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Abstract. We consider a pure 3-qubits system inter-
acting through a XY-Hamiltonian with antiferromagnetic
constant J . We employ the 3-tangle as an efficient
measure of the entanglement between such a 3-qubit
system. The time evolution of such a 3-tangle is studied.
In order to do the above, the 3-tangle associated to the
pure 3-qubit state |ψ(t)〉 = c0(t)|000〉 + c1(t)|001〉 +
c2(t)|010〉 + c3(t)|011〉 + c4(t)|100〉 + c5(t)|101〉 +
c6(t)|110〉 + c7(t)|111〉 is calculated as a function of the
initial coefficients {ci(t = 0)} (i = 0, 1, ..., 7), the time
t and the antiferromagnetic constant J . We find that
the 3-tangle of the 3-qubit system is periodic with period
t = 4π/J . Furthermore, we also find that the 3-tangle as
a function of the time t and J has maximal and minimum
values. The maximal values of the 3-tangle can be
employed in Quantum Information Protocols (QIP) that
use entanglement as a basic resource. The pattern
found for the 3-tangle of the system of three qubits
interacting through a XY Hamiltonian as a function of
J and the time t resembles to a quantized physical
quantity.

Keywords. 3-qubits; non-classical communications;
quantum information processing; entanglement.

1 Introduction

Entanglement of multipartite pure states has
been object of many studies both theoretical and
experimental [1, 3]. The reason for the above is
that multipartite entanglement is a basic ingredient
for Quantum Information Protocols (QIP). Although
certainly there have been advances in the study
of multipartite entanglement [4, 11], it is not
yet understood the time evolution of the initial

entanglement of a system of several qubits.
In particular, it arises the question about the
characteristics of the time evolution of the 3-tangle
of a system of 3-qubit interacting mutually through
a XY Hamiltonian.

As it has been pointed out in Ref. [4] the 3-tangle
can be an important quantity for measuring the
entanglement of a 3-qubit system. In the present
paper we study the time evolution of the 3-tangle
associated to a 3-qubit system in a pure state.
In order to do the above we employ the 3-tangle
introduced in Ref. [4] and also the quantum
Heisenberg XY-Hamiltonian [12] for a system of
3-qubit.

Thus, given an initial 3-qubit state |ψ(t = 0)〉 =
c0(t = 0)|000〉 + c1(t = 0)|001〉 + c2(t = 0)|010〉 +
c3(t = 0)|011〉 + c4(t = 0)|100〉 + c5(t = 0)|101〉 +
c6(t = 0)|110〉 + c7(t = 0)|111〉, the time evolution
of such a state is given by the Heisenberg operator
i.e. |ψ(t)〉 = e−iHt|ψ(t = 0)〉 = c0(t)|000〉 +
c1(t)|001〉 + c2(t)|010〉 + c3(t)|011〉 + c4(t)|100〉 +
c5(t)|101〉 + c6(t)|110〉 + c7(t)|111〉 where H is the
XY-Hamiltonian of the 3-qubit system. In our
approach, we derive an analytic expression for the
Heisenberg operator e−iHt with which if the initial
3-tangle (τ(t = 0)) is known in terms of the initial
coefficients {ci(t = 0)} (i = 0, 1, ..., 7) then the
final tangle τ(t) will be known in terms of the final
coefficients {ci(t)} (i = 0, 1, ..., 7), the value of J
and the time t.

As a result we find noticeable harmonic-like time
behavior for the 3-tangle. The later seemingly
suggests that the entanglement of a 3-qubit system
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interacting through a XY Hamiltonian is a quantized
quantity. The paper is organized as follows: in
Section 2 we derive the formalism for a 3-qubit
system interacting through a XY-Hamiltonian. In
Section 3 we find an expression for the 3-tangle
as a function of time. Finally, we conclude the work
by giving a discussion of our results in a section of
Conclusions.

2 3-qubits XY Hamiltonian

In order to facilitate our calculations it is employed
the decimal notation, which is defined as follows:

|0〉 = |000〉,
|1〉 = |001〉,
|2〉 = |010〉,
|3〉 = |011〉, (1)
|4〉 = |100〉,
|5〉 = |101〉,
|6〉 = |110〉,
|7〉 = |111〉.

Then, a general pure 3-qubits state can be defined
in terms of a superposition of the above basis as
follows:

|ψ〉 =
7∑

i=0

ci|i〉, (2)

where:
7∑

i=0

|ci|2 = 1. (3)

With the decimal notation it is possible to associate
a matrix with a Hamiltonian operator. The
respective associated matrix elements to the
Hamiltonian operator H become:

Hij = 〈i|H|j〉. (4)

The so called XY-Hamiltonian for n qubits is: [12]

H = J

N−1∑
i=0

(Sx
i S

x
i+1 + Sy

i S
y
i+1), (5)

where N = 2n, J is the coupling constant, and Sa
i

is the a (a = x, y) component of the spin of the

i − th qubit. In the present case we have n = 3
qubits (i.e. N = 8).

Let us observe that the states |0〉 and |7〉 are
annihilated by the action of the operator H of Eq.
(5), that is:

H|0〉 = 0,

(6)
H|7〉 = 0.

Furthermore, the action of the XY Hamiltonian H
of Eq. (5) on the rest of the decimal states is:

H|1〉 =
J

2

[
|2〉+ |4〉

]
,

H|2〉 =
J

2

[
|1〉+ |4〉

]
,

H|3〉 =
J

2

[
|5〉+ |6〉

]
,

H|4〉 =
J

2

[
|2〉+ |1〉

]
, (7)

H|5〉 =
J

2

[
|6〉+ |3〉

]
,

H|6〉 =
J

2

[
|5〉+ |3〉

]
.

Through the use of the Eqs. (4)-(7) and
the orthonormality of the decimal basis, the
construction of the matrix associated to H yields:

H =
J

2



0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0
0 1 0 0 1 0 0 0
0 0 0 0 0 1 1 0
0 1 1 0 0 0 0 0
0 0 0 1 0 0 1 0
0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0


. (8)

On the other hand, the time evolution operator
can be expanded in powers of H as follows:

U(t) = exp [−iHt] (9)

= 1− iHt+ (−i)2

2
[Ht]

2
+

(−i)3

3!
[Ht]

3
.
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We observe that the several different powers of
H of Eq. (8) behave peculiarly. For instance the
quadratic power is:

H2 =
J2

4



0 0 0 0 0 0 0 0
0 2 1 0 1 0 0 0
0 1 2 0 1 0 0 0
0 0 0 2 0 1 1 0
0 1 1 0 2 0 0 0
0 0 0 1 0 2 1 0
0 0 0 1 0 1 2 0
0 0 0 0 0 0 0 0



=
J2

4


2



0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0



+



0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0
0 1 0 0 1 0 0 0
0 0 0 0 0 1 1 0
0 1 1 0 0 0 0 0
0 0 0 1 0 0 1 0
0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0




≡

(
J

2

)2

2I{2−7} +
J

2
H.

In a similar way, for the other powers we obtain that:

H3 =

(
J

2

)3

2I{2−7} +

(
J

2

)2

3H,

H4 =

(
J

2

)4

2 ∗ 3I{2−7} +
(
J

2

)3

(3 + 2)H,

(10)

H5 =

(
J

2

)5

2 ∗ 5I{2−7} +
(
J

2

)4

(5 + 6)H,

H6 =

(
J

2

)6

2 ∗ 11I{2−7} +
(
J

2

)5

(11 + 10)H,

where I{2−7} has been defined in Eq. (11). In
general for the n− th power we find that:

Hn =

(
J

2

)n

anI{2−7} +

(
J

2

)n−1

bnH. (11)

However, we can see that an = 2bn−1 and
bn = bn−1 + an−1 = bn−1 + 2bn−2, then the above
equation can be expressed as:

Hn =

(
J

2

)n
2

3

[
−(−1)n−1 + 2n−1

]
I{2−7} (12)

+

(
J

2

)n−1
[−(−1)n + 2n]

3
H, n ≥ 1.

We observe from the above equation that for n =
0, the second term will be equal to zero and that
the first one is equal to 1. However, in this case,
H0 = I{2−7} and this is not the identity I8 as can
be seen from Eq. (11). Such a problem can be
solved as follows:

Hn = I{1,8}δ0n (13)

+

(
J

2

)n
2

3

[
−(−1)n−1 + 2n−1

]
I{2−7}

+

(
J

2

)n−1
[−(−1)n + 2n]

3
H, n ≥ 0,

where:

I{1,8} ≡



1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1


. (14)

From the above equation we find that the time
evolution operator will always be linear on H, and
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the time evolution operator can be written as:

U(t) =
∑
n=0

(−iHt)n

n!

=
∑
n=0

(−it)n

n!

{
I{1,8}δ0n

+

(
J

2

)n
2

3
[−(−1)n−1 + 2n−1]I{2−7}

+

(
j

2

)n−1
[−(−1)n + 2n]

3
H

}
= I{1,8}

+
2I{2−7}

3

∑
n=0

1

n!

(
−itJ
2

)n

[−(−1)n−1

+ 2n−1]

+
2H

3J

∑
n=0

1

n!

(
−itJ
2

)n

[−(−1)n

+ 2n]. (15)

It is worth to observe that the last expression can
be written in terms of exponentials with which the
time evolution operator takes a simple form:

U(t) = I{1,8} +
2I{2−7}

3

(
e

iJt
2 +

1

2
e−iJt

)
+
2H

3J

(
e−iJt − e iJt

2

)
. (16)

Let us note that according to Eqs. (9) and (10)
the time evolution of the state |ψ(t = 0)〉 is given
by:

|ψ(t)〉 = U|ψ(t = 0)〉

= U
[
c0(t = 0)|0〉+ c1(t = 0)|1〉

+ c2(t = 0)|2〉+ c3(t = 0)|3〉
+ c4(t = 0)|4〉+ c5(t = 0)|5〉

+ c6(t = 0)|6〉+ c7(t = 0)|7〉
]

= c0(t)|0〉+ c1(t)|1〉+ c2(t)|2〉
+ c3(t)|3〉+ c4(t)|4〉+ c5(t)|5〉
+ c6(t)|6〉+ c7(t)|7〉. (17)

It can be observed from the above equation that
we can calculate the coefficients at any time {cj(t)}

(j = 0, 1, ..., 7) if the initial coefficients {cj(t = 0)}
(j = 0, 1, ..., 7) are known and if it is also known
the action of the time evolution operator on each of
the decimal states, that is, U(t)|i〉 for i = 0, ..., 7.
Through the use of Eqs. (6), (7), (11), (16), and
(18) it is found that:

U(t)|0〉 = |0〉, (18)

U(t)|1〉 =
2

3

(
e

iJt
2 +

1

2
e−iJt

)
|1〉 (19)

+
1

3

(
e−iJt − e iJt

2

)
[|2〉+ |4〉] ,

U(t)|2〉 =
2

3

(
e

iJt
2 +

1

2
e−iJt

)
|2〉 (20)

+
1

3

(
e−iJt − e iJt

2

)
[|1〉+ |4〉] ,

U(t)|3〉 =
2

3

(
e

iJt
2 +

1

2
e−iJt

)
|3〉 (21)

+
1

3

(
e−iJt − e iJt

2

)
[|5〉+ |6〉] ,

U(t)|4〉 =
2

3

(
e

iJt
2 +

1

2
e−iJt

)
|4〉 (22)

+
1

3

(
e−iJt − e iJt

2

)
[|2〉+ |1〉] ,

U(t)|5〉 =
2

3

(
e

iJt
2 +

1

2
e−iJt

)
|5〉 (23)

+
1

3

(
e−iJt − e iJt

2

)
[|6〉+ |3〉] ,

U(t)|6〉 =
2

3

(
e

iJt
2 +

1

2
e−iJt

)
|6〉 (24)

+
1

3

(
e−iJt − e iJt

2

)
[|5〉+ |3〉] ,

U(t)|7〉 = |7〉. (25)

To substitute Eqs. (20)-(27) into Eq. (19), we find
the coefficients at any time {cj(t)} (j = 0, 1, ..., 7)
in terms of both the above exponentials and the
initial coefficients {cj(t = 0)} (j = 0, 1, ..., 7) where∑7

j=0 |cj(t = 0)|2 = 1.
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3 3-tangle as a Measure of Multipartite
Entanglement of a 3-qubit System

The measure of entanglement for a 3-qubit system
can be is obtained through the 3-tangle which is
defined as [4]

τ3 = 4|d1 − 2d2 + 4d3|, (26)

with:

d1 = c20c
2
7 + c21c

2
6 + c22c

2
5 + c24c

2
3, (27)

d2 = c0c7c3c4 + c0c7c5c2 + c0c7c6c1 (28)
+ c3c4c5c2 + c3c4c6c1 + c5c2c6c1,

d3 = c7c6c5c3 + c7c1c2c4, (29)

where ci represents the coefficient of basic state
|i〉. Thus, by calculating the coefficients ci (i =
0, 1, ..., 7) as a function of time, in the way it was
explained at the end of the above section, we shall
be able of finding the 3-tangle of Eq. (28) as a
function of time. That is to find τ3(t) = 4|d1(t) −
2d2(t) + 4d3(t)| providing the coefficients ci(t) are
known. It is worth to observe from Eqs. (18) and
(19) that the coefficients ci(t) (i = 0, 1, ..., 7) will
depend on the initial coefficients cj(t = 0) (j =
0, 1, ..., 7), the antiferromagnetic constant J and the
time t. By the way, in the present work the initial
coefficients cj(t = 0) (

∑7
j=0 |cj |2 = 1) are found

in a random way with which the coefficients ci(t)
(i = 0, 1, ..., 7) at time t will result a two variables
function namely J and t.

Before of considering a general state we are
focusing on the so calledW andGHZ states which
are defined as:

|W 〉 =
1√
3
(|4〉+ |2〉+ |1〉) , (30)

|GHZ〉 =
1√
2
(|0〉+ |7〉) . (31)

The respective initial 3-tangle for the GHZ-state
is unit while for the W-state the initial 3-tangle is
zero. Now, the W-state time evolution is only over
the phase. Therefore the 3-tangle of the W-state
does not change in time. Thus, the XY Hamiltonian
keeps constant the entanglement of the W-state
which is an important result. On the other hand, the

GHZ-state also is not modified by the time evolution
operator of Eq. (19) hence its associated 3-tangle
keeps constant in time. We conclude that the XY
Hamiltonian assures that the entanglement of the
GHZ-state does not change in time.

Let us now consider an arbitrary initial 3-qubit
state at t = 0 denoted by |ψ(t = 0)〉 = c0(t =
0)|000〉 + c1(t = 0)|001〉 + c2(t = 0)|010〉 + c3(t =
0)|011〉 + c4(t = 0)|100〉 + c5(t = 0)|101〉 + c6(t =

0)|110〉 + c7(t = 0)|111〉 where
∑7

i=0 |ci(t = 0)|2 =
1. In order to evaluate the 3-tangle at time t from
Eqs. (28)-(31), we employ eqs. (19)-(27) where
the initial coefficients ci(t = 0) are found in a
random way. We perform the above procedure in
three different cases and calculate the respective
3-tangle in each one of the three different cases.
In the Appendix we write the three different random
initial 3-qubit states employed in the present work.
In figure 6, we show the time evolution of the
3-tangle as a function of both J and t associated
to each of the three different random initial 3-qubit
states employed in the present work.

4 Relevance of Entanglement for
Technological Applications

Quantum entanglement is essential not only
for technological applications such as quantum
computation [13], data base search algorithm [14]
or quantum cryptography [15] and quantum secret
sharing [16] but also for non-artificial systems. For
instance for photosynthesis [17]-[18], navigational
orientation of animals [19], the imbalance of matter
and antimatter in the universe [20] and evolution
itself [21].

5 Random Initial 3-qubit States

We write the three different random initial 3-qubit
states that we have employed in the present work.
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1a)

t
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J [eV]

t

tJ=4p

1b)

2a)

3a)

Fig. 1. The 3-tangle as a function of both the time t and the antiferromagnetic factor J for a three different states
which their respective initial coefficients {ci(t = 0)} are found in a random way. Eqs. (28)-(31) and (19)-(27) are used.
Concerning to the label, the number represent the state while the letter expresses the kind of graphic

Such a states are the following:

|ψ1(t = 0)〉 ' (0.0649682 + 0.480244i)|0〉 (32)
+ (0.0820031 + 0.0744268i)|1〉
+ (0.157695 + 0.567361i)|2〉
+ (0.00990613 + 0.30057i)|3〉
+ (0.159286 + 0.122371i)|4〉
+ (0.136861 + 0.0406154i)|5〉
+ (0.00576077 + 0.267818i)|6〉
+ (0.424509 + 0.054595i)|7〉,

|ψ2(t = 0)〉 ' (0.254723 + 0.452791i)|0〉 (33)
+ (0.205806 + 0.3656i)|1〉
+ (0.119695 + 0.452655i)|2〉
+ (0.10712 + 0.095714i)|3〉
+ (0.000551918 + 0.408866i)|4〉
+ (0.0713835 + 0.0732269i)|5〉
+ (0.0279197 + 0.0993365i)|6〉
+ (0.316043 + 0.161424i)|7〉,
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|ψ3(t = 0)〉 ' (0.228717 + 0.66739i)|0〉 (34)
+ (0.124412 + 0.62744i)|1〉
+ (0.0241769 + 0.16416i)|2〉
+ (0.00878132 + 0.0690814i)|3〉
+ (0.0589419 + 0.165814i)|4〉
+ (0.0255238 + 0.105097i)|5〉
+ (0.0946251 + 0.0750734i)|6〉
+ (0.00977502 + 0.0581965i)|7〉.

We observe that all of the above three 3-qubit
states are normalized to unit.

6 Conclusions

We have studied the behavior in time of the
3-tangle associated to a 3-qubit system interacting
through the XY Hamiltonian given by Eqs. (5) and
(8). The 3-tangle associated to the state |ψ(t)〉 =
c0(t)|000〉 + c1(t)|001〉 + c2(t)|010〉 + c3(t)|011〉 +
c4(t)|100〉 + c5(t)|101〉 + c6(t)|110〉 + c7(t)|111〉 is
given by Eqs. (28)-(31) where each one of the
coefficients {ci(t)} (i = 0, 1, ..., 7) depend on
the random initial coefficients {cj(t = 0)} (j =
0, 1, ..., 7), J and the time t as it can be seen from
Eqs. (18)-(27).

An important result obtained in the present work
is that the entanglement of both the W-state and
the GHZ-state keeps constant in time providing the
three qubits interact through the XY Hamiltonian
given by Eq. (5).

Such a result could have important experimental
advantages whereas both the W-state and the
GHZ-state can be used on solid basis for testing
different QIP protocols.

In Figure we have plotted the 3-tangle of
Eq. (28) as a function of both the time t and
the antiferromagnetic factor J for three different
random 3-qubit states. It is worth to point out
that the 3-tangle shows a noticeable periodic
behavior as it is appreciated from Figure being the
respective period t = 4π/J . Such a behavior in
time is a consequence of the harmonic structure of
the time evolution operator of Eq. (18).

Our results invoke to the present experimental
facilities to measure the 3-tangle for a system
of 3-qubits by taking into account that for

certain times the entanglement disappears and
that for other values of both the time and the
antiferromagnetic constant J such a quantity is
maximal. The maximal values of the 3-tangle can
be used for implementing Quantum Information
Processing protocols where entanglement is a
resource. Our results might indicate that the
3-tangle associated to a 3-qubit system resembles
to a quantized physical quantity providing the three
qubits interact through a XY Hamiltonian.
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