
Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 173–193
doi: 10.13053/CyS-20-2-2334

ISSN 2007-9737

Self-Adaptive Differential Evolution Hyper-Heuristic
with Applications in Process Design

Hernán Peraza-Vázquez1, Aidé M. Torres-Huerta1, Abelardo Flores-Vela2

1 Instituto Politécnico Nacional, CICATA-Tamaulipas,
Mexico

2 Instituto Politécnico Nacional, CMP,
Mexico

{hperaza, atorresh, afloresv}@ipn.mx

Abstract. The paper presents a differential evolution
(DE)-based hyper-heuristic algorithm suitable for the
optimization of mixed-integer non-linear programming
(MINLP) problems. The hyper-heuristic framework
includes self-adaptive parameters, an ε-constrained
method for handling constraints, and 18 DE variants as
low-level heuristics. Using the proposed approach, we
solved a set of classical test problems on process
synthesis and design and compared the results with
those of several state-of-the-art evolutionary algorithms.
To verify the consistency of the proposed approach, the
above-mentioned comparison was made with respect to
the percentage of convergences to the global optimum
(NRC) and the average number of objective function
evaluations (NFE) over several trials. Thus, we found
that the proposed methodology significantly improves
performance in terms of NRC and NFE.

Keywords. Processes synthesis, mixed-integer non-
linear programming (MINLP) problems, differential
evolution (DE), hyper-heuristics.

1 Introduction

A constrained optimization problem is usually
written as a non-linear programming problem
(NLP) [34] of the following form:

Minimize (),f X

Subject to: () 0 ,
i

g X ≤ 1, .., ,i p=

() 0 ,jh X = 1, .., ,j p m= +

() ()L U

k k kx x x≤ ≤ , 1, .., .k D=

(1)

In the above NLP problem, the function f is

the objective function, where () : Df X R R→

there are D variables,
1

(, .. ,)
D

X x x= is a vector of

size D, D
X R∈ , where DR represents the entire

search space,
ig are the inequality constraints,

j
h are the equality constraints, and

()L

K
x ,

()U

K
x are

the lower-bound constraints and upper-bound
constraints, respectively. Further, p is the number

of inequality constraints and m p− is the number

of equality constraints.
The equality constraints can be transformed

into the inequality form, and then, they can be
combined with the other inequality constraints as
follows:

{ }max (), 0 1, .., ,
()

() 1, .., .

i

i

j

g X i p
G X

h X i p m

 =
= 

= +

(2)

Thus, the optimization goal is to find a feasible

vector X to minimize the objective function.

When the vector X contains a subset of µ

and ν vectors of continuous real variables and
integer variables, respectively, v X Dµ + = = ,

the NLP problem becomes a mixed-integer non-
linear programming problem (MINLP).

Non-convex NLPs and MINLPs are commonly
found in real-world situations. Therefore, the
scientific community continues to develop new
approaches for obtaining optimal solutions with
acceptable computational time in various
engineering and industrial fields. For example, in
design optimization, the design objective could be
simply to minimize the cost or maximize the

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 173–193
doi: 10.13053/CyS-20-2-2334

Hernán Peraza-Vázquez, Aidé M. Torres-Huerta, Abelardo Flores-Vela174

ISSN 2007-9737

efficiency of production; on the other hand, the
objective could be more complex, e.g., controlling
the highly non-linear behavior of pH neutralization
processes in a chemical plant. The need to solve
practical NLP/MINLP problems has led to the
development of a large number of heuristics and
metaheuristics over the last two decades
[27,33,36]. Metaheuristics, which are emerging as
effective alternatives for solving NP-hard
optimization problems, are strategies for designing
or improving very general heuristic procedures with
high performance in order to find (near-)optimal
solutions; the goal is efficient exploration
(diversification) and exploitation (intensification) of
the search space. For example, we can take
advantage of the search experience to guide
search engines by applying learning strategies or
incorporating probabilistic decisions.

Strategies such as differential evolution (DE),
ant and bee algorithms, particle swarm
optimization (PSO), and cuckoo search have been
effectively applied to many research areas,
including process design [2,3]. Nevertheless, these
approaches have a drawback in that they require
the setting of several parameters and components,
e.g., population size, number of generations,
recombination probability, mutation operator, and
selection function, as well as the handling of
constraints. Therefore, selecting the best
combination of these parameters/components
leads to complexity of the metaheuristic
algorithms. In other words, the various possible
combinations of the parameters drastically affect
the performance of the algorithms.

Nowadays, methodologies such as hyper-
heuristics minimize human interference in the
tuning and design of heuristics or metaheuristics
adapted for solving a problem in a particular
domain [3]. In this paper, an approach for solving
non-convex MINLP problems is presented. Our
analysis is based on a DE hyper-heuristic
methodology, which is able to choose from among
18 DE models for low-level heuristics and tune the
most important parameters through a self-
adaptation mechanism.

The remainder of this paper is organized as
follows. Section 2 describes the DE algorithm.
Section 3 outlines the hyper-heuristic algorithm.
Section 4 reviews some related studies. Section 5
describes the proposed approach. Section 6

presents an illustrative example to show how a
population evolves through generations before
reaching the global optimum. Section 7 describes
a set of problems on process synthesis and design
for an experimental setup to show the applicability
and efficiency of our approach in the case of non-
convex MINLP problems. Section 8 presents the
corresponding results. Finally, Section 9
summarizes our findings and concludes the paper
with a brief discussion on the scope for future work.

2 Differential Evolution (DE) Algorithm

Since its implementation in 1995 by Storn and
Price [37,38], DE has gained wide acceptance
because it is particularly easy to work with, having
only a few control variables that remain fixed
throughout the entire optimization procedure. DE is

a search method that uses a set of vectors ,i G
x as

the population in each generation. The algorithm
starts from a randomly generated initial population
until a satisfactory one is obtained. The population
size does not change during the evolutionary
process; thus, the algorithm is a population-based
stochastic search technique classified as floating-
point encoded. A DE pseudo-code is shown in
Figure 1.

The main concept underlying DE is a new
schema to generate vectors. The mechanism is as
follows. A new vector is generated by adding the
weighted difference between two member vectors
of the population to a third member (see Figure 1
and focus on line 11).

Both vectors, i.e., the newly generated vector
and the original vector, are rated by an evaluation
method. The vector with the best fitness is chosen,
and it replaces the losing vector in this comparison

(see Figure 1: the If statement in line 16 and the

corresponding Else starting in line 18). There are
several variants of the mutation scheme of DE. The

notation used in the literature is / / /DE φ ϕ ψ ,

where φ denotes the base vector to be disturbed,

i.e., the mechanism for constructing the mutant
vector, ϕ denotes the number of pairs of vectors

to be disturbed, and ψ denotes the crossover type

(exp: exponential; bin: binomial). Several DE
schemes are presented in Appendix A.

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 173–193
doi: 10.13053/CyS-20-2-2334

Self-Adaptive Differential Evolution Hyper-Heuristic with Applications in Process Design 175

ISSN 2007-9737

Line 11 contains the mutation operator, where

1 2 3
r r r≠ ≠ are randomly generated vectors []1, NP∈

and NP is the population size. F is a scaling factor
that typically (0,1]∈ ; it controls the amplification of

the difference vector. Lines 10 to 14 contain the
crossover operator, which is represented by the

If Else− statement, where the crossover constant is

denoted by CR [0,1]∈ and
randj is a randomly

chosen index { }1,2,.., D∈ ; D is the number of

variables in the problem. CR and F are user-
defined parameters. CR is highly sensitive to the
property and complexity of the problem, while F is
related to the convergence speed. The DE model
described above is known as DE/rand/1/bin, where
rand denotes the base vector to be disturbed, 1
denotes the number of pairs of vectors to be
disturbed, and bin denotes the
recombination adopted.

3 Hyper-Heuristics

A hyper-heuristic is a search method or learning
mechanism for selecting or generating simpler
heuristics to solve computational search problems.
The hyper-heuristic framework consists of two
main parts: a high-level methodology and a
number of low-level heuristics. Given a particular
problem instance or class of instances, the high-
level method provides the means to exploit the
strength of multiple low-level heuristics, where
each heuristic can be useful at different stages of
the search. The solution is either accepted or
rejected based on an acceptance criterion. The
heuristic selection and acceptance methods are
the most important components of a hyper-
heuristic. The main feature of the hyper-heuristic
approach is that the high-level heuristic performs a
search over the space of the low-level heuristics
rather than a direct solution space. A domain
barrier between the levels prevents any problem-
specific information from being passed to the
hyper-heuristic level, thereby allowing for selection
from among the low-level heuristics without the
need for domain knowledge. The development of
hyper-heuristics is mainly motivated by the need
for algorithms that are more generally applicable
than most current implementations of search

methods. The low-level heuristics can be designed
in advance or created simultaneously during
runtime from a set of potential components. Thus,
the hyper-heuristic approach aims to reuse the
heuristics over unseen instances and raise the
level of generality at which an optimization system
can operate.

In the hyper-heuristic framework, the high-level
heuristic has no knowledge of the problem-domain
concealed in the low-level one. In turn, the low-
level heuristic is not aware of the learning
mechanism used to choose its heuristic (DE
models) in the high level. This process introduces
the concept of plug-and-play of heuristics (DE
models).

In recent years, hyper-heuristics have been
employed in several applications such as the bin
packing problem [29], 2D strip packing [8],
production scheduling [30], constraint satisfaction
problems [28], and the vehicle routing problem
[25]. In addition, some hyper-heuristics use a
metaheuristic as a high-level methodology or
mechanism to select or generate low-level

Fig. 1. Differential evolution algorithm

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 173–193
doi: 10.13053/CyS-20-2-2334

Hernán Peraza-Vázquez, Aidé M. Torres-Huerta, Abelardo Flores-Vela176

ISSN 2007-9737

heuristics, with effective and encouraging results.
A survey of hyper-heuristics can be found in [7].

4 Related Work

In the existing literature, it is possible to find several
DE-based approaches for solving constrained
optimization problems.

In [23], Lampinen proposed an extension of DE.
The method consists of a modification to the
selection operator with a new selection criterion for
handling the constraint functions. The selection is
based on Pareto dominance in the effective
constraint function space, and the approach does
not introduce any extra search parameters to be
set by the user. A DE/rand/1/bin strategy was used.

In [21], a penalty function is designed to handle
the constraints and a co-evolution model is
incorporated into a DE algorithm to perform
evolutionary search in spaces of solutions and
penalty factors. Both evolve interactively and self-
adaptively; thus, a satisfactory solution and
suitable penalty factors can be obtained
simultaneously. A DE/best-rand/1/bin strategy was
used.

The aim of the approach proposed by Mezura
et al. in [26] is to increase the probability that each
parent generate a better offspring by allowing each
generation to generate more than one offspring
using a different mutation operator that uses
information of the best solution and the current
parent to find new search directions. A
DE/rand/1/bin strategy was used.

In [24], Mallipeddi et al. showed how a
compendium of constraint-handling techniques
used with evolutionary algorithms can be
effectively applied to differential evolution. These
include the superiority of feasible solutions, self-

adaptive penalty, ε-constraint, and stochastic
ranking. The authors showed that the effectiveness
of conventional DE in solving a numerical
optimization problem depends on the selected
mutation strategy and its associated parameter
values. Thus, different optimization problems
require different mutation strategies with different
parameter values. The DE/rand/2/bin and
DE/current-to-rand/1/bin strategies were used.

A DE variant considered as a state-of-the-art
algorithm, namely, SaDE [32], incorporates a

learning strategy in the mutation phase, which
probabilistically selects one out of two available
learning strategies, DE/rand/1/bin or DE/current-
to-best/2/bin, and applies it to the current
population. Furthermore, the control parameter CR
is self-adapted based on the previous learning
experience, and a quasi-Newton method is used
as a local search method.

In [31], the SaDE algorithm was compared with
several parameter-adaptive DE variants. It was
found that the SaDE algorithm could evolve
suitable strategies and parameter values as the
evolution progressed and that the learning period
parameter had an insignificant impact on the
performance. In addition, the algorithm was more
effective in obtaining high-quality solutions over a
suite of 26 bound-constrained numerical
optimization problems.

In [20], the original search method in the SaDE
algorithm was substituted by a sequential
quadratic programming method.

A comparison between a neighborhood search
strategy and the SADE algorithm can be found in
[45]. This strategy affects the F parameter, which
is related to the convergence speed. Thus, it is
effective in escaping from local optima when
searching environments without prior knowledge
about what kind of search step size is preferred. A
hybridization of SaDE with the neighborhood
search algorithm led to the following approach: the
neighborhood search strategy, the learning
strategy in the mutation phase, and three self-
adaptive mechanisms for the three parameters,
namely, the scale factor F, the crossover rate CR,
and the mutation strategy. The authors reported
that such a hybridization is significantly superior to
both neighborhood search algorithm and SaDE
individually.

In [4], a self-adaptive mechanism for changing
two DE control parameters, F and CR, during the
optimization process with a small and varying
population size was presented. A DE/rand/1/bin
strategy was used.

In [42], a success-history-based adaptive DE
was proposed. The strategy uses historical
memory in order to adapt the control parameters F
and CR.

The use of eigenvectors of the covariance
matrix of individual solutions, which makes the
crossover rotationally invariant in DE, was

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 173–193
doi: 10.13053/CyS-20-2-2334

Self-Adaptive Differential Evolution Hyper-Heuristic with Applications in Process Design 177

ISSN 2007-9737

proposed by Guo et.al in [18]. The incorporation of
eigenvector-based crossover in six state-of-the art
DE variants showed either solid performance gains
or statistically identical behavior. The concept of
opposition-based learning has been applied to
improve the performance of metaheuristic

algorithms and machine-learning algorithms. The
method tries to find a better candidate solution by
simultaneously considering an estimate point and
its corresponding opposite estimate.

In [19], a partial opposition-based learning
methodology was applied to an adaptive DE
algorithm.

In [6], an adaptive DE based on competition
among several strategies was used. The approach
uses a rotation-invariant current-to-best mutation
in the algorithm. The aim is to increase the
efficiency of DE on rotated or composite functions.

In [43], a hyper-heuristic based on DE was
proposed. The approach consists of two phases.
The first phase is responsible for selecting the type
of recombination to be adopted (either bin or exp).
At the beginning of the search process, a training
stage based on the maximum number of
generations and a random descent selection
mechanism is required to initialize the expected
values for each of the DE variants. The second
phase is responsible for selecting the specific
model to be applied for generating the next
generation. Random selection and roulette wheel
selection mechanisms are used. Stochastic
ranking is incorporated for handling the
constraints. Twelve crossover model strategies are
used as low-level heuristics in the hyper-heuristic
framework.

Further details about recent research on hyper-
heuristics based on DE can be found in [16].

In spite of the above-mentioned efforts, there
remains a considerable scope for improving DE
performance, e.g., by using strategies or proposing
new strategies of self-adaptation for parameter
control, mutation, or constraint handling, or by
applying learning mechanisms that have not been
used previously in DE frameworks.

5 Proposed Approach

The motivation of our approach is to solve non-
convex MINLP problems with applications in
process design by using a DE-based hyper-
heuristic algorithm. Our framework includes self-

adaptive parameters, an ε-constrained method for
handling constraints, 9 mutation model strategies,
and a binomial and exponential crossover model;
the combination mutation-crossover allows to have

Table 1. Design comparison of DE-HH & SADE

 SADE DE-HH

Mutation
Operation

Max 4 Strategies:

DE/rand/1

De/current to
best/2

DE/rand/2

DE/current-to-
rand/1

Max 9 Strategies
over a Hyper-
heuristic
framework.

See Appendix B.

Crossover
Operation

Binomial
Binomial or
Exponential
(Self-Adaptive)

Selection
Operation

The fitness value
of each trial
vector is
compared to that
of its
corresponding
target vector in
the current
population.
(traditional DE,
Figure 1)

ε-level
comparison
defined by a
lexicographical
order, eqs.11
and 12.

Handling
Constraints

Method based on
superiority of
feasible solutions.

Epsilon-
Constrained
Method

Parameter
Adaptation

NP: User-
specified value

CR: Self-adaptive
(learning
experience)

F: random values
in the range (0, 2]
normal
distribution of
mean 0.5 and
standard
deviation 0.3

NP: User-
specified value

CR: Self-
adaptive
(learning
experience)

F: Self-adapted
according to
eq.6

Local
Search
Method

Sequential
Quadratic
Programming
(SQP)

Neighborhood
Search

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 173–193
doi: 10.13053/CyS-20-2-2334

Hernán Peraza-Vázquez, Aidé M. Torres-Huerta, Abelardo Flores-Vela178

ISSN 2007-9737

a maximum of 18 Differential Evolution models.
The overall flow of our approach is shown in Figure
2 and the pseudo-code is shown in Figure 3.

Our framework includes the strategies
described in subsections 5.1 to 5.5.

 5.1 Self-Adaptive Parameters

The use of the DE self-adaptive mechanism to
make a DE solver more robust and efficient is
reported in [5]; in addition, its advantages and
disadvantages are discussed there.

Our self-adaptation scheme focuses on the
three main components of the DE algorithm that
directly affect the performance and the quality of
the solution, namely, the mutation, the crossover,
and the scale factor F. Lines 9 to 15 in Figure 1
show the use of these components without a self-
adaptation mechanism. In order to achieve auto-
tuning of these parameters, a learning period was
incorporated. The basic idea is to define a
specified number of generations to collect data and
a counter of iterations. When the counter exceeds
the number of generations proposed, it will be reset
once the variable is updated with a new value.

5.2 Self-Adaptation of Crossover Rate CR

Our crossover strategy is based on SaDE [32,45],
where the CRm variable is set to 0.5 initially; after
a determined number of generations, CRm will be
updated according to equation 3. Thus, CRm is
used as the mean value in the Gaussian function
given by equation 4 in order to compute the
crossover rate (CR) that will be used in the
recombination method:

1

1
(),

recCR

rec

Krec

CRm CR k
CR =

= ∑ (3)

(, 0.1).i i mCR N CR= (4)

The proposed crossover includes a strategy of
selection to choose between a binomial or
exponential method, in contrast to the SaDE
algorithm that only uses binomial crossover.

5.3 Self-Adaptation of the Scale Factor F

Because the scale factor F is related to the
convergence speed, its self-adaptation strategy
incorporates a move-generation mechanism as a
neighborhood search operator in the DE algorithm.
This can be observed in [45, 46], where the scale
factor F is replaced by equation 5:

(0.5,0.3), . (0,1) ,

, ,

i i

i

i

N if U Fp
F

otherwise

<
= 

∂
 (5)

where (0.5,0.3)iN denotes a Gaussian random

number with mean 0.5 and standard deviation 0.3,
and

i∂ denotes a Cauchy random variable with

scale parameter t=1. In our approach, Fp in
equation 5 will be self-adapted according to
equation 6:

,
()

TSGRN
Fp

TSGRN CRN
=

+

∑
∑

 (6)

Fig. 2. Overall flow of our approach

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 173–193
doi: 10.13053/CyS-20-2-2334

Self-Adaptive Differential Evolution Hyper-Heuristic with Applications in Process Design 179

ISSN 2007-9737

Fig. 3. Differential Evolution (DE)-based hyper-heuristic pseudo-code

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 173–193
doi: 10.13053/CyS-20-2-2334

Hernán Peraza-Vázquez, Aidé M. Torres-Huerta, Abelardo Flores-Vela180

ISSN 2007-9737

where TSGRN denotes the success Gaussian

random number and CRN is the success Cauchy
random number.

5.4 Self-Adaptation of Mutation Strategies

The impact of the various DE search operators on
the exploration/exploitation of the search space is
not the same. Certain mutation operators are more
oriented toward exploitation, e.g., DE/best/1,
whereas others are more oriented toward
exploration, e.g., DE/rand/1 [13]. Thus, it can be
difficult to choose the most efficient mutation
operator, and a problem-dependent parameter
may affect the performance of the algorithm. A
determined combination of DE parameters can be
suitable for one problem but unsuitable for another
[44]. In order to raise the level of generality, our
approach incorporates in the hyper-heuristic
framework a selection method for choosing the
type of recombination to be applied for generating
the next population, either exponential or binomial,
by a random process. The method includes a
variable, CrSel, which is set to 0.5 initially; after a
determined number of generations, CrSel will be
self-adapted according to equation 7 (see Figure 3:
lines 17 to 23).

This set of heuristics consists of nine promising
mutation strategies reported in the literature, each
for the binomial and exponential models; a roulette
wheel method is used to choose the mutation
variant to be adopted, see Figure 4.

The maximum number of possible crossover-
mutation combinations are 18. These 18 DE-
models are used as low-level heuristics shown in
Appendix B. For example, if the type of
recombination selected is exponential, the roulette
wheel method will choose from among the nine
mutation strategies for exponential recombination,
starting with a probability of 1/9 for each strategy to
be selected; the probabilities will be updated when
CrSel is updated (see line 19 in Figure 3). The
complete mutation strategies used in our approach
are presented in Appendix B.

,
()

TSVER
CrSel

TSVER BR
=

+

∑
∑

 (7)

where TSVER denotes the success variant
exponential recombination and BR is the success
binomial recombination.

5.5 Constraint Handling

The ε-constrained method was proposed by
Takahama [40]. It is based on the definition of a

constraint violation ()xφ that is obtained from

equation 8 or equation 9, which are adopted as a
penalty in penalty function methods.

{ }{ }() max max 0, () , max ()j j
j j

x g x h xφ = (8)

{ }() max (), 0 ()
pp

i j

j j

x g x h xφ = +∑ ∑
(9)

where p Z
+∈ and ()xφ is the maximum of all

constraints or the sum of all constraints. Thus,
()xφ indicates by how much a search point x

violates the constraints and the membership in the

feasible region F . Feasible solutions exist in S,

where F S⊆ and S is the search space. The

values of ()xφ that can be obtained are given by

equation 10.

() 0 (),

() 0 (),

x x F

x x F

φ

φ

= ∈


> ∉

 (10)

An order relation on the set ((), ())f x xφ is

known as an ε level comparison and defined by a
lexicographic order in which ()xφ precedes (),f x

favoring the feasibility of x over the minimization of
()f x . The comparisons are made according to the

rules given by equations 11 and 12:

1 2 1 2

1 1 2 2 1 2 1 2

1 2

() (), (), ()

((), ()) ((, ()) () (), () ()

() ()

f x f x if x x

f x x f x x f x f x if x x

x x otherwise

ε

φ φ ε

φ φ φ φ

φ φ

< <


< ⇔ < =
 <

(11)

1 2 1 2

1 1 2 2 1 2 1 2

1 2

() (), (), ()

((), ()) ((, ()) () (), () ()

() ()

f x f x if x x

f x x f x x f x f x if x x

x x otherwise

ε

φ φ ε

φ φ φ φ

φ φ

≤ <


≤ ⇔ ≤ =
 ≤

(12)

The opposite cases where
0 00()andε = < ≤ and

()andε ∞ ∞= ∞ < ≤ are equivalent to the

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 173–193
doi: 10.13053/CyS-20-2-2334

Self-Adaptive Differential Evolution Hyper-Heuristic with Applications in Process Design 181

ISSN 2007-9737

lexicographic order in which the constraint violation

()xφ precedes the function value ()f x on the one

hand and to the ordinal comparison < and ≤
between function values on the other hand,
respectively. In order to obtain high-quality

solutions, the ε level is statically controlled by
equation 13. It is updated until the generation
counter k reaches the control generation

cT . When

the generation counter exceeds
cT , the ε level is

reset to zero in order to obtain solutions without
constraint violation. Note that cp is a user-defined
parameter for controlling the reduction speed of the

ε tolerance.

(0) (),

(0)(1) , 0 ,
()

0, .

s

cp

s c

cs

c

x

k
k T

Tk

k T

θε φ

ε
ε

=


− < <

= 
 ≥

(13)

The ε-constrained method with static control
was incorporated into our approach. We assume
that p=1 in equation 9 for a simple sum of
constraints.

For the function evaluation, in order to handle
integer variables, real values are converted into
integer values by truncation. The handling of binary
variables is given by equation 14.

0, 0.5

1, ,

i

i

if x
y

otherwise

≤
= 


 (14)

where
ix is a continuous variable, 0 1ix≤ ≤ . For

the boundary constraint, the same handling
mechanism that is used for continuous variables is
applied (0 is assigned to the lower bound and 1 is
assigned to the upper bound).

5.6 Our Approach versus SaDe: A Comparison
between Designs

The SaDE algorithm uses only a binomial
crossover operator and 2 mutation strategies
selected by a random process [32]. In the last
version, it incorporates 4 mutation strategies
selected by the roulette method improving the
performance [20].

The comparative analysis of binomial and
exponential crossover variants provides
information about the influence of the crossover
parameter on the behavior of DE. The dependence
between the mutation probability and the crossover
parameter is linear in the binomial case and
nonlinear in the exponential one. The use of both
types of crossover together makes the algorithms
more robust [49]. Nevertheless, it is not possible to
generalize, since a combination of parameters can
be effective for a problem or instance of one
problem and ineffective for another. In order to
combat these weaknesses, our approach
encapsulates a set of predefined heuristics (DE
models as low-level heuristic) for the given
problem, a fitness evaluation function, and a
specific search space. The high-level heuristic
decides which low-level heuristic (DE model) will
be chosen. This can be achieved with a learning
mechanism that evaluates the quality of the
heuristic (DE model) solutions, so that they can
become general enough to solve unseen instances
of a given problem. In the hyper-heuristic
framework, it is possible to add or remove low-level
heuristics without the need to code the entire
algorithm again. The main design differences
between SaDE and our approach are presented in
Table 6 (Illustrative example).

Consider the following quadratically
constrained linear program taken from [34]:

1 2

2 2

1

2 2

1

1 2

2 1

m in

. . 4 ,

1,

1,

1,

2 2 ,

x

x

x x

s t x x

x x

x x

x x

x

+

+ ≤

+ ≥

− ≤

− ≤

− ≤ ≤

(15)

Fig. 4. Crossover and mutation over a hyper-heuristic
framework

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 173–193
doi: 10.13053/CyS-20-2-2334

Hernán Peraza-Vázquez, Aidé M. Torres-Huerta, Abelardo Flores-Vela182

ISSN 2007-9737

Table 2. Comparison between DE-HH and SADE algorithm

 SADE DE-HH

Problem
Best

Reported
Best Worst Mean Std. Best Worst Mean Std.

1 2.0000 2.0000 1.8269 1.9711 5.91E-02 2.0000 1.9237 1.9865 2.63E-02

2 2.1240 2.1236 2.0786 2.1093 1.91E-02 2.1240 2.0936 2.1171 1.06E-02

3 1.0765 1.0693 1.0438 1.0695 1.02E-02 1.0762 1.0534 1.0719 6.98E-03

4 99.2452 99.2450 99.1184 99.2202 4.14E-02 99.2451 99.1963 99.2318 1.83E-02

5 3.5574 3.5461 3.0530 3.4649 1.52E-01 3.5574 3.4384 3.5294 3.62E-02

6 32217.4
32216.96

57

32214.96

18

32216.14

82
6.50E-01

32217.43

50

32215.36

81
32216.6453 8.52E-01

7 38499.8
38498.21

7

38495.32

8
38497.03 1.33E+00

38499.76

19

38496.53

2
38498.9411 1.29E+00

Fig. 5. Evolution of the population from the initial generation (a) to the end generation (d) and the full trace of the
convergence plot (e)

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 173–193
doi: 10.13053/CyS-20-2-2334

Self-Adaptive Differential Evolution Hyper-Heuristic with Applications in Process Design 183

ISSN 2007-9737

where the global optimum reported in the literature
is x=(-1.414214, -1.414214) with f= -2.828427.
Two local solutions are at x=(-1,0) with f= -1 and
x=(1,0) with f=1. Thus, the solution is required to
be in the region bounded by all the constraints.
Figure 5 shows how this problem is solved by
applying the proposed approach.

In order to have sufficient data and show their
behavior, the parameters used are the population
size 200Np = and the maximum number of

generations MaxGen=50; each of the self-adaptive
variables, namely, CRsel, fp, and CRm, starts with
a value of 0.5. After 20, 20, and 5 generations,
respectively, the variables are updated (“learning
period”). The algorithm was able to find the global
optimum in 0.018 s, with 10200 evaluations of the
objective function.

In an experimental test with a population size of
25Np = and the maximum number of generations

MaxGen=30, the global optimum was found in
0.00343 s, with 775 evaluations of the
objective function.

7 Case Studies

Seven problems from the field of chemical
engineering, which involves complex non-convex
optimization problems with continuous and
discrete variables, were considered in the present
study. Definitions of these Benchmark Problems
are presented in Appendix A.

8 Results

Our approach, namely, the DE-HH algorithm, is
implemented in C and compiled using GCC version
4.8.2. All computations were carried out on a
standard PC (Linux Kubuntu 14.04 LTS, Intel core
i5, 2.20 GHz, 4 GB).

The reliability and efficiency of our approach
were compared with those of several state-of-the-
art algorithms reported in the literature. The
comparison involves the mean values of ten
experiments for each problem; it includes two parts
as follows.

In the first part, a comparison is made against
the SaDE algorithm [20] measuring convergence
speed and quality of results. The results are based

on the best, the worst, mean, and standard
deviation; these are listed in Table 2. A
convergence graph for each problem was plotted.
The graph shows the median run of the total runs
with termination by the max number of function
evaluations obtained. We use the function value of
the problem without penalties, f(x), and the fitness
value of best-known solution, f(x*). In the log
graphs, the x-axis corresponds to the number of
function evaluations and the y-axis corresponds to
the log (f(x)-f(x*)), see Figures 6 to 12.

The comparison shows that our approach
improves the best results reported of the SaDE
algorithm, including better mean and standard
deviation.

In the second part, a comparison is made
against genetic algorithm (GA), simplex-simulated
annealing (M-SIMPSA & M-SIMPSA-pen variant),
evolution strategies (ES), and modified differential
evolution (MDE); all these algorithms are reported
in [1], while particle swarm optimization (R-PSO_c)
is reported in [47].

Table 3. DE-HH Results

Problem NFE NRC CPU-Time

1 420 100 0.002111

2*

3

4*

5

6

7

440

1020

1680

6030

2020

14600

100

100

100

100

100

100

0.002169

0.007012

0.012646

0.047243

0.026431

3.841227

Table 4. Percent reduction in NFE due to DE-HH as
compared with the best algorithm reported

Problem
No.

Our
approach

%
Reduction
in NFE by

DE-HH

Best
algorithm

reported

1 30.81 % M-SIMPSA

2*

3

4*

5

6

7

DE-HH

10.20%

41.68%

6.51%

10.14%

20.35%

2.67%

MDE

ES

MDE

ES

ES

R_PSO_C

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 173–193
doi: 10.13053/CyS-20-2-2334

Hernán Peraza-Vázquez, Aidé M. Torres-Huerta, Abelardo Flores-Vela184

ISSN 2007-9737

Fig. 6. Convergence Graph Problem 1

Fig. 7. Convergence Graph Problem 2

Fig. 8. Convergence Graph Problem 3 Fig. 9. Convergence Graph Problem 4

Table 5. Comparison of DE-HH, GA, M-SIMPSA, M-SIMPSA-pen, ES, MDE & R-PSO_c

 ratio
NFE/NRC

Problem
no.

GA M-
SIMPSA

M-SIMPSA-
Pen

ES MDE R-PSO_c DE-HH

1 67.87 6.13 162.82 15.18 7.05 -- 4.20

2*

3

4*

5

6

7

139.39

1070.46

224.89

1712.96

371.67

α

127.49

#/0

147.38

371.816

315.057

#/0

144.40

380.42

422.95

657.22

357.43

2799.33

22.55

17.49

**/0

67.10

25.36

**/0

4.90

19.74

17.97

119.14

54.95

405.50

35.00

--

40.00

300.00

--

166.66

4.40

10.20

16.80

60.30

20.20

146.00

Execution halted, ** Converged to a non-optimal solution,
 --such results were not available for the corresponding algorithm

 α: 225176 of NFE and zero of NRC reported

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 173–193
doi: 10.13053/CyS-20-2-2334

Self-Adaptive Differential Evolution Hyper-Heuristic with Applications in Process Design 185

ISSN 2007-9737

The results are based on the percentage of

convergences to the global optimum (NRC) and
the average number of objective function
evaluations (NFE); these are listed in Table 3,
where the CPU time in seconds is also reported.
The best results obtained are listed in Table 4. For
Problem 1, a comparison shows that the NFE for
DE-HH is around 30.82\% less than that for M-
SIMPSA and 93.82\% less than that for GA.

Our approach improves the NFE and NRC of
the M-SIMPSA reported as the best for this
problem.

For Problem 2, the NFE for DE-HH is 97.3%
less than that for GA. Moreover, for Problems 1 to
7, the NFE for DE-HH is around 40.42%, 10.20%,
48.33%, 6.51%, 49.38%, 63.23%, and 64% less,
respectively, than that for MDE. For Problem 7, our
approach improves the NFE and NRC of the
R_PSO_c algorithm, which has been reported as
the best. A summarized comparison of DE-HH
with the best algorithms reported for each problem
is presented in Table 5.

Fig. 13. Problem 1

Fig. 10. Convergence Graph Problem 5

Fig. 11. Convergence Graph Problem 6

Fig. 12. Convergence Graph Problem 7

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 173–193
doi: 10.13053/CyS-20-2-2334

Hernán Peraza-Vázquez, Aidé M. Torres-Huerta, Abelardo Flores-Vela186

ISSN 2007-9737

The convergence plot, labeled as (a), and the
behavior of the self-adaptive parameters (CRm,
Fp, and CrSel), labeled as (b), for each problem
are shown in Figures 4 to 10.

For the convergence plot, the x-axis
corresponds to the number of generations and the
y-axis corresponds to the values of ()f x . For the

self-adaptive parameters, the x-axis corresponds
to the number of generations and the y-axis
corresponds to the obtained values of CRm, Fp,
and CrSel. Observe that in Figures 5 to 7, the y-
axis appears with different scales on the left and
right sides. More specifically, the y-axis on the left
corresponds to Fp and CrSel, and the y-axis on the
right corresponds to CRm. CPU time in seconds.

9 Conclusions

This paper proposed a differential-evolution-based
hyper-heuristic (DE-HH) approach for the
optimization of mixed-integer non-linear
programming (MINLP) problems. Self-adaptive
mechanisms of the control parameters in the DE
algorithm are carried out over the hyper-heuristic
framework. The constraints are handled by the

epsilon-constrained method. The choice functions
of the proposed framework can adaptively select
appropriate low-level heuristics from a set of 18 DE
variants. Additional mutation strategies and
different crossover schemes can also be applied to
the hyper-heuristic framework in order to adapt it to
a particular problem.

We conducted experimental studies on test
instances of process synthesis and design that
represent difficult non-convex optimization
problems often encountered in the field of chemical
engineering. The results, which were based on the
percentage of convergences to the global optimum
(NRC) and the average number of objective
function evaluations (NFE), showed that DE-HH
can find a global optimum reliably and efficiently,
improving, on average, the NFE by 17.48% as
compared to the best algorithms reported while
maintaining the NRC at 100%. The results, which
were based on the best, the worst, mean and
standard deviation, showed that our approach
exhibits better high quality results for all
benchmark problems than SaDE algorithm,
including better mean and standard deviation.

In a runtime it is possible to find DE models
untouched (unused) by the hyper-heuristic.

Fig. 14. Problem 2* Fig. 15. Problem 3

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 173–193
doi: 10.13053/CyS-20-2-2334

Self-Adaptive Differential Evolution Hyper-Heuristic with Applications in Process Design 187

ISSN 2007-9737

Thereby, it is unknown which of the 18 DE models
are more requested for a particular problem.

Also, the contribution of each model in obtain
an optimal solution, the effects of adding (or
subtracting) of more DE models and its

repercussions in the quality of results are
unknown. Therefore, directions for future work
include an analysis of sensitivity of variables and
models over a hyper-heuristic environment. In
addition, it is desirable to deal with larger problem

Fig. 16. Problem 4*

Fig. 17. Problem 5

Fig. 18. Problem 6 (maximization)

Fig. 19. Problem 7

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 173–193
doi: 10.13053/CyS-20-2-2334

Hernán Peraza-Vázquez, Aidé M. Torres-Huerta, Abelardo Flores-Vela188

ISSN 2007-9737

instances to improve the percentage of
convergences to the global optimum and improve
the average number of objective function
evaluations using parallelization strategies for
hyper-heuristics, e.g., GPU computing and multi-
core resources.

Acknowledgements

The first author acknowledges the facilities
provided by Instituto Politécnico Nacional for this
project.

Appendix A

Problem 1. (Process synthesis problem). This
problem has one real variable, one binary variable,
one non-linear inequality constraint, and one linear
inequality constraint. The problem was proposed in
[21]; it has also been solved in [9,10,14,34]:

{ }

2

min (,) 2

. . 1.25 0

1.6

0 1.6

0,1

f x y x y

s t x y

x y

x

y

= +

− − ≤

+ ≤

≤ ≤

∈

(16)

The global optimum is (x,y;f)=(0.5,1;2). There is
a local minimum at x=1.118 and y=0 with f=2.236.

Problem 2. (Process synthesis and design
problem). This problem has two real variables, one
binary variable, one non-linear equality constraint,
and one linear inequality constraint. It was
proposed in [21] and has also been studied in
[9, 35]:

{ }

1 2, 1 2

2

1 2

1

min (,) 2

. . 1.25 0

2exp() 0

0.5 1.4

0,1

f x x y y x x

s t x y

x x

x

y

= − + +

− − ≤

− − =

≤ ≤

∈

(17)

The global optimum is
1 2(, , :)x x y f = .

(1.375,0.375,1;2.124) .

Problem 2*. (Process synthesis and design
problem). Problem 2 can also be formulated
without the non-linear equality constraint with the
same global optimum:

{ }

1 1 1

1 1

1

min (,) 2 ln(/ 2),

. . ln(/ 2) 0,

0.5 1.4

0,1

f x y y x x

s t x x y

x

y

= − + −

− − + ≤

≤ ≤

∈

(18)

Problem 3. (Process flowsheeting problem). This
non-convex problem has two real variables, one
binary variable, one non-linear inequality
constraint, and two linear inequality constraints. It
was studied in [15] and has also been solved in
[9,10]:

{ }

2

1 2, 1

1 2

2

1

2

min (,) 0.7 5(0.5) 0.8,

. . exp(0.2) 0,

1.1 1.0,

1.2 0.2,

2.22554 1,

0,1

f x x y y x

s t x x

x y

x y

x

y

= − + − +

− − − − ≤

+ ≤ −

− ≤

− ≤ ≤

∈

(19)

The global optimum is
1 2(, , :)x x y f = (0.94194,

-2.1,1;1.07654).

Problem 4. (Two-reactor problem). This problem,
taken from [22], has seven real variables, two

Table 6. Constants of Problem 6

a1=85.334407 a5=80.512490 a9=9.30096100

a2=0.0056858 a6=0.0071317 a10=0.0047026

a3=0.0006262 a7=0.0029955 a11=0.0012547

a4=0.0022053 a8=0.0021813 a12=0.0019085

Table 7. Values of constants of
ijS and

ijT of Problem 7

ijS
ijt

2 3 4 8 20 8

4 6 3 16 4 4

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 173–193
doi: 10.13053/CyS-20-2-2334

Self-Adaptive Differential Evolution Hyper-Heuristic with Applications in Process Design 189

ISSN 2007-9737

binary variables, two non-linear variables, four
non-linear equality constraints, and four linear
inequality constraints. The objective is to select
one of two candidate reactors in order to minimize
the production cost. This problem has also been
solved in [9, 10, 11, 12].

{ }

1 1 2 1 2 1 2 1 2

1 2

1 1 1

2 2 2

1 2

1 2

1 1 2 2

1 1

2 2

1 1

2 2

1 2 1 2 1 2

1 2

min (, , , ,) 7.5 5.5 7 6 5

. . 1,

0.9[1 exp(0.5)] ,

0.8[1 exp(0.4)] ,

10,

,

10,

10 ,

10 ,

20 ,

20 ,

, , , , , 0

, 0,1

f x y y v v y y v v x

s t y y

z v x

z v x

z z

x x x

z y z y

v y

v y

x y

x y

x x z z v v

y y

= + + + +

+ =

= − −

= − −

+ =

+ =

+ =

≤

≤

≤

≤

≥

∈

(20)

The global optimum is
1 2 1 2(, , , , ;)x y y v v f =

(13.36227,1,0,3.514237,0;99.245209).

Problem 4*. (Two-reactor problem) Problem 4 can
be reformulated without equality constraints as
follows:

{ }

1 1 2 1 1 1 2

1

2

1

1

1 1

2 1

1

1

1 2

1

(, ,) 7.5 55(1) 7 6

1
min 50

0.8[1 exp(0.4)]

50
0.9[1 exp(0.5)]

. . 0.9[1 exp(0.5)] 2 0,

0.8[1 exp(0.4)] 2(1) 0.

10,

2 10(1)

, 0,

0,1

f y v v y y v v

y

v

y

v

s t v y

v y

v

v y

v v

y

= + − + + +

−
+

− −

− −

− − − ≤

− − − − ≤

≤

≤ −

≥

∈

(21)

The global optimum is the same as that in
Problem 4.

Problem 5. (Process synthesis problem). This
problem features non-linearities in both continuous
and binary variables, and it has seven degrees of
freedom. The problem was studied in [9,10,14,35].

2 2

1 2 3 1 2 3 4 1 2

2 2 2 2

3 4 1 2 3

1 2 3 1 2 3

2 2 2 2

3 1 2 3

1 1

2 2

3 3

4 1

2 2

2 2

2 2

3 3

2 2

2 3

(, , , , , ,) (1) (1)
min

(1) ln(1) (1) (2) (3)

. . 5,

5.5,

1.2,

1.8,

2.5,

1.2,

1.64,

4.25,

f x x x y y y y y y

y y x x x

st y y y x x x

y x x x

y x

y x

y x

y x

y x

y x

y x

= − + − +

− − + + − + − + −

+ + + + + ≤

+ + + ≤

+ ≤

+ ≤

+ ≤

+ ≤

+ ≤

+ ≤

+

{ }
1 2 3

1 2 3 4

4.64,

, , 0,

, , , 0,1

x x x

y y y y

≤

≥

∈

(22)

The global optimum is

1 2 3 1 2 3 4(, , , , , , ;)x x x y y y y f = (0.2,1.28062,1.95448,

1, 0,0,1; 3.557473).

Problem 6. (Process design problem). This is a
maximization problem studied in [9,10]. It has three
real variables, two integer variables, and three
inequality constraints:

{ }

2

1 2 3 1 2 1

1 3 1

1 2 2 3 3 1 2 4 1 3

2

5 6 2 3 7 1 2 8 1

9 10 1 3 11 1 1 12 1 2

1 2 3

1

2

(, , , ,) 5.37854
max

0.835689 37.29329 40792.141

. . 92,

90 20,

20 5,

27 , , 45,

78,...,102 ,int ,

33

f x x x y y x

y x y

s t a a y x a y x a x x

a a y x a y x a x

a a x x a y x a x x

x x x

y eger

y

= − −

− +

+ + − ≤

+ + − − ≤

+ + + − ≤

≤ ≤

∈

∈{ },..., 45 ,int ,eger

(23)

where
1 12a a− are constants, the values of which

are listed in Table 6.
The global optimum (for any combination of

2 2,x y is
1 3 1(, , ;) (27,27,78;32217.4)x x y f = .

Problem 7. (Multi-product batch plant (MPBP)).
This is a multi-product batch problem with M serial
processing stages, where fixed amounts

i
Q of N

products must be produced. The objective is to
determine for each stage j, the number of parallel

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 173–193
doi: 10.13053/CyS-20-2-2334

Hernán Peraza-Vázquez, Aidé M. Torres-Huerta, Abelardo Flores-Vela190

ISSN 2007-9737

units
jN together with the respective sizes

jV , and

for each product i, the corresponding batch sizes

i
B and cycle times

Li
T . The data are the horizon

time H, size factor
ijS , processing times

ijt of

product i in stage j, required production
i

Q ,and cost

coefficients
jα and

jβ . This problem, studied in

[9,10,17,21,35], has the following mathematical
formulation:

1

1

m in ,

. . ,

,

,

1 ,

,

,

,

i

i

M

j j

j

N
i L i

i i

j i jB

j L i j

u

j j

l u

j j j

l u

L i L i L i

l u

j j j

f N V

Q T
s t H

B

V S

N T t

N N

V V V

T T T

B B B

βα
=

=

=

≤

≥

≥

≤ ≤

≤ ≤

≤ ≤

≤ ≤

∑

∑

(24)

where for the specific problem considered, M=3,
N=2, H=6000,

jα =250,
jβ =0.6, u

jN =3, l

jV =250,

u

jV =2500,
1

Q =40000, and
2

Q =20000. The values

of l

LiT , u

LiT , l

jB , and u

jB are given by

(/)l u

Li ij jT max t N= , ()u

Li ijT max t= , l li
i Li

Q
B T

H
= ,

and m in , m in ()

u

ju

i i

ij

V
B Q

S

  
=  

  

.

The values of
ijS and

ijt [i=1-2 (rows); and j=1-

3 (columns)] are given in Table 7. The problem has
7 real variables, 3 integer variables, and 18
inequalities constraints. The global optimum is

1 2 3 1 2 3 1 2 1 2
(, , , , , , , , , ;)N N N V V V B B T T f =

(1,1,1,480,720,960,240,120,20,16;38499.8).
Various mutation strategies for each

exponential and binomial crossover strategies are
presented in Table 8.

References

1. Angira, R. & Babu, B. (2006). Optimization of
process synthesis and design problems: A modified
differential evolution approach. Chemical
Engineering Science, Vol. 61, No. 14, pp. 4707–
4721. DOI: 10.1016/j.ces.2006.03.004.

2. Babu, B.V. & Angira, R. (2006). Modified
differential evolution (MDE) for optimization of non-

Table 8. 18 DE – models (9 mutation strategies for each exponential and binomial crossover strategies)

Exponential

strategy
Binomial strategy Representation

1 DE/best/1/exp 10 DE/best/1/bin Vi,G = Xbest,G + F ∗ (Xr1,G − Xr2,G)

2 DE/rand/1/exp 11 DE/rand/1/bin Vi,G = Xr1,G + F ∗ (Xr2,G − Xr3,G)

3 DE/best/2/exp 12 DE/best/2/bin Vi,G = Xbest,G + F ∗ (Xr1,G + Xr2,G − Xr3,G − Xr4,G)

4 DE/rand/2/exp 13 DE/rand/2/bin Vi,G = Xr5,G + F ∗ (Xr1,G + Xr2,G − Xr3,G − Xr4,G)

5
DE/rand-to-
best/1/exp

14
DE/rand-to-
best/1/bin

Vi,G = Xi,G + F ∗ (Xbest,G − Xi,G)+ F ∗ (Xr1,G − Xr2,G)

6
DE/current-to-

rand/1/exp
15

DE/current-to-
rand/1/bin

Vi,G = Xi,G + K ∗ (Xr3,G − Xi,G)+ F ∗ (Xr1,G − Xr2,G)

7
DE/current-to-

best/1/exp
16

DE/current-to-
best/1/bin

Vi,G = Xi,G + K ∗ (Xbest,G − Xi,G)+ F ∗ (Xr1,G − Xr2,G)

8
DE/current-to-

best/2/exp
17

DE/current-to-
best/2/bin

Vi,G = Xi,G + K ∗ (Xbest,G − Xi,G)+ F ∗ (Xr1,G − Xr2,G)+ F ∗

(Xr3,G − Xr4,G)

9
DE/rand-to-
best/2/exp

18
DE/rand-to-
best/2/bin

Vi,G = Xi,G + F ∗ (Xbest,G − Xi,G)+ F ∗ (Xr1,G − Xr2,G)+ F ∗

(Xr3,G − Xr4,G)

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 173–193
doi: 10.13053/CyS-20-2-2334

Self-Adaptive Differential Evolution Hyper-Heuristic with Applications in Process Design 191

ISSN 2007-9737

linear chemical processes. Computers & Chemical
Engineering, Vol. 30, No. 6-7, pp. 989–1002. DOI:
10.1016/j.compchemeng.2005.12.020.

3. Boussad, I., Lepagnot, J., & Siarry, P. (2013). A
survey on optimization metaheuristics. Inf. Sci., Vol.
237, pp. 82–117. DOI: 10.1016/j.ins.2013.02.041.

4. Brest, J., Boskovic, B., Zamuda, A., Fister, I., &
Maucec, M.S. (2012). Self-adaptive differential
evolution algorithm with a small and varying
population size. IEEE Congress on Evolutionary
Computation, pp. 1–8. DOI: 10.1109/CEC.
2012.6252909.

5. Brest, J., Zamuda, A., & Boskovic, B. (2015).
Adaptation in the Differential Evolution. Fister Jr.I.
(Eds), Adaptation and Hybridization, in
computational Intelligence, Vol. 18 of Adaptation,
Learning, and Optimization. Springer International
Publishing, pp.55–68. DOI: 10.1007/978-3-319-
14400-9_2.

6. Bujok, P., Tvrdik, J., & Polakova, R. (2014).
Differential evolution with rotation-invariantmutation
and competing-strategies adaptation. IEEE
Congress on Evolutionary Computation (CEC), pp.
2253–2258. DOI: 10.1109/CEC.2014.6900626.

7. Burke, E.K., Gendreau, M., Hyde, M.R., Kendall,
G., Ochoa, G., O. zcan, E., & Qu, R. (2013). Hyper-
heuristics: a survey of the state of the art. JORS,
Vol. 64, No. 12, pp. 1695–1724.

8. Burke, E.K., Hyde, M.R., Kendall, G., &
Woodward, J., (2010). A Genetic Programming
Hyper-Heuristic Approach for Evolving 2-D Strip
Packing Heuristics. IEEE Trans. Evolutionary
Computation, Vol. 14, No. 6, pp. 942–958. DOI:
10.1109/TEVC.2010.2041061.

9. Cardoso, M., Salcedo, R., de Azevedo, S., &
Barbosa, D. (1997). A simulated annealing
approach to the solution of MINLP problems.
Computers & Chemical Engineering, Vol. 21, No.
12, pp. 1349–1364. DOI: 10.1016/S0098-
1354(97)00015-X.

10. Costa, L. & Oliveira, P. (2001). Evolutionary
algorithms approach to the solution of mixed integer
non-linear programming problems. Computers &
Chemical Engineering, Vol. 25, No. 2-3, pp. 257–
266. DOI: 10.1016/S0098-1354(00)00653-0.

11. Diwekar, U. & Rubin, E. (1993). Efficient handling
of the implicit constraints problem for the ASPEN
MINLP synthesizer. Industrial & engineering
chemistry research, Vol. 32, No. 9, pp. 2006–2011.
DOI: 10.1021/ie00021a023.

12. Diwekar, U.M., Grossmann, I.E., & Rubin, E.S.
(1992). An MINLP process synthesizer for a
sequential modular simulator. Industrial &

engineering chemistry research, Vol. 31, No. 1, pp.
313–322. DOI: 10.1021/ie00001a042.

13. Epitropakis, M.G., Tasoulis, D.K., Pavlidis, N.G.,
Plagianakos, V.P., & Vrahatis, M.N. (2011).
Enhancing Differential Evolution Utilizing Proximity-
Based Mutation Operators. IEEE Trans.
Evolutionary Computation, Vol. 15, No. 1, PP. 99–
119. DOI: 10.1109/TEVC.2010.2083670.

14. Floudas, C., Aggarwal, A., & Ciric, A. (1989).
Global optimum search for nonconvex NLP and
MINLP problems. Computers & Chemical
Engineering, Vol. 13, No. 10, pp. 1117–1132. DOI:
10.1016/0098-1354(89)87016-4.

15. Floudas, C.A. (1995). Nonlinear and Mixed-Integer
Optimization: Fundamentals and Applications.
Oxford University Press.

16. Goncalves, R., Kuk, J., Almeida, C., & Venske, S.
(2015). MOEA/D-HH: A Hyper-Heuristic for Multi-
objective Problems. Gaspar-Cunha, A., Henggeler
Antunes, C., Coello, C.C. (Eds.), Evolutionary
Multi-Criterion Optimization.

17. Grossmann, I.E. & Sargent, R.W. (1979).
Optimum design of multipurpose chemical plants.
Industrial & Engineering Chemistry Process Design
and Development, Vol. 18, No. 2, pp. 343–348. DOI.
10.1021/i260070a031.

18. Guo, S. & Yang, C. (2014). Enhancing Differential
Evolution Utilizing Eigenvector-Based Crossover
Operator. IEEE Transactions on Evolutionary
Computation, Vol. 19, No. 1, pp. 31-49. DOI:
10.1109/TEVC.2013.2297160.

19. Hu, Z., Bao, Y., & Xiong, T. (2014). Partial
opposition-based adaptive differential evolution
algorithms: Evaluation on the CEC 2014 benchmark
set for real-parameter optimization. IEEE Congress
on Evolutionary Computation (CEC), pp. 2259–
2265. DOI: 10.1109/CEC.2014.6900489.

20. Huang, V.L., Qin, A.K., & Suganthan, P.N. (2006).
Self-adaptive Differential Evolution Algorithm for
Constrained Real-Parameter Optimization. IEEE
Congress on evolutionary computation, pp. 17–24.
DOI: 10.1109/CEC.2006.1688311.

21. Kocis, G.R. & Grossmann, I.E. (1988). Global
optimization of nonconvex mixed-integer nonlinear
programming (MINLP) problems in process
synthesis. Industrial & Engineering Chemistry
Research, Vol. 27, No. 8, pp. 1407–1421. DOI:
10.1021/ie00080a013.

22. Kocis, G.R. & Grossmann, I.E. (1989). A modelling
and decomposition strategy for the MINLP
optimization of process flowsheets. Computers &
Chemical Engineering, Vol. 13, No. 7, pp. 797–819.
DOI: 10.1016/0098-1354(89)85053-7.

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 173–193
doi: 10.13053/CyS-20-2-2334

Hernán Peraza-Vázquez, Aidé M. Torres-Huerta, Abelardo Flores-Vela192

ISSN 2007-9737

23. Lampinen, J. (2002). Multi-Constrained Nonlinear
Optimization by the Differential Evolution Algorithm.
Roy, R., Koppen, M., Ovaska, S., Furuhashi, T.,
Hoffmann, F. (Eds.), Soft Computing and Industry,
Springer London, pp. 305–318. DOI: 10.1007/978-
1-4471-0123-9_26.

24. Mallipeddi, R. & Suganthan, P.N. (2010).
Differential evolution with ensemble of constraint
handling techniques for solving CEC 2010
benchmark problems. IEEE Congress on
Evolutionary Computation, pp. 1–8. DOI:
10.1109/CEC.2010.5586330.

25. Marshall, R.J., Johnston, M., & Zhang, M. (2014).
Hyper-heuristics, Grammatical Evolution and the
Capacitated Vehicle Routing Problem. Proceedings
of the Conference Companion on Genetic and
Evolutionary Computation Companion (GECCO)
Comp’14 ACM, New York, NY, USA, pp. 71–72.
DOI: 10.1145/2598394.2598407.

26. Mezura-Montes, E. & Coello, C.A.C. (2011).
Constraint handling in nature inspired numerical
optimization: Past, present and future. Swarm and
Evolutionary Computation, Vol. 1, No. 4, pp. 173–
194. DOI: 10.1016/j.swevo.2011.10.001.

27. Munawar, A., Wahib, M., Munetomo, M., &
Akama, K. (2011). Advanced genetic algorithm to
solve MINLP problems over GPU. IEEE Congress
on Evolutionary Computation, pp. 318–325. DOI:
10.1109/CEC.2011.5949635.

28. Ortiz-Bayliss, J.C., Terashima-Marin, H., Ozcan,
E., & Parkes, A.J. (2011). On the idea of evolving
decision matrix hyper-heuristics for solving
constraint satisfaction problems. Krasnogor, N.,
Lanzi, P.L. (Eds.), GECCO, ACM, pp. 255–256.
DOI: 10.1145/2001858.2002002.

29. Pillay, N. (2012). A study of evolutionary algorithm
selection hyper-heuristics for the one-dimensional
bin-packing problem. South African Computer
Journal, Vol. 48, pp. 31–40. DOI: 10.18489/
sacj.v48i1.87.

30. Pillay, N. (2012). Evolving hyper-heuristics for the
uncapacitated examination timetabling problem.
JORS, Vol. 63, No. 1, pp. 47–58. DOI:
10.1057/jors.2011.12

31. Qin, A.K., Huang, V.L., & Suganthan, P.N. (2009).
Differential Evolution Algorithm with Strategy
Adaptation for Global Numerical Optimization. IEEE
Trans. Evolutionary Computation, Vol. 13, No. 2, pp.
398–417. DOI: 10.1109/TEVC.
2008.927706.

32. Qin, A.K. & Suganthan, P.N. (2005). Self-adaptive
differential evolution algorithm for numerical
optimization. IEEE Congress on Evolutionary

Computation, pp. 1785–1791. DOI:
10.1109/CEC.2005.1554904.

33. Robertson, G., Geraili, A., Kelley, M., &
Romagnoli, J.A. (2014). An active specification
switching strategy that aids in solving nonlinear sets
and improves a VNS/TA hybrid optimization
methodology. Computers & Chemical Engineering,
Vol. 60, pp. 364–375. DOI: 10.1016/
j.compchemeng.2013.10.002.

34. Ryoo, H. & Sahinidis, N. (1995). Global
optimization of nonconvex NLPs and MINLPs with
applications in process design. Computers &
Chemical Engineering, Vol. 19, No. 5, pp. 551–566.
DOI: 10.1016/0098-1354(94)00097-2.

35. Salcedo, R. (1992). Solving nonconvex nonlinear
programming and mixed-integer nonlinear
programming problems with adaptive random
search. Industrial & Engineering Chemistry
Research, Vol. 31, No. 1, pp. 262–273. DOI:
10.1021/ie00001a037.

36. Schluter, M., Egea, J.A., & Banga, J.R. (2009).
Extended ant colony optimization for nonconvex
mixed integer nonlinear programming. Computers &
OR, Vol. 36, No. 7, pp. 2217–2229. DOI:
10.1016/j.cor.2008.08.015.

37. Storn, R. & Price, K. (1995). Differential Evolution-
A simple and efficient adaptive scheme for global
optimization over continuous spaces.

38. Storn, R. & Price, K. (1996). Minimizing the Real
Functions of the ICEC’96 Contest by Differential
Evolution. International Conference on Evolutionary
Computation, pp. 842–844.

39. Takahama, T. & Sakai, S. (2012). Efficient
Constrained Optimization by the Constrained Rank-
Based Differential Evolution. IEEE Congress on
Evolutionary Computation, pp. 1–8. DOI:
10.1109/CEC.2010.5586545.

40. Takahama, T. & Sakai, S. (2013). Efficient
constrained optimization by the constrained
differential evolution with rough approximation using
kernel regression. IEEE Congress on Evolutionary
Computation, pp. 1334–1341. DOI:
10.1109/CEC.2013.6557719.

41. Takahama, T., Sakai, S., & Iwane, N. (2005).
Constrained Optimization by the epsilon
Constrained Hybrid Algorithm of Particle Swarm
Optimization and Genetic Algorithm. Zhang, S.,
Jarvis, R. (Eds.), Australian Conference on Artificial
Intelligence, Vol. 3809 of Lecture Notes in Computer
Science, Springer, pp. 389–400. DOI: 10.1007/
11589990_41.

42. Tanabe, R. & Fukunaga, A. (2013). Evaluating the
performance of SHADE on CEC 2013 benchmark
problems. IEEE Congress on Evolutionary

Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 173–193
doi: 10.13053/CyS-20-2-2334

Self-Adaptive Differential Evolution Hyper-Heuristic with Applications in Process Design 193

ISSN 2007-9737

Computation, pp. 1952–1959. DOI: 10.1109/CEC.
2013.6557798.

43. Tinoco, J.C.V. & Coello, C.A.C. (2012). hypDE: A
Hyper-Heuristic Based on Differential Evolution for
Solving Constrained Optimization Problems.
Schutze, O., Coello, C.A.C., Tantar, A.-A., Tantar,
E., Bouvry, P., Moral, P.D., & Legrand, P. (Eds.),
EVOLVE, Vol. 175 of Advances in Intelligent
Systems and Computing, Springer, pp. 267–282.
DOI: 10.1007/978-3-642-31519-0_17.

44. Wolpert, D.H. & Macready, W.G. (1997). No Free
Lunch Theorems for Optimization. IEEE
Transactions on Evolutionary Computation, Vol. 1,
No. 1, pp. 67–82. DOI: 10.1109/4235.585893.

45. Yang, Z., Tang, K., & Yao, X. (2008). Self-adaptive
differential evolution with neighborhood search.
IEEE Congress on Evolutionary Computation, pp.
1110–1116. DOI: 10.1109/CEC.2008.4630935.

46. Yang, Z., Yao, X., & He, J. (2008). Making a
Difference to Differential Evolution. Siarry, P. &
Michalewicz, Z. (Eds.), Advances in Metaheuristics
for Hard Optimization, Natural Computing Series,
Springer, pp. 397–414. DOI: 10.1007/978-3-540-
72960-0_19.

47. Yiqing, L., Xigang, Y., & Yongjian, L. (2007). An
improved PSO algorithm for solving nonconvex
NLP/MINLP problems with equality constraints.
Computers & Chemical Engineering, Vol. 31, No. 3,
pp. 153–162. DOI: 10.1016/j.compchemeng.
2006.05.016.

48. Huang, F., Wang, L., & He, Q., (2007). An effective
co-evolutionary differential evolution for constrained
optimization. Applied Mathematics and
Computation, Vol. 186, No. 1, pp. 340–356. DOI:
10.1016/j.amc.2006.07.105.

49. Tvrdík, J. (2008). Adaptive differential evolution
and exponential crossover. Proceedings of the
International Multiconference on Computer Science

and Information Technology (IMCSIT), pp. 927–
931.

Hernán Peraza-Vázquez received the B.Sc
degree in Computer Science from the Faculty of
Mathematics of the University of Yucatán, Mexico,
and the M.Sc. degree in Computer Science from
the ITCM, Tamaulipas, Mexico. Currently, M.Sc.
Peraza is a Ph.D. candidate in Advanced
Technology at CICATA IPN Altamira.

Aidé M. Torres-Huerta received her Ph.D. in
Metallurgy and Materials from ESIQIE – IPN, in
2004. Currently Dra. Torres is a member of the
Mexican National System of Researchers (SNI)
level II. Her areas of interests are analysis of
degradation process, synthesis and
characterization of nanostructures, simulation and
optimization of process in the field of chemical
engineering. She has co-authored of more than
fifty scientific papers and book chapters in these
fields.

Abelardo Flores-Vela received his Ph.D. in
Organic Chemistry from CINVESTAV - IPN, in
1988. Currently Dr. Flores is a member of the
Mexican National System of Researchers (SNI)
level I and is Head of the Mexican Center of
Cleaner Production (CMP+L IPN Mexico). His
areas of interests are cleaner industrial production,
processes synthesis and design optimization in
various engineering and industrial fields,
highlighting the synthesis and characterization of
polymers.

Article received on 18/12/2015; accepted on 09/02/2016.
Corresponding author is Hernán Peraza-Vázquez.

