
Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 205–218
doi: 10.13053/CyS-20-2-2218

ISSN 2007-9737

An Experimental Study of Evolutionary Product-Unit Neural Network
Algorithm

Alain Guerrero-Enamorado, Daimerys Ceballos-Gastell

Universidad de las Ciencias Informáticas (UCI), La Habana,
Cuba

{alaing,dceballo}@uci.cu

Abstract. This paper aims to obtain empirical
information about the behavior of an Evolutionary
Product-Unit Neural Network (EPUNN) in different
scenarios. To achieve this, an extensive evaluation was
conducted on 21 data sets for the classification task.
Then, we evaluated EPUNN on eleven noisy data sets,
on sixteen imbalanced data sets, and on ten missing
values data sets. As a result of this evaluation process,
we conclude that there does not exist a significant
difference between EPUNN and the four algorithms
assessed; the accuracy of EPUNN rapidly worsen in
the presence of noise, so we do not recommend its
utilization in noisy environments; we found a tendency to
robustness in EPUNN while the imbalance ratio grows;
finally, we can state that it is able to handle missing
data, but in this kind of data, a significant performance
deterioration was manifested. For future work, we
recommend to assess the impact of irrelevant attributes
on EPUNN performance. In addition, an extension of
noisy data set evaluation would be opportune.

Keywords. Evolutionary Product-Unit Neural Network
(EPUNN), missing values, imbalanced data, noisy data.

1 Introduction

A simple method to classify patterns provides the
probability of class membership based on evaluat-
ing linear functions on a set of predictive variables.
However, quite often, in real-world classification
problems, we cannot assume linearity in input
variables. Specifically, in this paper we analyze an
algorithm that avoids the effects of non-linearity of
the input variables. Using an approach based on
non-linear functions constructed with the product
of the inputs raises to arbitrary powers. The
exponents are real values and can be adjusted by

machine learning. These functions can discover
relations between predictive variables. The
Product-Unit based Neural Networks (PUNN) were
introduced by Durbin and Rumelhart in [9]. They
are an alternative to sigmoidal neural networks
and are based on multiplicative nodes instead of
additive ones. Their training is more difficult than
the training of standard sigmoidal-based networks.
The cause is the existence of multiple local optima
and plateaus in the error surface. The main
reason for this difficulty is that small changes in
the exponents can cause large changes in the
total error surface. The complexity of the error
surface associated with PUNN justifies the use of
an evolutionary algorithm to design the topology
of the network and to train its corresponding
weights. In this case PUNN becomes EPUNN.
This novel approach has been subjected to few
comparisons in different scopes since its invention
by Martı́nez-Estudillo et al. [16]. For this
reason we compared the Evolutionary Product-Unit
Neural Network Classifier (EPUNN) with some
of the top ten [26] classifiers: NB, SVM, KNN,
and C4.5 in four different comparative scenarios:
noisy data, imbalanced data, missing values data
sets, and classical data sets. In section 2 we
describe in detail the main characteristics of the
EPUNN classifier and in section 3 we describe the
remaining algorithms.

With this work, we have made the following
contributions: we validated experimentally (in 21
classical data sets) that EPUNN behaves similarly
to four of the top ten algorithms; we showed that
its performance is greatly reduced (exponentially),
when the level of noise present in the data sets

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 205–218
doi: 10.13053/CyS-20-2-2218

Alain Guerrero-Enamorado, Daimerys Ceballos-Gastell206

ISSN 2007-9737

increases; we found that its performance is better
than the performance of the others algorithms on
imbalanced data sets; finally, EPUNN decreases
its performance when executed on data sets with
missing values (see details about the data sets in
section 4.1).

The methodology for the evaluation can be
consulted in section 4, the tools are presented in
section 4.2, and the statistical analysis is given in
section 4.3.

2 Evolutionary Product-Unit Neural
Networks Classifiers

The method consists of obtaining the neural
network architecture and simultaneously estimat-
ing the weights of the model coefficients with
an algorithm of evolutionary computation. A
cross-entropy error function is used in the neural
model. In this way a neuro-evolutive model is
obtained from the training set and then checked
against the patterns of the testing set. Some
advantages of Product-Unit Neural Networks
(PUNN) are their increased information capacity
and the ability to form higher-order combinations
of inputs. In the early work of Durbin and
Rumelhart [9] it was determined empirically that
the information capacity of product units (learning
random boolean patterns) is approximately 3N,
compared to 2N of a network with additive units for
a single threshold logic function, where N denotes
the number of inputs to the network. Despite these
advantages, product-unit based networks have a
major drawback: they have more local optima
and more probability of becoming trapped in them
[12]. The main reason for this difficulty is that
small changes in the exponents can cause large
changes in the total error surface and therefore
their training is more difficult than the training
of standard sigmoidal based networks. Several
efforts have been made to carry out learning
methods for product units [12, 10]. Studies carried
out on PUNN have not tackled the problem of
designing the structure and weights simultaneously
in this kind of neural network, either using classic
or evolutionary methods.

In this type of algorithm it is not possible
to work with inputs that have negative values.

Because weights are often non-integer values,
therefore there would be roots of negative
numbers which result in complex numbers. Since
neural networks with complex outputs are rarely
used in applications, Durbin and Rumelhart [9]
suggested discarding the imaginary part and using
only the real component for further processing
but this manipulation would have disastrous
consequences. To avoid this problem, the input
domain is restricted. We define the input set by

{x = (x1,x2, . . . ,xn) ∈ <n : xi > 0, i = 1, 2, . . . ,n}

In [17, 16] a neural architecture was proposed
shown in Figure 1, an input layer with n nodes,
a hidden layer with m nodes, and an output layer
with l nodes, one for each class. The activation
function of the j-th node in the hidden layer, hj , is
given by equation 1 where wji is the weight of the
connection between input node i and hidden node
j:

hj =

n∏
i=1

x
wji

i , j = 1, 2, . . . ,m. (1)

Fig. 1. Product-unit neural network

The activation function of the k-th node in the
output layer, gk, is given by equation 2 where vkj is
the weight of the connection between hidden node

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 205–218
doi: 10.13053/CyS-20-2-2218

An Experimental Study of Evolutionary Product-Unit Neural Network Algorithm 207

ISSN 2007-9737

j and output node k:

gk =

m∑
j=1

vkj ∗ hj + vk0 ∗ 1, k = 1, 2, . . . , l. (2)

By default the transfer function of all hidden and
output nodes is the identity function. In this way,
the estimated function gk from each output k =
1, 2, . . . , l, is given by the equation 3:

gk(x) =

m∑
j=1

vkj ∗

(
n∏
i=1

x
wji

i

)
+ vk0 ∗ 1. (3)

2.1 Evolutionary PUNN

The authors of [17, 16] applied an evolutionary
neural network algorithm to learn the weights
that minimize the cross-entropy error function
and design the structure of PUNN. The search
begins with an initial population of PUNN, and
in each iteration the population is updated using
a population-update algorithm. The population
is evolved by replication and mutation. The
authors exclude the crossover operator due to
its potential disadvantages suggested by [27, 18]
in evolving artificial networks. The pseudo-code
of an Evolutionary Product-Unit Neural Network
(EPUNN) is shown in (Algorithm 1).

2.2 Classification with EPUNN

A classification problem starts with feature mea-
surements xi, i = 1, 2, . . . ,n for any single
individual (or object), then the individuals should
be classified into one of the l classes based on
these feature measurements. A training sample
D = {(xt, yt) ; t = 1, 2, . . . ,T} is available, where
xt = x1t,x2t, . . . ,xnt is the vector of feature
measurements taking values in ψ ⊂ <n, and yt
is the class value of the t-th individual. Based on
the training sample we intend to find a decision
function C : ψ → {1, 2, . . . , l} for classifying
individuals. A misclassification occurs when a
decision rule ψ assigns an individual (based on
the feature measurement vector) to a class k when
it actually comes from a class q 6= k, where
k, q = 1, 2, . . . , l. The authors of EPUNN defined
the corrected classification rate (CCR) by CCR =

Algorithm 1: EPUNN, pseudo-code
Result: Classifier

1 Generate a random population of size Np;
2 repeat
3 Calculate the fitness of every individual in

the population;
4 Rank the individuals with respect to their

fitness;
5 The best individual is copied into the new

population;
6 The best 10% of population individuals are

replicated and substitute the worst 10% of
individuals;

7 Apply parametric mutation to the best 10%
of individuals;

8 Apply structural mutation to the remaining
90% of individuals;

9 until (numGeneration ≥
maxGeneration|| fitness (10%bestInd)variance ≤
10−4);

1
T

∑T
t=1 I (C (xt) = yt), where I(·) is the zero-one

loss function. A good classifier tries to achieve the
highest possible CCR in a given problem, for this,
they consider the SoftMax activation function [4] in
the output layer, obtaining the equation 4:

f(x, k) =
exp(gk(x))∑l
k=1 exp (gk(x))

, k = 1, 2, . . . , l. (4)

Observe that SoftMax transformation produces
positive estimates that sum to one and, therefore,
the outputs can be interpreted as the conditional
probability of class membership. In general, the
parameters needed for operation of the algorithm
are given in the next subsection 2.3.

2.3 EPUNN Parameters

This model must be configured in KEEL 1 [2] with
the following parameters:

— Hidden nodes: define the number of neurons
in the hidden layer.

1Knowledge Extraction based on Evolutionary Learning.
http://www.keel.es

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 205–218
doi: 10.13053/CyS-20-2-2218

Alain Guerrero-Enamorado, Daimerys Ceballos-Gastell208

ISSN 2007-9737

— Transfer: define the transfer function in each
neuron of the hidden layer (the input uses the
identity transfer function).

— Generations: define the maximum number of
generations in the evolutionary algorithm.

2.4 EPUNN Properties

This model was designed for operation under the
following conditions:

— Continuous Variables: true.

— Nominal Variables: true.

— Discretized Variables: true.

— Integer Variables: true.

— Variables without values for some examples:
true2

— Variables with imprecise values for some
examples: false.

3 Related Work

In this article, we compared the competence of
the EPUNN with four widely-known techniques for
classification task. More specifically, we compared
it with C4.5 [20], NB [15, 13, 8], KNN [11, 6, 24],
and SVM [5]. The KEEL platform was used for all
of them.

3.1 C4.5

This algorithm induces classification rules in the
form of decision trees from a set of given
examples. The decision trees are constructed
top-down. In each step a test for the actual
node is chosen (starting with the root node),
which best separates the given examples into
classes. C45 is an evolution of ID3 algorithm
[19]. The extensions or improvements of ID3
are that it accounts for unavailable or missing
values in data, it handles continuous attribute
value ranges, chooses an appropriate attribute

2KEEL reports this property false, however, experiment #4
shows that this algorithm is capable of handling missing values,
although the accuracy deteriorates significantly.

selection measure (maximizing information gain),
and it prunes the result decision trees with minimal
description length principle [21].

3.1.1 C4.5 Parameters

This model must be configured in KEEL with the
following parameters:

— Prune: allows activating or deactivating the
pruning mechanism of the tree.

— Confidence: defines the minimal confidence
that a leaf must have in order to be considered
in the tree.

— minItemsets: defines the minimum number of
instances per leaf. It is an integer value that
determines how many data instances must be
contained in a leaf in order for the leaf to be
created.

3.1.2 C4.5 Properties

This model was designed for operation under the
following conditions:

— Continuous Variables: true.

— Nominal Variables: true.

— Discretized Variables: true.

— Integer Variables: true.

— Variables without values for some examples:
true.

— Variables with imprecise values for some
examples: false.

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 205–218
doi: 10.13053/CyS-20-2-2218

An Experimental Study of Evolutionary Product-Unit Neural Network Algorithm 209

ISSN 2007-9737

3.2 NB

The NB classifier is based on Bayes’ theorem,
assuming independence between predictor at-
tributes. The conditional probability of every
example to be in a class is computed. Then the
output class of the example will be assigned as
the highest conditional probability calculated. A
Naive Bayesian model is easy to build, with no
complicated iterative parameter estimation which
makes it particularly useful for very large data
sets. Despite its simplicity, the NB classifier
often performs surprisingly well (even when it
is not known if there is independence between
predictor attributes) and it is widely used because it
often outperforms more sophisticated classification
methods.

3.2.1 NB Parameters

This model must be configured in KEEL with-
out parameters; however, we utilized uniform
frequency discretization [14] prepossessing to
convert numerical attributes (real and integers) to
nominal ones.

3.2.2 NB Properties

This model was designed for operation under the
following conditions:

— Continuous Variables: false.

— Nominal Variables: true.

— Discretized Variables: true.

— Integer Variables: false.

— Variables without values for some examples:
false.

— Variables with imprecise values for some
examples: false.

3.3 KNN

This is a supervised classification method that
permits to estimate the density function of
predictive attributes for each class. This estimation
is obtained from the information provided by a
set of k nearest neighbors. One point in the
space is assigned to the class-C if this is the most
frequent class between the k nearest examples in
the training set. A special case is k = 1, in this case
the algorithm is known as the Nearest Neighbor
Algorithm [6]. The Euclidean distance is commonly
used as a distance metric.

3.3.1 KNN Parameters

This model must be configured in KEEL with the
following parameters:

— K: the number of neighbors to be tested. If this
value is too high (similar to the data size), then
it is the majority class classifier. When k=1,
then it is the nearest neighbor algorithm.

— Distance Function: KEEL-KNN implements
tree distance functions:

– Euclidean, with normalized attributes.

– Heterogeneous Value Difference Metric
(HVDM) [25]; this distance function uses
the Euclidean distance for quantitative
attributes and the VDM distance [22] for
qualitative attributes. The VDM metric
considers the classification similarity for
each possible value of a qualitative at-
tribute to calculate the distances between
these values.

– Manhattan, the distance between two
points is the sum of the absolute
differences of their coordinates.

3.3.2 KNN Properties

This model was designed for operation under the
following conditions:

— Continuous Variables: true.

— Nominal Variables: true.

— Discretized Variables: true.

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 205–218
doi: 10.13053/CyS-20-2-2218

Alain Guerrero-Enamorado, Daimerys Ceballos-Gastell210

ISSN 2007-9737

— Integer Variables: true.

— Variables without values for some examples:
true.

— Variables with imprecise values for some
examples: false.

3.4 SVM

An SVM performs classification by finding the
hyperplane that maximizes the margin between
two classes. The vectors (instances) that
define the hyperplane are the support vectors.
The algorithm begins with defining an optimal
hyperplane (maximizing the margin). Then the
data is mapped to a high dimensional space by
means of a Kernel function, where it is easier to
classify with linear decision surfaces: the problem
is reformulated so that data is mapped implicitly
to this space. In the ideal case SVM should
produce a hyperplane that completely separates
the instances into two non-overlapping classes.
However, perfect separation may not be possible,
or it may result in a model with so many cases that
the model does not classify correctly. Hence SVM
finds the hyperplane that maximizes the margin
and minimizes the misclassifications. This method
is also apt to classify problems with more than two
classes with a voting scheme.

3.4.1 SVM Parameters

This model must be configured in KEEL with the
following parameters:

— KernelType: which kernel will be used to
transform the data.

— C: cost; it is the penalty parameter of the error
term.

— Degree: sets degree in kernel function.

— Gamma: sets gamma in kernel function.

— Coef0: sets coef0 in kernel function.

— Shrinking: reduces the size of the optimization
problem without considering some bounded
variables. The decomposition method then
works on a smaller problem which is less
time-consuming and requires less memory.

3.4.2 SVM Properties

This model was designed for operation under the
following conditions:

— Continuous Variables: true.

— Nominal Variables: false.

— Discretized Variables: true.

— Integer Variables: true.

— Variables without values for some examples:
true.

— Variables with imprecise values for some
examples: true.

A more detailed description, performance
evaluation, and review of current and further
research of the four algorithms that we selected
for this work can be found condensed in a
survey paper [26]. They are recognized by the
research community as ones of the most influential
algorithms for data mining in the classification task.

4 Empirical Evaluation

In this section, we present the experimental
methodology followed to evaluate the algorithms
presented. In order to undertake the evaluation
process, we performed four experiments. In the
first one, we compared the performance of the
EPUNN algorithm against the others using the
accuracy metric. In this case, the evaluation was
performed on 21 real-world data sets, in subsection
4.1.1 we present the main features of them. The
second experiment was conducted by executing
the algorithm EPUNN compared with the others
on 11 data sets that were generated with different
noise levels. The accuracy was used again as
the evaluation metric in this case. Details of how
these data sets were generated can be found
in subsection 4.1.2. The third experiment was
conducted to study the behavior of all algorithms
under analysis on a series of data sets with
different levels of imbalance, in subsection 4.1.3
we present the main features of them. In this
case, as an evaluation metric, the well-known area
under ROC curve (AUC) was used, following the

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 205–218
doi: 10.13053/CyS-20-2-2218

An Experimental Study of Evolutionary Product-Unit Neural Network Algorithm 211

ISSN 2007-9737

recommendations of [23]. Finally, we conducted
the fourth experiment where we evaluated the
behavior of the EPUNN accuracy on several data
sets with missing values, the characteristics of
these can be viewed in subsection 4.1.4. In what
follows, we present the real-world problems chosen
for the experimentation, the experimental tools
and configurations parameters for each tool, the
experimental results, and the statistical analysis
applied to compare the obtained results.

4.1 Training Sets

4.1.1 Classical Real-World Training Sets

To perform the first experiment and evaluate the
behavior of the EPUNN classifier, 21 real-world
data set were chosen from the KEEL repository
[1]. KEEL is an open source Java software tool
which empowers the user to assess the behavior
of evolutionary learning and Soft Computing
based techniques; in particular, the KEEL-dataset
includes the data set partitions in the KEEL format
for using regression, clustering, multi-instance,
imbalanced classification, multi-label classification,
etc. The experiments were executed on the
following data sets: appendicitis, australian,
automobile, balance, banana, bands, breast, bupa,
ecoli, glass, heart, hepatitis, ionosphere, iris,
lymphography, pima, sonar, wdbc, wine, wisconsin,
and zoo. A summary of the characteristics of these
data sets can be seen in Table 1.

4.1.2 Led Data Sets

In order to obtain several data sets for the second
experiment, we utilized the led generators from the
UCI3 repository [3]. With the parameters shown
in Table 2, 11 data sets were generated with 512
instances in each one and with noise from 0 to 50.

3http://archive.ics.uci.edu/ml/

Table 1. Data sets characteristics

Data set Instances Atributes Class
appendicitis 106 9 2
australian 690 14 2

automobile 159 25 6
balance 625 4 3
banana 5300 2 2
bands 365 19 2
breast 277 9 2
bupa 345 6 2
ecoli 336 7 8
glass 214 9 7
heart 270 13 2

hepatitis 80 19 2
ionosphere 351 33 2

iris 150 4 3
lymphography 148 18 4

pima 768 8 2
sonar 208 60 2
wdbc 569 30 2
wine 178 13 3

wisconsin 683 9 2
zoo 101 17 7

4.1.3 Imbalanced Data Sets

To perform the third experiment and evaluate the
behavior of the EPUNN classifier, 16 imbalanced
data sets were chosen from the KEEL repository
[1]. In this case the experiments were executed
with the following data sets: glass1, ecoli-0 vs 1,
pima, iris0, glass0, glass-0-1-2-3 vs 4-5-6, ecoli1,
ecoli2, glass6, ecoli3, ecoli4, glass-0-1-6 vs 5,
glass2, glass4, glass5, and ecoli-0-1-3-7 vs 2-6.
The first ten data sets have an imbalance ratio less
than 9, and the last six, a ratio greater than 9, see
Table 3.

4.1.4 Missing Values Data Sets

To perform the fourth experiment and evaluate
the behavior of the EPUNN classifier, 10 missing
values data sets were chosen from the KEEL
repository [1]. In this case the experiments
were executed with the following data sets: aus-
tralian+mv, ecoli+mv, iris+mv, pima+mv, wine+mv,
automobile-mv, bands-mv, breast-mv, hepatitis-mv,

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 205–218
doi: 10.13053/CyS-20-2-2218

Alain Guerrero-Enamorado, Daimerys Ceballos-Gastell212

ISSN 2007-9737

Table 2. Led generator parameters

Data set # Instances Seed % Noise
led7-i512-n00 512 12345678 0
led7-i512-n05 512 12345678 5
led7-i512-n10 512 12345678 10
led7-i512-n15 512 12345678 15
led7-i512-n20 512 12345678 20
led7-i512-n25 512 12345678 25
led7-i512-n30 512 12345678 30
led7-i512-n35 512 12345678 35
led7-i512-n40 512 12345678 40
led7-i512-n45 512 12345678 45
led7-i512-n50 512 12345678 50

and wisconsin-mv, see table 4. The first five
data sets are used for standard classification with
induced missing values.

4.2 Experimental Tools

The experiments were done with the KEEL
framework [1]. For the experimental executions
we used an Intel Core i3-2350M, 2300 MHz dual
processor, with 6 GB of RAM, and Ubuntu 12.10
with Linux kernel 3.5.0-46 as the operating system.
For each algorithm, we used the default KEEL
configurations, except for the case of KNN where
we set a value of k = 5.

4.3 Statistical Analysis

We followed the recommendations pointed out by
Demšar [7] to perform the statistical analysis of
the results in experiments 1 and 3. As suggested
by him, we used non-parametric statistical tests
to compare the accuracies of the models built
by the different learning systems. To compare
multiple learning methods, first, we applied a
multi-comparison statistical procedure to test the
null hypothesis that all the learning algorithms
obtained the same results on average. Specifically,
we used the Friedman’s test. When the Friedman’s
test rejected the null hypothesis, we applied
post-hoc Bonferroni-Dunn test and Holm’s step-up
step-down procedure.

Table 3. Imbalanced data sets

Data set Imbalanced Ratio
glass1 1.82

ecoli-0 vs 1 1.86
pima 1.90
iris0 2.00

glass0 2.06
glass-0-1-2-3 vs 4-5-6 3.19

ecoli1 3.36
ecoli2 5.46
glass6 6.38
ecoli3 8.19
ecoli4 13.84

glass-0-1-6 vs 5 19.44
glass2 10.39
glass4 15.47
glass5 22.81

ecoli-0-1-3-7 vs 2-6 39.15

Table 4. Missing values data sets

Data set % Missing
australian+mv 70.58

ecoli+mv 48.21
iris+mv 32.67

pima+mv 50.65
wine+mv 70.22

automobile-mv 28.83
bands-mv 32.28
breast-mv 3.15

hepatitis-mv 48.39
wisconsin-mv 2.29

4.4 Experimental Results

4.4.1 Experiment #1

In the first experiment we evaluated the per-
formance of all the models with the accuracy
metric (the proportion of correct classifications on
previously unseen examples). We used a ten-fold
cross validation procedure with 5 different random
seeds over each data set. The average values of
the results for each collection are shown in Table
5. The last row shows the average rank of each
algorithm. As it can be seen, EPUNN-C is the
KEEL implementation of EPUNN algorithm.

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 205–218
doi: 10.13053/CyS-20-2-2218

An Experimental Study of Evolutionary Product-Unit Neural Network Algorithm 213

ISSN 2007-9737

Table 5. Accuracy of the algorithms on the classic data sets

Data set NB-C C45-C KNN-C SVM-C EPUNN-C
appendicitis 84.27 (4) 83.27 (5) 85.91 (3) 87.91 (1) 86.09 (2)
australian 86.67 (1.5) 85.22 (4) 84.78 (5) 85.80 (3) 86.67 (1.5)

automobile 67.95 (2) 80.93 (1) 56.54 (5) 61.97 (3) 58.38 (4)
balance 91.20 (3) 76.80 (5) 86.24 (4) 91.68 (2) 96.16 (1)
banana 71.17 (4) 89.08 (2) 89.11 (1) 55.17 (5) 74.45 (3)
bands 70.50 (1) 64.99 (5) 68.46 (4) 69.46 (2) 69.24 (3)
breast 74.40 (2) 76.92 (1) 72.28 (4) 70.75 (5) 72.93 (3)
bupa 61.16 (5) 67.00 (3) 61.31 (4) 70.14 (2) 72.76 (1)
ecoli 81.56 (1) 79.47 (3) 81.27 (2) 75.92 (5) 76.82 (4)
glass 69.28 (1) 67.44 (2) 66.85 (3) 62.59 (5) 64.40 (4)
heart 82.22 (2) 78.15 (5) 80.74 (4) 84.44 (1) 81.85 (3)

hepatitis 84.83 (2) 84.00 (3) 86.27 (1) 83.56 (4) 80.36 (5)
ionosphere 88.90 (3) 90.90 (2) 85.17 (5) 88.03 (4) 92.30 (1)

iris 94.67 (5) 96.00 (3) 96.00 (3) 96.67 (1) 96.00 (3)
lymphography 85.76 (1) 74.30 (5) 79.44 (4) 83.98 (2) 81.30 (3)

pima 74.88 (3) 74.23 (4) 73.06 (5) 77.10 (1) 76.71 (2)
sonar 77.38 (2) 70.07 (5) 83.10 (1) 77.26 (3) 74.90 (4)
wdbc 94.38 (4) 94.55 (3) 96.83 (1.5) 94.37 (5) 96.83 (1.5)
wine 96.05 (1.5) 94.90 (4) 96.05 (1.5) 94.38 (5) 96.01 (3)

wisconsin 97.67 (1) 95.63 (5) 96.95 (2) 96.51 (3) 96.36 (4)
zoo 94.47 (3) 92.81 (5) 93.64 (4) 96.50 (1) 95.89 (2)

Rank 2.4762 3.5714 3.1905 3.0000 2.7619

According to the results obtained, see Table
5, we statistically analyzed the results to detect
significant differences in the accuracy of the
obtained models by the different learning methods.
The multi-comparison Friedman’s test did not reject
the null hypotheses that all the systems performed
the same on average with p = 0.1631. The
obtained pvalue > 0.05 shows that there does
not exist a significant difference between the five
algorithms under study. Using an α = 0.10 in
equation 5 with k, the number of algorithms, qα =
2.241, and N, the number of data sets, a critical
difference of 1.0935 was obtained:

CD = qα

√
k(k + 1)

6N
. (5)

Figure 2 shows the results of Bonferroni-Dunn
test, comparing all systems by means of accuracy.
The major advantage of this test is that it seems
to be easier to visualize because it uses the same
critical difference for all comparisons [7].

Fig. 2. Comparison of one classifier (NB-C) against the
others with the Bonferroni-Dunn test

The EPUNN algorithm behaves similarly to four
of the top ten algorithms, because its performance
is within the critical difference, see Figure 2.

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 205–218
doi: 10.13053/CyS-20-2-2218

Alain Guerrero-Enamorado, Daimerys Ceballos-Gastell214

ISSN 2007-9737

4.4.2 Experiment #2

In the second experiment we evaluated the
performance of all models in the presence of noise
with the accuracy metric. We used a ten-fold cross
validation procedure with 5 different random seeds
over each data set. The average values of the
results for each collection are shown in Table 6.

As we can see in Figure 3, the accuracy of the
EPUNN algorithm decays rapidly (exponentially)
in the presence of noise. In the same manner,
the remaining algorithms worsen exponentially.
In Figure 3, the red dotted line represents the
exponential curve fit to the EPUNN behavior.

Fig. 3. Accuracy graphic of the algorithms in the
presence of incremental noise in led7 data set

4.4.3 Experiment #3

In the third experiment we evaluated the perfor-
mance of all the models with the AUC metric. We
used a ten-fold cross validation procedure with 5
different random seeds over each data set. The
average values of the results for each collection
are shown in Table 7. The last three rows show
the average rank when IR< 9, the average rank
when IR> 9, and the total average rank of each
algorithm.

According to the results obtained, see Table
7, we statistically analyzed the results to detect
significant differences in the AUC of the obtained
models by the different learning methods. The

multi-comparison Friedman’s test rejected the null
hypotheses that all the systems performed the
same on average with p = 0.0824. The
obtained pvalue > 0.05 shows that there does
not exist a significant difference between the
five algorithms under study on the imbalanced
data sets. However, we can note a tendency
to robustness of the EPUNN classifier with the
increment of the imbalanced level. To validate
these results, we also applied the Holm’s step-up
and step-down procedure sequentially to test the
hypotheses ordered by their significance. As it
can be observed in Table 8, the Holm’s test at
α = 0.05 detected a significant difference between
EPUNN and SVM-C, this is an important difference
with respect to the experiment #1. Furthermore, in
experiment #3, the winner algorithm was EPUNN.

4.4.4 Experiment #4

In the fourth experiment we evaluated the
performance of the EPUNN classifier with the
test accuracy metric. We used a ten-fold cross
validation procedure with 5 different random seeds
over each data set. The average values of the
results for each collection are shown in Table 9.
The last row shows the average rank of EPUNN
over each data sets group.

According to the results obtained, see Table 9,
we statistically analyzed the results to detect signif-
icant differences. We used the accuracy metric in
EPUNN over classical data sets (EPUNNvsNotMV)
and in EPUNN over missing values data sets
(EPUNNvsMV). The multi-comparison Friedman’s
test rejected the null hypothesis that both cases
(with and without missing values) behaved equally
with a p = 0.0114. The obtained pvalue < 0.05
shows that there exists a significant difference.
To check this results, we also applied the Holm’s
step-up and step-down procedure sequentially to
test the hypotheses ordered by their significance.
As it can be observed in Table 10, Holm’s test at
α = 0.05 showed significant differences between
EPUNNvsNotMV and EPUNNvsMV.

Based on these results, we can conclude that the
EPUNN algorithm was able to handle missing data,
but in this kind of data, a significant performance
deterioration was manifested.

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 205–218
doi: 10.13053/CyS-20-2-2218

An Experimental Study of Evolutionary Product-Unit Neural Network Algorithm 215

ISSN 2007-9737

Table 6. Accuracy of algorithms in the presence of incremental noise in led7 data set

Data set % Noise C4.5-C KNN-C SVM-C NB-C EPUNN-C
led7d-i512-n00 0 100.00 100.0000 100.0000 100.0000 99.84
led7d-i512-n05 5 85.94 87.8167 86.0173 85.6082 80.28
led7d-i512-n10 10 70.25 72.1395 71.1606 70.5539 63.05
led7d-i512-n15 15 58.06 59.5253 59.5419 59.4480 48.72
led7d-i512-n20 20 47.18 47.8258 49.4521 48.0045 39.15
led7d-i512-n25 25 36.80 38.7179 41.2014 38.8590 30.37
led7d-i512-n30 30 27.70 28.4231 31.7474 30.0313 23.68
led7d-i512-n35 35 22.04 23.6968 22.8360 23.7353 21.84
led7d-i512-n40 40 17.64 20.0011 19.3032 19.0290 17.17
led7d-i512-n45 45 14.99 14.4943 15.7247 15.7213 14.16
led7d-i512-n50 50 10.62 13.1844 13.9106 12.3047 13.76

Table 7. AUC achieved by the algorithms on the imbalanced data sets

Data set IR NB-C C45-C KNN-C SVM-C EPUNN-C
glass1 1.82 69.76 (4) 71.37 (2) 77.49 (1) 50.1 (5) 70.81 (3)

ecoli-0 vs 1 1.86 96.75 (3.5) 98.35 (1) 96.30 (5) 96.75 (3.5) 97.35 (2)
pima 1.90 73.06 (1) 70.35 (4) 66.43 (5) 71.96 (2) 70.59 (3)
iris0 2.00 100 (2.5) 99.00 (5) 100 (2.5) 100 (2.5) 100 (2.5)

glass0 2.06 80.99 (3) 81.67 (2) 82.69 (1) 69.14 (5) 75.59 (4)
glass-0-1-2-3 vs 4-5-6 3.19 92.70 (2) 91.66 (3) 91.30 (4) 90.32 (5) 93.56 (1)

ecoli1 3.36 86.56 (1) 85.94 (2) 80.32 (5) 81.85 (4) 84.05 (3)
ecoli2 5.46 86.43 (2) 85.92 (4) 90.37 (1) 73.59 (5) 86.17 (3)
glass6 6.38 92.67 (1) 81.41 (5) 87.39 (3) 91.75 (2) 86.85 (4)
ecoli3 8.19 85.85 (1) 72.79 (4) 74.49 (3) 50.00 (5) 78.17 (2)
ecoli4 13.84 88.26 (2) 81.39 (4) 87.03 (3) 57.50 (5) 89.68 (1)

glass-0-1-6 vs 5 19.44 88.03 (2) 88.03 (2) 81.90 (4) 49.71 (5) 88.03 (2)
glass2 10.39 46.45 (5) 68.30 (1) 60.64 (2) 50.00 (3) 49.24 (4)
glass4 15.47 86.47 (2) 80.02 (4) 83.12 (3) 56.95 (5) 87.22 (1)
glass5 22.81 82.60 (4) 88.64 (1) 88.16 (2) 50.00 (5) 83.09 (3)

ecoli-0-1-3-7 vs 2-6 39.15 57.14 (5) 71.25 (4) 84.98 (3) 85.71 (1) 85.17 (2)
RankIR < 9 2.10 3.20 3.05 3.90 2.75
RankIR > 9 3.33 2.67 2.83 4.00 2.17
TotalRank 2.56 3.00 2.97 3.94 2.53

Table 8. Holm / Hochberg Table for α = 0.05

i algorithm z = (R0 −Ri)/SE p Holm/Hochberg/Hommel
4 SVM-C 2.5156 0.0119 0.0125
3 C45-C 0.8385 0.4017 0.0167
2 KNN-C 0.7826 0.4338 0.0250
1 NB-C 0.0559 0.9554 0.0500

5 Conclusions and Future Work

In this paper, we tested the competitiveness
of an EPUNN algorithm for classification task,

generally using accuracy as the evaluation metric.
Furthermore, AUC metric was used in evaluation

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 205–218
doi: 10.13053/CyS-20-2-2218

Alain Guerrero-Enamorado, Daimerys Ceballos-Gastell216

ISSN 2007-9737

Table 9. Accuracy of EPUNN on classical data sets and EPUNN on data sets with missing values

% Missing Data set EPUNNvsMV EPUNNvsNotMV Data set Difference
70.58 australian+mv 77.97 86.67 australian deteriorate
48.21 ecoli+mv 81.85 76.82 ecoli progress
32.67 iris+mv 94.00 96.00 iris deteriorate
50.65 pima+mv 75.01 76.71 pima deteriorate
70.22 wine+mv 88.76 96.01 wine deteriorate
28.83 automobile-mv 53.10 58.38 automobile deteriorate
32.28 bands-mv 67.27 69.24 bands deteriorate
3.15 breast-mv 71.49 72.93 breast deteriorate

48.39 hepatitis-mv 80.32 80.36 hepatitis deteriorate
2.29 wisconsin-mv 96.23 96.36 wisconsin deteriorate

Rank 1.9000 1.1000

Table 10. Holm / Hochberg Table for α = 0.05

i algorithm z = (R0 −Ri)/SE p Holm/Hochberg/Hommel
1 EPUNNvsMV 2.5298 0.0114 0.0500

of imbalanced data sets. As a result of the four
experiments described in section 4.4, we can make
the following conclusions:

— From experiment #1 described in subsection
4.4.1, we conclude that there does not exist
a significant difference between EPUNN and
the four algorithms assessed. We based
this statement on the evaluation done over 21
benchmark data sets. For this reason, we
recommend its use for the classification task.

— From experiment #2 described in subsection
4.4.2, we determined experimentally that the
accuracy of EPUNN rapidly worsen in the
presence of noise. For that reason, we
do not recommend its utilization in noisy
environments.

— From experiment #3 described in subsection
4.4.3, we can note a tendency to robustness in
EPUNN despite of the growth of the imbalance
ratio.

— From experiment #4 described in subsection
4.4.4, we can conclude that EPUNN is able
to handle missing data; but in this kind of
data, a significant performance deterioration
was manifested.

In future work, we can also assess the impact of
irrelevant attributes on the performance of EPUNN
and the influence of noise using other data sets.
Also, we can use more different kinds of data sets
with missing values, since the nature of values
and their distribution affect the performance of the
classifiers.

References

1. Alcala-Fdez, J., Fernández, A., Luengo, J.,
Derrac, J., Garcı́a, S., Sánchez, L., & Herrera,
F. (2011). Keel data-mining software tool: Data
set repository and integration of algorithms and
experimental analysis framework. Journal of
Multiple-Valued Logic and Soft Computing, Vol. 17,
No. 2-3, pp. 255–287.

2. Alcalá-fdez, J., Sánchez, L., Garcı́a, S., del
Jesus, M. J., Ventura, S., Garrell, J. M., Otero, J.,
Romero, C., Bacardit, J., Rivas, V. M., Fernández,
J. C., & Herrera, F. (2008). KEEL : a software
tool to assess evolutionary algorithms for data
mining problems. Soft Computing, Vol. 13, No. 3,
pp. 307–318.

3. Bache, K. & Lichman, M. (2013). UCI machine
learning repository.

4. Bishop, C. M. (1995). Neural Networks for Pattern
Recognition. Oxford University Press, Oxford, U.K.

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 205–218
doi: 10.13053/CyS-20-2-2218

An Experimental Study of Evolutionary Product-Unit Neural Network Algorithm 217

ISSN 2007-9737

5. Cortes, C. & Vapnik, V. (1995). Support-Vector
Networks. Machine Learning, Vol. 20, pp. 273–297.

6. Cover, T. M. & Hart, P. E. (1967). Nearest Neighbor.
IEEE Transactions on Information Theory, Vol. IT-13,
No. 1, pp. 21–27.

7. Demšar, J. (2006). Statistical Comparisons of
Classifiers over Multiple Data Sets. Machine
Learning Research, Vol. 7, pp. 1–30.

8. Domingos, P. & Pazzani, M. (1997). On the
Optimality of the Simple Bayesian Classifier under
Zero-One Loss. Machine Learning, Vol. 1997,
No. 29, pp. 103–130.

9. Durbin, R. & Rumelhart, D. (1989). Products
units: a computationally powerful and biologically
plausible extension to backpropagation networks.
Neural Computation, Vol. 1, pp. 133–142.

10. Engelbrecht, A. P. & Ismail, A. (1999). Training
product unit neural networks. Stability and Control:
Theory and Applications, Vol. 2, pp. 59–74.

11. Fix, E. & Hodges, J. (1951). An important
contribution to nonparametric discriminant analysis
and density estimation. International Statistical
Review, Vol. 3, No. 57, pp. 233–238.

12. Ismail, A. & Engelbrecht, A. P. (2000). Global
optimization algorithms for training product units
neural networks. International Joint Conference on
Neural Networks IJCNN‘2000, Italy.

13. John, G. H. & Pat, L. (1995). Estimating Continuous
Distributions in Bayesian Classifiers. San Mateo,
California, pp. 338–345.

14. Liu, H., Hussain, F., Lim, C., & Dash, M. (2002).
Discretization: An Enabling Technique. Data Mining
and Knowledge Discovery, Vol. 2002, No. 6:4,
pp. 393–423.

15. Maron, M. E. (1961). Automatic Indexing : An
Experimental Inquiry. Journal of the ACM (JACM),
Vol. 8:3, No. January, pp. 404–417.

16. Martı́nez-Estudillo, F., Hervás-Martı́nez, C.,
Gutiérrez, P., & Martı́nez-Estudillo, A. (2008).
Evolutionary product-unit neural networks
classifiers. Neurocomputing, Vol. 72, No. 1-3,
pp. 548–561.

17. Martı́nez-Estudillo, F. J., Hervás-Martı́nez, C.,
Gutiérrez-Peña, P. A., & Martı́nez-Estudillo, A. C.
(2006). Evolutionary Product-Unit Neural Networks
Classifiers. International Joint Conference on Neural
Networks.

18. P. J. Angeline, G. M. S. & Pollack, J. B. (1994).
An evolutionary algorithm that constructs recurrent
neural networks. IEEE Transactions on Neural
Networks, Vol. 5, No. 1, pp. 54–65.

19. Quinlan, J. (1986). Induction of decision trees.
Machine Learning, Vol. 1, pp. 81–106.

20. Quinlan, J. (1993). C4.5: Programs for Machine
Learning. Morgan Kaufmann Publishers Inc., San
Mateo, California.

21. Rissanen, J. (1978). Modeling by shortest
data description. Automatica, Vol. 14, No. 5,
pp. 465–471.

22. Stanfill, C. & Waltz, D. (1986). Instance-based
learning algorithms. Communications of the ACM,
Vol. 12, pp. 1213–1228.

23. Sun, Y., Wong, A. K. C., & Kamel, M. S.
(2009). Classification of imbalanced data: A review.
International Journal of Pattern Recognition and
Artificial Intelligence, Vol. 23, No. 4, pp. 687–719.

24. Wang, J., Neskovic, P., & Cooper, L. N. (2007).
Improving nearest neighbor rule with a simple
adaptive distance measure. Pattern Recognition
Letters, Vol. 28, pp. 207–213.

25. Wilson, D. R. & Martinez, T. R. (2000). Reduction
tecniques for instance-based learning algorithms.
Machine Learning, Vol. 38:3, pp. 257–286.

26. Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang,
Q., Motoda, H., McLachlan, G. J., Ng, A., Liu,
B., Yu, P. S., Zhou, Z.-H., Steinbach, M., Hand,
D. J., & Steinberg, D. (2007). Top 10 algorithms
in data mining. Knowledge Information Systems,
Vol. (2008), No. 14, pp. 1–37.

27. Yao, X. & Liu, Y. (1997). A new evolutionary
system for evolving artificial neural networks. IEEE
Transactions on Neural Networks, Vol. 8, No. 3,
pp. 694–713.

Alain Guerrero-Enamorado received his B.Sc.
degree in Automatic Control from the Universidad
de Oriente in 2003. He got a Master degree in
Applied Informatics from the Universidad de las
Ciencias Informáticas in 2009. He is currently an
assistant professor at the Department of Program-
ming Techniques of Faculty 1 of Universidad de
las Ciencias Informáticas. Guerrero-Enamorado
is a doctoral student in the Knowledge Discovery
and Intelligent Systems Group, his main research

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 205–218
doi: 10.13053/CyS-20-2-2218

Alain Guerrero-Enamorado, Daimerys Ceballos-Gastell218

ISSN 2007-9737

interests are in the fields of machine learning, data
mining, and their applications.

Daimerys Ceballos-Gastell received her B.Sc.
degree in Computer Engineering from the Uni-
versidad de las Ciencias Informáticas in 2008.
She is currently an assistant professor at the
Department of Programming Techniques in Faculty

1 of the Universidad de las Ciencias Informáticas.
Ceballos-Gastell is a master student in Applied
Informatics, her main research interests are in
the fields of artificial neural networks, machine
learning, data mining, and their applications.

Article received on 10/03/2015; accepted on 18/02/2016.
Corresponding author is Alain Guerrero-Enamorado.

