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Abstract. Piecewise-linear models constitute an
attractive alternative to construct a function whose
graph fits a finite set of discrete points. These
models are preferably selected over other approximation
strategies like polynomials or splines. Although there are
several piecewise-linear models reported in literature,
the so-called High Level Canonical has the remarkable
advantage of emerging from a well-structured algorith-
mic methodology to efficiently determine the parameters
of any given piecewise-linear function. However, as
it happens in all other piecewise-linear models, it
also has the problem of lack of differentiability at
the breakpoints. In order to solve this problem,
an approach based on an exponential approximation
of the basis-function is proposed as a strategy to
transform the High Level Canonical piecewise-linear
model into a smooth-piecewise one. This mathematical
transformation ensures the existence and continuity of
the nth-order derivatives of the resulting smooth model.
Besides of this, it is observed that by applying the
piecewise-linear to smooth transformation, the number
of terms of the resulting smooth representation can
significantly be reduced due to a great number of them
can be approximated by a line equation. In order to verify
the effectiveness of this proposal, numerical simulations
performed on one-dimensional and two-dimensional
functions are reported.

Keywords. High-Level-Canonical, piecewise-linear,
smoothing, basis-function, approximation.

1 Introduction

As part of an experimental process, it is
common to face up to situations where only

a limited amount of data is available and the
estimation of values between consecutive data
points is needed, either for predicting results or
inferring conclusions from data. Although this
problem is traditionally approached by function
approximation methods based on polynomial
interpolation, a preferred alternative can be
found in the approximation techniques based on
piecewise-linear models [7, 16, 17, 5, 4] which
consists in connecting consecutive data points
by straight line segments through a continuous
function. However, piecewise-linear models have
the shortcomings of having zero curvature between
data points, exhibiting abrupt changes at the
breakpoints, and having undefined derivatives. It
is precisely the lack of differentiability what limits
their application in such cases where, as a result of
derivative computations, the function dnf(x)

dxn (where
n indicates a derivative order and f(x) is an
approximate function) becomes undefined or zero.
With the purpose of incorporating the derivation
capability into piecewise-linear functions, the
strategy of smoothing the basis-function in a
piecewise-linear model is adopted. In accordance
with numerical simulations performed in a later
section, it can be demonstrated the efficacy of
this proposal. Although there are many relevant
piecewise-linear models, in this paper the High
Level Canonical model developed by Pedro-Julian
et al. [12] is chosen as a study case due to the
fact that it can be constructed by a well-known
algorithmic methodology, and by such method-
ology, its basis-function can easily be identified.
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The paper is organized as follows. In Section 2,
the absolute-value function that serves as kernel
for the High Level Canonical piecewise-linear
model is presented. Section 3 describes the
methodology for constructing smooth-piecewise
functions. Section 4 shows the application of
such methodology by illustrative examples (for
one- and two-dimensional domains). In Section
5 a comparative analysis and discussion about
the curve fitting accuracy that can be achieved
through the proposed strategy is exposed. The
comparison is done among polynomial, splines,
smooth-piecewise, and standard piecewise-linear
approximation techniques. Finally, Section 6
presents the concluding remarks of this work.

2 Absolute-value Basis-function

A relationship between piecewise-linear models
and the absolute-value function is established
and reported in many references. Mathematical
expressions such as the canonical form of
Chua-Kang [3, 15, 1, 2], the High Level Canonical
representation of Pedro-Julian et al. [11, 8],
the Guzelis [6] model, and the Kahlert [13, 14]
description are emblematic examples where this
function appears implicitly. Specifically, in the High
Level Canonical model the basis-function (also
expressed in terms of absolute-value functions)
is outlined and easily identified in a detailed
methodology by which the approximation function
can be constructed. Moreover, this construction
methodology is widely reported in literature [10, 9].
For these reasons, the smoothing technique which
is proposed in this paper takes as reference the
basis-function γ(fi, fj) used in the Pedro-Julian et
al. [8] model.

γ (fi, fj) =
1

4
(||−fi|+ fj | − |−fi + |fj ||) + (1)

1

4
(|−fi|+ |fj | − |−fi + fj |),

where fi and fj are linear equations used to sketch
the linear partitions of the function domain.

3 Methodology for the Construction of
Smooth-Piecewise Functions

Based on the methodology of Pedro-Julian et
al. [8], our proposal for the construction of

smooth-piecewise functions can be summarized as
follows.

1. Consider as input the set D of N -data that
contains the breakpoints coordinates of an
arbitrary piecewise-linear function. For the
one-dimensional case
D = {(X1,Y1) , (X2,Y2) , · · · , (Xi,Yi)}, while
for the two-dimensional case
D = {(X1,Y1,Z1) , (X2,Y2,Z2) , · · · , (Xi,Yi,Zi)}
with i = 1, 2, · · · ,N .

2. Define the basis-function γ (fi, fj). In this
step, a suitable approximation for the absolute-
value function is used. In accordance with
reference [18] a smooth approximation to
absolute-value function is given by

|x| = (x)+ + (−x)+ , (2)

where the plus function (x)+ can be approxi-
mated by

(x)+ ≈ fa (x,α) = x+
1

α
log
(

1 + e(−αx)
)

.

(3)

After combining equation (3) with equation
(2), the following smooth approximation is
obtained:

|x| = (x)+ + (−x)+ ≈ fa (x,α) + fa (−x,α)

|x| = 1

α

[
log
(

1 + e(−αx)
)

+ log
(

1 + e(αx)
)]

. (4)

After numerical simulations on equation (4),
a slight deviation from the absolute-value
function can be observed. In order to obtain
more accurate fitting, a constant β is included
as

|x| = β

α

[
log
(

1 + e(−αx)
)

+ log
(

1 + e(αx)
)]

.

(5)

However, taking into account the logarithmic
change-of-base formula log(x) = ln(x)

ln(10) ,
equation (5) can be recast as follows:

|x| = β

α ln(10)

[
ln
(

1 + e(−αx)
)]

+
β

α ln(10)

[
ln
(

1 + e(αx)
)]

,



Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 227–237
doi: 10.13053/CyS-20-2-2290

Smoothing the High Level Canonical Piecewise-Linear Model by an Exponential Approximation of its Basis-Function 229

ISSN 2007-9737

being α = 106 and β = 2.3 appropriate
values to achieve small tolerance results. An
absolute-value function approximation for α =
4, 6, 8, . . . , 20 and β = 2.3 can be observed in
Figure 1. In this figure the thin traces (dashed
lines) correspond to these approximations
while the thickest one corresponds to the exact
absolute-value function y(x) = |x|. The thin
uppermost curve represents the plot for (α =
4,β = 2.3) and the lowest curve for (α =
20,β = 2.3).

Fig. 1. Approximations for β = 2.3 and α-values, α =
4, 6, 8, . . . , 20

3. Divide the function domain into an equally
sized grid. For one-dimensional functions
this partition is done by the set of vertical
line equations pn(x) = x = i, with
i = 1, 2, · · · , (N − 1). For two-dimensional
functions the line equations pn(x, y) are
constructed by following a simplicial
subdivision over the plane XY which
is composed of three types of traces:
vertical (pn(x, y) = x = i), horizontal
(pn(x, y) = y = i), and crosswise
(pn(x, y) = x − y = i). Particularly, for
each of these traces the sweep of i must
be in accordance with the boundaries
existing along the X and Y axes. For
example, if the restrictions X = s1 and
Y = s2 are defined in the XY plane,
the sweeps i = {1, 2, · · · , (s1 − 1)},
i = {1, 2, · · · , (s2 − 1)}, and i =
{(−s1 + 1), (−s1 + 2), · · · , 0, 1, · · · , (s2 − 1)}
will correspond to the horizontal, vertical, and
crosswise traces, respectively.

4. Order the vertexes appropriately. This means
that the vertexes must be ordered according to
their class. For a two-dimensional domain s1×
s2, the class-zero vertex is the point located
at the origin of a coordinate system XY ,
the class-one vertexes are the coordinates
(Xi, 0) and (0,Yj) (for i = 1, 2, . . . , s1 and
j = 1, 2, . . . , s2, respectively) and the set of
class-two vertexes is composed by the coor-
dinates (Xi,Yj), with the j-th index running
as j = 1, 2, ..., s2 for each i-th value from 1
to s1. Likewise, for a one-dimensional domain
X, bounded by a closed interval [s0, s1], only
the vertexes class-zero (the coordinate (s0, 0))
and class-one (the coordinates (i, 0) for i =
1, 2, . . . , s1) exist.

5. Generate the symbolic basis-functions Λk =
γk (pn), with the index k closely dependent
on the vertical and horizontal partition line
equations. For example, in a two-dimensional
domain s1 × s2 will be a set PH of (s1 − 1)
horizontal equations, and a set PV of (s2 − 1)
equations. If a cartesian product between
these sets is formed, then each ordered pair
whose first component is an equation member
of PH and whose second component is an
equation member of PV will be evaluated in
the basis-function Λk with k = 0, 1, . . . , (s1 −
1) × (s2 − 1). The set of these functions is
arranged in vectorial form as

Λ =
[
Λ0, Λ1, . . . , Λk

]
. (6)

For a one-dimensional domain only vertical
line partition equations will be presented and
k = 0, 1, 2, . . . , (s1 − 1).

6. Evaluate the vector of basis-functions Λ at
each ordered vertex. It is important to
observe the similarity that exists between the
methodology used to order the vertexes and
which is used to construct the matrix ΛV
constituted by the rows of evaluated vectors Λ:

ΛV =


Λ0(V 0) Λ1(V 0) · · · Λk(V 0)
Λ0(V 1) Λ1(V 1) · · · Λk(V 1)

...
...

. . .
...

Λ0(V n) Λ1(V n) · · · Λk(V n)

 ,

(7)
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where n indicates the number of vertexes.
For the one-dimensional case, the above
procedure is practically the same with the
only difference of evaluating two classes of
vertexes (zero- and one-, type).

7. Provide the values of function Bi at the break-
point coordinates by following a sorted order
associated with the vertices V 0,V 1, . . . ,V n.
These values are written as follows

B = [B0,B1,B2, . . . ,Bn]
T

. (8)

This step is indistinctly implemented in
the construction of one-dimensional and
two-dimensional functions.

8. Obtain the interpolated function by f(·) =
ΛV

−1B. This step can be irrespectively
applied to both cases: one-dimensional and
two-dimensional one.

4 Simulation Results

In this section, three examples to illustrate the
effectiveness of the proposed smoothing strategy
are presented. We use the software Maple
Release 15 to build the mathematical models and
plot the approximate functions.

Example 1: Let the sequence of data points D =
{(0, 0) , (1, 2) , (2, 1) , (3, 3) , (4,−1) , (5, 5)} be used
to determine a smooth-piecewise function ys(x) in
the range [0, 5] of x. In order to have a comparative
reference, the methodology of Pedro-Julian et al.[8]
is used to obtain a piecewise-linear function that
satisfies the condition of constructing new data
points within the range of [0, 5]. As a result, the
function y(x) is obtained.

y (x) =


1
− 3

2
3
2

−3
5


T 

|x|
|x− 1|
|x− 2|
|x− 3|
|x− 4|



+


1
2

− 3
4

3
4

− 3
2

5
2


T 

||x|+ x|
||x− 1|+ x− 1|
||x− 2|+ x− 2|
||x− 3|+ x− 3|
||x− 4|+ x− 4|



+


− 1

2
3
4

− 3
4

3
2

− 5
2


T 

|x− |x||
|x− 1− |x− 1||
|x− 2− |x− 2||
|x− 3− |x− 3||
|x− 4− |x− 4||

 . (9)

In accordance with the construction methodol-
ogy presented in the previous section, a smooth
function ys(x) can be determined by replacing the
γ basis-function by its logarithmic approximation
reported in equation (6). With aid of Maple
software, the resulting smooth expression can be
simplified in a more compact algebraic form as

ys(x) =

30∑
i=1

Ai ln(1 + eBix+Ci+EiP ) +K (10)

with P = ln(1 + eGix+Hi) + ln(1 + eLix+Mi),
where the function parameters for a constant K =
−8.54611 are summarized in Table 1.

Table 1. Function parameters for the smooth-piecewise
function ys(x)

i Ai Bi Ci Ei Gi Hi Li Mi

1, 2 ±0.10687 −10 +10 ±0.43429 −10 +10 +10 −10
3, 4 ±0.10687 +10 −10 ∓0.43429 −10 +10 +10 −10
5, 6 ±0.13428 +10 0 ±0.43429 −10 0 +10 0
7, 8 ±0.13428 −10 0 ∓0.43429 −10 0 +10 0
9, 10 ±0.11231 +10 −20 ±0.43429 −10 +20 +10 −20
11, 12 ∓0.11231 −10 +20 ±0.43429 −10 +20 +10 −20
13, 14 ±0.20782 −10 +30 ±0.43429 −10 +30 +10 −30
15, 16 ∓0.20782 +10 −30 ±0.43429 −10 +30 +10 −30
17, 18 ±0.30705 +10 −40 ±0.43429 −10 +40 +10 −40
19, 20 ±0.30705 −10 +40 ∓0.43429 −10 +40 +10 −40
21, 22 +0.26858 ∓10 0 0 0 0 0 0
23, 24 −0.41564 ∓10 ±30 0 0 0 0 0
25, 26 +0.22462 ∓10 ±20 0 0 0 0 0
27, 28 −0.21375 ∓10 ±10 0 0 0 0 0
29, 30 +0.61411 ∓10 ±v40 0 0 0 0 0

In Figure 2 the dashed line shows the curve of
the function y (x) while the solid line depicts the
curve for the smooth-piecewise function ys (x).

An error between the piecewise-linear function
and its smooth version can be estimated by the
percent error formulation ε = 100 ×

∣∣∣1− ys(x)
y(x)

∣∣∣.
Figure 3 shows a curve of the percent errorε(x).

From this figure two important results must be
underlined: the error is distributed along each
linear segment and a precise fitting is achieved at
the breakpoints locations. Moreover, an interesting
property can be observed if the differentiability of
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Fig. 2. Function approximation: piecewise-linear
(equation (9), dashed line) and smooth-piecewise
(equation (10), solid line)

Fig. 3. Percent error between ys(x) and y(x)

functions y(x) and ys(x) is put under testing. As
can be noted in Figure 4, for the function y(x)
only the first order derivative is defined (except in
the breakpoints) while the n-order derivative (for all
n ≥ 1) is zero or not defined.

In contrast, it must be noted that the existence
of the higher order derivatives is guaranteed in the
smooth function due to the fact that its second
derivative is continuous everywhere.

As an example, Figure 5 shows curves for the
first and second order derivatives of ys(x).

An important observation regarding to equation
(10) is that it can be decomposed into two
component functions which can be derived from
the parameters reported in Table 1: one for
i = 1, · · · , 20, denoted as yl(x), and another
for i = 21, · · · , 30, expressed as ynl(x). This
means that the smooth piecewise function can
be expressed as ys(x) = yl(x) + ynl(x), with a
nonlinear behavior of the characteristic curve of

Fig. 4. First and second derivatives of y(s)

Fig. 5. First and second derivatives of ys(x)

ys(x) mainly contained in ynl(x), and a quasilinear
behavior strongly related to yl(x). This allows to
simplify the smooth-piecewise function in a more
compact expression by approximating yl(x) with
a line equation yle(x) (for this example, yle(x) =
2.0666667x + 14.84611591). As expected, a good
approximation of ys(x) is obtained by ynl(x) +
yle(x). Considering this result, equation (10) can
be expressed (also in reference to Table 1) in a
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more compact form:

ys(x) ≈
20∑
i=1

Ai ln(1 + eBix+Ci) +K

+ 2.0666667x+ 14.84611591. (11)

In Figure 6 graphs of ys(x), yl(x), ynl(x), and
yle(x) functions are shown.

Fig. 6. Components of the smooth-piecewise function
ys(x)

Example 2: In this example it is assumed that
the only input data that is available to construct an
interpolation function z (x, y) is the set of points D.

D={(0,0,1),(1,0,0),(2,0,2),(3,0,0),(0,1,0),(0,2,1),
(3,3,0),(1,1,0),(1,2,0),(1,3,2),(2,1,1),(2,2,1),(2,3,0),
(3,1,0),(3,2,0),(3,1,3)}.

By following the traditional construction method-
ology of Pedro-Julian et al.[8], a two dimensional
piecewise-linear function z = fHS [S](x, y) can be
obtained. Such function is defined over a compact
domain S equally partitioned by a simplicial
boundary configuration HS . In accordance with
the methodology presented in the previous section,
a smooth version of fHS [S](x, y) can be obtained
if the same construction methodology is applied
and the absolute-value basis-function is replaced
by the exponential approximation of equation (6).
The resulting smooth function has the property of
removing the abrupt variation at the breakpoints

while preserving the waveform pattern. This
fact ensures the differentiability of the function.
In Figure 7 and Figure 8, surfaces for the
piecewise-linear function z(x, y) = fHS [S](x, y) and
its smooth version are shown.
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Fig. 7. Surface for the two-dimensional simplicial
piecewise-linear function obtained from the input data D
of Example 2
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Fig. 8. Surface for the two-dimensional smooth-
piecewise function obtained from the input data D of
Example 2

Similarly to what was done in the one-
dimensional example, a precise curve fitting was
achieved at the breakpoint coordinates while the
maximum deviation between the curves which are
depicted in Figure 7 and Figure 8 is observed
inside of each simplex in the XY plane. In
Figure 9 this effect can be graphically appreciated.
Additionally, it must be observed that in contrast
with the original piecewise-linear function where
the second and higher order derivatives are null,
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in the smooth function this problem is overcome.
In order to illustrate this numerical advantage,
surfaces for the first and second derivative of
z(x, y) = fHS [S](x, y) are shown in Figure 10 and
Figure 11, respectively.
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Fig. 9. Deviation between the piecewise-linear and
the smooth curve obtained from the input data D of
Example 2
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Fig. 10. Derivatives of function z(x, y) = fHS [S](x, y).
(a) First order derivative. (b) Second order derivative

Example 3: This example illustrates a potential
application of the smoothing proposal in a typical
problem of control systems engineering. The black
curve of Figure 12 represents the transient re-
sponse of a second-order system for a unit-impulse
excitation. Consider that we are interested in
determining the time tp when the maximum peak
of this response occurs. Let us consider that
the analytical transfer function is not accessible
and only a set of equally spaced breakpoints
(discrete measurements) is the input data available
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Fig. 11. Derivatives of function z(x, y) = fHS [S](x, y):
(a) First order derivative, (b) Second order derivative

to construct an approximate function. By following
the construction strategy exposed in section 3,
the two approximations depicted in Figure 12 can
be obtained: piecewise-linear cpwl(t) (red) and
smooth-piecewise cs(t) (blue).

Fig. 12. Approximate functions for the transient
response c(t): smooth-piecewise cs(t), piecewise-linear
cpwl(t)

In Figure 12, the corresponding smooth and
piecewise-linear functions are expressed in the
form

cpwl(t) =

σ∑
i

Âi |t− αi|+ B̂i |t− βi − |t− βi||

+ Ĝi ||t− γi|+ t− γi| (12)
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and

cs(t) =

σ∑
i=1

Ni ln
(

1 + e((−1)i10t+(−1)(i+1)10ki)
)

+ (2.4× 10−3)t− 0.104 (13)

with the parameters summarized in Table 2 and
Table 3, respectively.

Table 2. Function parameters for the piecewise-linear
function cpwl(t)

i Âi B̂i = −Ĝi αi = βi=γi
0 +0.33134 −0.16567 0
1 −0.37020 +0.18510 1
2 −0.19642 +0.98210× 10−1 2
3 +0.51145× 10−1 −0.25572× 10−1 3
4 +0.16428 −0.82140× 10−1 4
5 +0.11400 −0.57000× 10−1 5
6 +0.9960× 10−3 −0.49800× 10−3 6
7 −0.68265× 10−1 +0.34132× 10−1 7
8 −0.60870× 10−1 +0.30435× 10−1 8
9 −0.12327× 10−1 +0.61635× 10−2 9
10 +0.26036× 10−1 −0.13018× 10−1 10
11 +0.30461× 10−1 −0.15230× 10−1 11
12 +0.11096× 10−1 −0.55482× 10−2 12
13 −0.86790× 10−2 +0.43395× 10−2 13
14 −0.14392× 10−1 +0.71962× 10−2 14
15 −0.74405× 10−2 +0.37202× 10−2 15
16 +0.21605× 10−2 −0.10802× 10−2 16
17 +0.64210× 10−2 −0.32105× 10−2 17
18 +0.43571× 10−2 −0.21786× 10−2 18
19 −0.47850× 10−4 +0.23925× 10−4 19

Table 3. Function parameters for the smoothing
piecewise-linear function cs(t)

i Ni ki
1, 2 +0.039087 0, 0
3, 4 −0.044564 1, 1
5, 6 −0.019685 2, 2
7, 8 +0.0061166 3, 3
9, 10 +0.017621 4, 4
11, 12 +0.011828 5, 5
13, 14 −0.0002595 6, 6
15, 16 −0.0073524 7, 7
17, 18 −0.0064319 8, 8
19, 20 −0.0010948 9, 9
21, 22 +0.0028448 10, 10
23, 24 +0.0031831 11, 11
25, 26 +0.0011504 12, 12
27, 28 −0.00098792 13, 13
29, 30 −0.0015378 14, 14
31, 32 −0.00077512 15, 15
33, 34 +0.00027019 16, 16
35, 36 +0.00072258 17, 17
37, 38 +0.00039166 18, 18
39, 40 +0.000014116 19, 19

From this set of data, we may determine the
peak time (tp) by differentiating the approximate

function (cpwl(t) or cs(t)) with respect to time (t)
and setting this derivative equal to zero

d (cpwl(t))

dt
= 0 (14)

or
d (cs(t))

dt
= 0. (15)

However, for the piecewise-linear function a
numerical solution cannot be reached, hence
the smooth function cs(t) appears as the better
approximation alternative. After solving equation
(15) with Maple software we obtain tp = 1.193s,
which clearly corresponds to the peak time. The
piecewise-linear cpwl(t) and the smooth-piecewise
cs(t) approximations of the impulse transient
response, as well as their derivatives with respect
to time, are shown in Figure 13.

Fig. 13. Approximate functions and derivatives
for the transient response: piecewise-linear and
smooth-piecewise

In this figure, it is important to observe the
notorious difference that exists, from the point of
view of function continuity, between the derivatives
of these two approximate functions: while dcs(t)

dt

is completely connected at all points, dcpwl(t)
dt has

discontinuities at the breakpoints (plotted as the
red points).
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5 Comparative Discussion

In this section, a comparative discussion about the
curve fitting performance of the proposed method
against other strategies such as polynomial and
cubic spline techniques is presented. To start
this analysis, it is important to mention that a
better curve fitting can be achieved by the smooth-
piecewise method, this is because it always
imposes on the function the condition of passing
through the input data coordinates. Similarly to
the piecewise-linear functions, the continuity is also
preserved in all the function domain but unlike
the piecewise-linear reference, the smoothing
proposal adds the function differentiation capability.
In contrast, although in polynomial interpolation
the function continuity is guaranteed, curve fitting
is not very precise what results in a remarkable
curve deviation that increases the derivative
growing very quickly. An alternative approach
to minimizing the curve fitting error is the spline
interpolation which consists in restricting the
approximation to low degree polynomials (typically,
like in our comparative analysis, polynomials of
third order degree are preferred) over partitioned
sections along the function domain. However,
in spite of showing a better curve fitting in
comparison to the polynomial counterpart, the
best performance is clearly obtained by the
smooth-piecewise proposal. To emphasize this
characteristic, the smooth-piecewise, polynomial,
and spline approximate functions for DC =
{(0, 5), (1, 3), (2, 10), (3, 0), (4, 3), (5, 1), (6, 10)} are
shown in Figure 14.

The error in these approximations can be
estimated by the deviation ε among the smooth-
piecewise, polynomial, and splines curves with
respect to the piecewise-linear reference. Such
deviations are depicted in Figure 15.

6 Conclusion

In this paper, the proof-of-concept related to
obtaining smooth-piecewise functions by replac-
ing the basis-function used in the construc-
tion methodology of the High Level Canonical
piecewise-linear model was demonstrated by
numerical simulations. In accordance with such

Fig. 14. Approximate functions for the input data
DC : piecewise-linear, smooth-piecewise, polynomial,
and splines

Fig. 15. Curve deviation with respect to the piecewise-
linear reference: smooth-piecewise, polynomial, and
splines

simulations, smooth-piecewise functions not only
preserve curve fitting accuracy but also incorporate
derivation capability. By illustrative examples,
it was observed that the error between the
original piecewise-linear curve and its smoothing
version is uniformly distributed along each linear
partition, being more pronounced approximately
before and after its middle location and extremely
reduced around the breakpoints. Moreover, two
very important observations must be highlighted:
the smooth function can be decomposed into
two representations (one nonlinear and other
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quasilinear), and the number of terms of the
resulting smooth function can significantly be
reduced due to the fact that a great number of them
can be approximated by a line equation. Although
its potential application to practical engineering
problems was illustrated in Example 3, now our
ongoing work centers on exploring alternative
applications for this smoothing strategy.
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