharkov State University. 
He is a National Investigator, Level 3. He is 
interested in optical and acoustical properties of 
solids, in metamaterials, and in superconductivity. 

Article received on 21/11/2014; accepted on 20/05/2016.  
Corresponding author is E. Juárez Ruiz.

 

http://dx.doi.org/10.1137/0107013

