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Abstract. This paper presents an edge-based parallel
code for the data computation that arises when
applying one of the most popular electromagnetic
methods in geophysics, namely, the controlled-source
electromagnetic method (CSEM). The computational
implementation is based on the linear Edge Finite
Element Method in 3D isotropic domains because it
has the ability to eliminate spurious solutions and is
claimed to yield accurate results. The framework
structure is able to exploit the embarrassingly-parallel
tasks and the advantages of the geometric flexibility
as well as to work with three different orientations
for the dipole, or excitation source, on unstructured
tetrahedral meshes in order to represent complex
geological bodies through a local refinement technique.
We demonstrate the performance and accuracy of our
tool on the Marenostrum supercomputer (Barcelona
Supercomputing Center) through scaling tests and
canonical tests, respectively.
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1 Introduction

In the geophysics forward modeling context
around the oil wells, the electric resistivity is a
parameter that plays an important role. The
Marine Controlled-Source Electromagnetic Method
(CSEM) has emerged as a useful exploration
technique for mapping offshore hydrocarbon
reservoirs and characterizing gas hydrates bearing
shallow sediments [4]. In a standard configuration,
the Marine CSEM uses a deep-towed horizontal
electric dipole (HED) to transmit electromagnetic
signals into the seawater and sediments below the
mudline [23].

An edge-based parallel code for numerical
simulation of marine CSEM surveys in 3D
isotropic structures is presented. In order to
represent complex bodies with high fidelity we used
unstructured tetrahedral meshes. The heart of our
computational solution is based on the Edge Finite
Element Method (EFEM) because it has the ability
to eliminate spurious solutions and is claimed to
yield accurate results. The framework structure is
able to exploit the embarrassingly-parallel tasks,
or tasks where there is no dependency (or
communication) between those parallel tasks, and
the advantages of the geometric flexibility as well
as to work with three different orientations for the
dipole (HED).

Marine CSEM response for a single HED at
a single frequency requires a forward modeling
whose computing can easily overwhelm single core
and modest multi-core computing resources [17].
In fact, the actual execution of real-life scale sim-
ulations of electromagnetic geophysical problems
requires using HPC because typical executions in-
volve over 100,000 realizations, each dealing with
several millions of degrees of freedom. To alleviate
these issues, our parallel work-flow is focused
on such edge tasks as the edges-elements array
connectivity, the edge data computation (length,
unit vector, local/global edge direction), physical
properties at each edge (electric resistivity, primary
electric field), and the electric field interpolation.

Regarding the computational burden, only six
unknowns are required for each element (Nédélec
tetrahedral elements of lower order). It is worth
nothing that the linear vectorial Lagrange elements
or any other consistently linear 3D-vector functions
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over a tetrahedral carry twelve unknowns, three at
each of its four vertices. However, the state of
the art is marked by a relative scarcity of robust
edge-based codes to simulate these problems.
This may be attributed to the fact that not all
numerical approaches are well-suited for the latest
computing architectures. For that reason, the
software stack presented here was designed taking
into account an architecture-aware approach.

We structure the paper as follows: in Section
2 we describe the background theory of marine
CSEM. In Section 3 we present the formulation of
electromagnetic (EM) field equations in isotropic
domains. Parallel framework is described in
Section 4. The performance and efficiency of the
code are investigated using a 3D canonical model
in Section 5. All experiments were performed on
the Marenostrum supercomputer with two-8 cores
Intel Xeon processors E52670 at 2.6 GHz per
node. The last section is dedicated to conclusions.

2 Marine Controlled-source
Electromagnetic Method

The Marine Controlled-source Electromagnetic
Methods (CSEM) are a type of geophysical
strategies to study the subsurface electrical
conductivity distribution with an ample range of
applications. CSEM techniques can be divided
into two groups depending on the domain in which
the collected data is interpreted: time domains
(TDEM) or frequency domains (FDEM). In the case
of oil prospecting, marine CSEM surveys are done
predominantly using FDEM [2, 14].

In the marine CSEM, also referred to as
seabed logging [12], a deep-towed electric dipole
transmitter is used to produce a low frequency
EM signal (primary field) which interacts with the
electrically conductive Earth and induces eddy
currents that become sources of a new EM signal
(secondary field). The two fields, the primary one
and the secondary one, add up to a resultant field,
which is measured by remote receivers placed
on the seabed. Since the secondary field at
low frequencies, for which displacement currents
are negligible, depends primarily on the electric
conductivity distribution of the ground, it is possible
to detect thin resistive layers beneath the seabed

by studying the received signal [15]. Operating
frequencies of transmitters in CSEM may range
between 0.1 and 10 Hz, and the choice depends
on the model dimensions. In most studies, typical
frequencies vary from 0.25 to 1 Hz, which means
that for source-receiver offsets of 10-12 km, the
penetration depth of the method can extend to
several kilometers below the seabed [1, 4, 6, 15].

The disadvantage of the marine CSEM is its
relatively low resolution compared to seismic
imaging. Therefore, the marine CSEM is almost
always used in conjunction with seismic surveying
as the latter helps to constrain the resistivity
model. Figure 1 depicts the marine CSEM
which is nowadays a well-known geophysical
prospecting tool in the offshore environment and
a commonplace in industry; examples of that can
be found in [9, 10, 18, 14, 22].

The Marine CSEM is a viable and cost-effective
oil exploration technique. When integrated with
other geophysics data, mainly, seismic information,
CSEM surveys are promising for adding value in
shallow/deep waters. The outcomes and analysis
of modeling with CSEM produce a more robust
understanding of the prospection.

3 Edge Finite Element Approximation

The 3D EM modeling requires solving diffusive
Maxwell equations in a discretized form. The
most popular numerical methods for EM forward
modeling are Finite Difference (FD), Finite Element
Method (FEM), and Integral Equation (IE). Among
them, the FEM is more suitable for modeling
EM response in complex geometries. However,
for accurate computations, the divergence free
condition for the EM fields in the source free
regions needs to be addressed by an additional
penalty term, commonly called Gauge condition, to
alleviate possible spurious solutions [13, 15].

As a result, in FEM the use of Edge-based
FEM (EFEM), also called Nédélec elements,
has become very popular for solving EM fields
problems. In fact, EFEM is often said to be
a cure for many difficulties that are encountered
(particularly eliminating spurious solutions) and is
claimed to yield accurate results [13, 16, 21]. The
basis functions of Nédélec elements are vectorial
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Fig. 1. Marine CSEM

functions defined along the element edges. The
tangential continuity of either electric or magnetic
field is imposed automatically on the element
interfaces while the normal components are still
can be discontinuous [13]. As a result, EFEM has
the capability to model the frequency/time domain
EM fields in inhomogeneous complex bodies at
any resistivities contrasts and at any survey types.
Therefore, our code is based on the Nédélec
elements formulation by [7, 8].

In geophysical applications, the low frequency
EM field satisfies the following Maxwell’s equa-
tions:

∇× E = iωµ0
H, (1)

∇×H = Js + σE, (2)

where we adopt the harmonic time dependence
e−iωt , ω is the angular frequency, µ0 is the free
space magnetic permeability, Js is the induced
current in the conductive earth, and σ is the
background conductivity. Actually, our formulation
works for general isotropic domains.

In EM field formulations with FEM and EFEM
and in order to capture the rapid change of the
primary current, the anomalous formulations are
desirable [5]. In the anomalous field formulation

the total field is decomposed into primary field
(background) and secondary field [24]:

E = Ep + Es, (3)
σ = σp + ∆σ. (4)

Based on this formulation, one can derive the
following equation for the secondary electric field:

∇×∇× Es − iωµσEs = iωµ∆σEp. (5)

In 5, the source term is the primary electric field,
which is much smoother than the source current.
In this sense, our formulation is able to work with
three different orientations for the HED, which are
given by [8].

Therefore, the primary field is calculated
analytically using a horizontal layered-earth model
and the secondary field is discretized by linear
Nédélec elements. For this purpose, we first
replace the following continuous condition:

E ∈ H(curl; Ω) : ∇× Ep = ψ, (6)

fixing the normal component (n̂) of ∇ × E in each
point of the surface with the discrete condition:
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∫
Epi

(∇× Ep) · n̂dS =

∫
Epi

ψ · n̂dS ∀Epi ∈ Ω,

(7)

stating that 6 is satisfied on average on each face
element of Ω. We end up in all cases with one
or several relations linking the integral of ∇ × Ep
on a surface to the integral of a given function ψ.
Applying Green’s theorem and making use of the
fact that the line integral of Nédélec elements is
one on edge and zero on the others [13], we find:∫

EΩ

(∇× Ep) · n̂dS =

∫
∂Ω

Ep · tdl (8)

=
∑
i

∫
ri

Ep · tdl (9)

=
∑
i

±di, (10)

where ri are the edges of the boundary ∂Ω and di
is the associated dofs. Finally, the following system
of equations is obtained:

d0,i +
∑
i

cijdi = 0, (11)

where the coefficients cij = ±1 depending on the
relative orientation of the edges and the contours
(n̂), and the independent terms d0,i are the integral
of the electric field E through a face or a surface. In
order to improve the accuracy, we used Gaussian
quadrature points of different order to evaluate the
integral (10).

Homogeneous Dirichlet boundary conditions are
applied to the outer boundaries of the model.
The EFEM discretization results in a linear
equation system, which is solved using the iterative
Quasi Minimal Residual Method (QMR) and the
Biconjugate gradient Method (BCG) [3].

4 Framework

Despite the popularity of the EFEM, there
are few implementations of it. Furthermore,
the 3D modeling of geophysical EM problems
can easily overwhelm single core and modest
multi-core computing resources [17]. In fact,

the actual execution of real-life scale simulations
of electromagnetic geophysical problems requires
using HPC because typical executions involve over
100,000 realizations, each dealing with several
millions of degrees of freedom. To alleviate these
issues, our parallel framework is able to exploit the
embarrassingly-parallel tasks, or tasks where there
is no dependency (or communication) between
those parallel tasks.

Fig. 2. Software stack. Green dashed: pre-processing
stage, red dashed: forward modeling, blue dashed: post-
processing stage

Figure 2 shows the software stack of our
solution. Specific details and features of each
module are as follows.

1. Mesh. This module reads geometric and
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topological properties of an FEM mesh: how
the elements are connected and where their
nodes are located. Our implementation is able
to read as input nodal-based meshes in three
different formats: Netgen, Gambit, and Neutral
format [7].

2. Mesh refinement. To increase the solution
accuracy, our framework uses a uniform
refinement. In tetrahedral meshes, this
approach results in 8 times more tetrahedral
elements.

3. Counterclockwise numbering. In order to get
a consistent notation in the whole domain, this
module sets the node numbering within each
element in a counterclockwise direction.

4. Edges computation. In EFEM formulations,
the unknowns are associated to edges instead
of the nodes. Because most of the
FEM codes were developed for node-based
formulations, it is necessary to develop a
code to convert node numbering into edge
numbering. Therefore, this module computes
a matrix to represent every element by its
edges and other matrix to describe every edge
by its two nodes with dimensions (6× TT ) and
(2×TE), respectively, where TT is the number
of elements and TE is the total number of
edges. These matrices define the global/local
edge direction in the mesh [7, 13].

5. Primary field computation. This module
computes the primary field on each edge ac-
cording to the formulation in [8]. Furthermore,
this module computes others edge values
such as edge length and unit edge vector,
which are critical for the interpolation stage,
through the vector basis functions defined
in [7, 8].

6. Sigma edges computation. This module
computes the sigma value for each edge. In
the formulation of our geophysical application,
this operation can be summarized by the
following expression:

SEi =

∑N
j=1 S

e
j

N
,

where SEi is the sigma value of i-th edge, N
is the number of elements that share the i-th
edge, and Sej is the prescribed value of sigma
for the j-th element in the mesh.

7. Assembly. This module assembles the system
matrix whose general form is Ax = b. In
electromagnetic simulations, and particularly
in geophysical prospecting through EM such
as CSEM, the matrix A is large, sparse,
complex, and symmetric; the vector x contains
the unknowns coefficients, and the vector
b stores the contributions of the primary
field. To exploit special properties of EFEM
matrices, the parallel assembly process uses
a Compressed Row Storage (CRS).

8. Boundary conditions (BC). Before the system
of equations is ready to be solved, the
imposition of BC is needed. Actually, our code
works with Dirichlet BC and their imposition is
accomplished by setting [13]

bind(i) = v(i),

Aind(i),ind(i) = 1,

Aind(i),j = 0,

bj = bj −Aj,ind(i) · v(i),

Aj,ind(i) = 0,

for j 6= ind(i), where ind(i) is a vector
that stores the global edge indexes residing
on the boundaries, and v(i) is a vector that
contains the prescribed values of x. Different
techniques are described in [19].

9. Solver. In FEM or EFEM applications, the
solvers are frequently iterative, but sometimes
one may also want to use direct solvers.
This module is able to work with two iterative
solvers: BCG and QMR. Since the framework
is based on an abstract data structure, it is
possible to use other solvers with little effort.

10. Interpolation. This module computes the
electric response for an array of receivers.
The interpolation process uses the vectorial
functions defined in [7, 8] because these
automatically enforce the divergence free
conditions for EM fields. Moreover, the
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continuity of the tangential EM is satisfied
automatically.

11. Output. Once a solution of EFEM problem on
a given mesh has been obtained, it should
be post-processed by using a visualization
program. Our framework does not do the
visualization by itself, but it generates output
files (vtk format) with the final results. It also
gives timing values in order to evaluate the
performance.

Table 1. Main physical parameters

Parameter Value

Domain dimensions (xyz-km) 3.5, 2.5, 3.200
Sea’s electric resistivity 0.3 σ/m
Sediments electric resistivity 1 σ/m
Oil/gas electric resistivity 100 σ/m
Background electric resistivity 0.3 σ/m
Dipole position (xyz-km) 1.75, 1.25, .95
Dipole current 1 C/m
Dipole frequency .1 ω

In order to meet the high computational
cost of EFEM for EM fields in geophysical
applications, actually our code is based on a
shared memory parallel model defined by the
OpenMP standard [20]. OpenMP has been widely
adopted in the scientific computing community, and
most vendors support its Application Programming
Interface (API) in their compiler suites. OpenMP
offers not only parallel programs portability but,
since it is based on directives, it also represents a
simple way to maintain a single code for the serial
and parallel version of an application.

To exploit the advantages of geometric flexibility,
our parallel approach is focused on embarrassingly
parallel tasks, or tasks where there is no
dependency (or communication) between those
parallel tasks. Namely, the minimum level of
computing work is related to the edges in the mesh.
Examples of embarrassingly parallel modules are
computation of edges, primary field computation,
and sigma edges computation. Another parallel
task is interpolation, the only difference lies in

the parallelism level because it works over the
number of receivers (points) instead of the number
of edges.

A detailed description of the main algorithms of
our code can be found in [8].

5 Results

To verify the accuracy and performance of our
modeling, we used the model defined in Figure 3.
Our code is able to work with three different dipole’s
orientations (x-oriented, y-oriented and z-oriented)
according to the formulation in [7, 8]. This source
transmits a carefully designed low-frequency EM
signal into the subsurface. The main physical
parameters for our test are described in Table 1.

The experiments were performed on the
Marenostrum supercomputer with two-8 cores Intel
Xeon processors E52670 at 2.6 GHz per node. To
increase the solution accuracy, our implementation
used a non-uniform refinement.

Fig. 3. Layer model (2D slice)

Table 2 summarizes the results of our tests. For
each experiment, the problem size stays fixed but
the number of processing units is increased (the
strong scaling approach). The parallel efficiency is
given by χ = S/(n ·Sn) ·100, where S is the amount
of time to complete a work unit with 1 processing
unit, n is the number of processing units, and Sn
is the amount of time to complete the same unit of
work with n processing units. In Table 2 the time is
given in seconds.

From the results in Table 2 it is easy to see that in
our experiments the minimum execution time is not
limited by the communication overhead, as a result,
we achieved a quasi linear speed-up. The latter
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Table 2. Timers: summary of results

Test 1: 1,330 elements, 1,986 edges

# processors 1 2 4 8 16 32 64

Time 118.756 60.2278 30.7845 15.7147 7.8802 3.9740 2.0671

Parallel efficiency % 100.00 98.58 96.44 94.46 94.18 93.38 89.76

Test 2: 10,640 elements, 14,101 edges

# processors 1 2 4 8 16 32 64

Time 1,352.21 685.12 345.47 177.45 90.74 46.45 23.76

Parallel efficiency % 100.00 98.69 97.85 95.25 93.13 90.97 88.92

Test 3: 85,120 elements, 105,958 edges

# processors 1 2 4 8 16 32 64

Time 5,530.29 2,864.23 1,440.25 731.26 368.27 191.17 97.83

Parallel efficiency % 100.00 96.54 95.98 94.53 93.84 90.40 88.32

Test 4: 680,960 elements, 820,860 edges

# processors 1 2 4 8 16 32 64

Time 45,512.17 23,694.04 11,978.32 6,062.24 3072.54 1,595.36 807.23

Parallel efficiency % 100 96.04 94.98 93.84 92.57 89.14 88.09

Test 5: 5,447,680 elements, 6,460,856 edges

# processors 1 2 4 8 16 32 64

Time 568,946.1 297,764.8 151,024.4 76,148.2 38,696.2 19,843.4 10,293.7

Parallel efficiency % 100 95.53 94.18 93.39 91.89 89.59 86.36

issue is critical because if the computation time in
each processor is smaller than the communication
time, the speed-up can saturate. Table 2 also
shows the total number of tetrahedral elements
(TT ) and the total number of edges (TE), which
is a measure of required storage space during
run-time. TT and TE were determined by
successively refined meshes.

In order to validate our numerical formulation,
the components of Ee obtained from equation 3
versus components of Eh obtained by EFEM are
shown in Figure 4. For the sake of clarity, Figure 4
only includes the results of Test 5 for an x-directed
dipole. It is easy to see that our approximation
converges to the desired solution when the number
of dofs grows (TT ≈ 5.5 with TE ≈ 6.5 for Test 5).

In Table 3 we show the errors for the components
of Eh. Following the ideas of [11], the errors of

the numerical solution Eh with respect to the exact
solution Ee obtained from equation 5 are measured
in L1-norm, L2-norm, and L∞-norm.

Errors in Table 3 demonstrate that edge ele-
ments of lower-order reach the desired accuracy
when the number of edges is increased (TE or dofs
in the mesh).

6 Conclusions

The electromagnetic methods are an estab-
lished tool in geophysics, finding application in
many areas such as hydrocarbon and mineral
exploration, reservoir monitoring, CO2 storage
characterization, geothermal reservoir imaging,
and many others. In particular, the marine CSEM
has become an important technique for reducing
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Fig. 4. Total electric field components. Comparison between solution Eh (edge elements) from Test 5 and the exact
solution Ee (analytic)

Table 3. Errors in L1-norm, L2-norm, and L∞-norm for solution Eh with respect to the exact solution Ee

Test Exyz L1-norm L2-norm L∞-norm

1
x 2.317 · 10−8 7.277 · 10−8 4.841 · 10−8

y 1.783 · 10−8 6.335 · 10−7 3.633 · 10−8

z 1.620 · 10−7 6.883 · 10−8 3.475 · 10−8

2
x 5.671 · 10−11 2.171 · 10−11 3.128 · 10−11

y 7.192 · 10−11 1.981 · 10−11 2.881 · 10−11

z 7.592 · 10−11 2.018 · 10−11 2.917 · 10−11

3
x 5.551 · 10−14 1.363 · 10−13 5.581 · 10−14

y 3.599 · 10−14 9.131 · 10−14 3.691 · 10−14

z 2.805 · 10−13 7.785 · 10−14 5.525 · 10−14

4
x 1.930 · 10−18 1.192 · 10−18 2.906 · 10−18

y 2.683 · 10−18 6.863 · 10−18 1.731 · 10−18

z 2.678 · 10−18 6.527 · 10−17 2.337 · 10−17

5
x 1.812 · 10−22 4.284 · 10−22 1.786 · 10−22

y 5.623 · 10−23 1.275 · 10−23 5.032 · 10−23

z 1.400 · 10−22 1.275 · 10−22 9.118 · 10−22
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ambiguities in data interpretation in hydrocarbon
exploration.

Considering the societal value of exploration
geophysics, we presented an edge-based parallel
code for the forward modeling of the marine CSEM
in 3D isotropic structures. The framework is based
on unstructured tetrahedral meshes because these
have the ability to represent complex bodies with
high fidelity. The heart of our computational
solution is based on EFEM because it can
eliminate spurious solutions and is claimed to yield
accurate results.

Recent trends in parallel computing techniques
were investigated for their use in mitigating
the computational overburden associated with
the electromagnetic modeling. Therefore, our
parallel work-flow is focused on such edge
tasks as edges-elements array connectivity, edge
data computation (length, unit vector, local/global
edge direction), physical properties at each edge
(electric resistivity, primary electric field), matrix
assembly, and the electric field interpolation. As
a result, we obtained a parallel framework whose
main modules are flexible and simple.

Concerning the computational burden, only six
unknowns are required for each element (Nédélec
tetrahedral elements of lower order). It is worth
noting that the linear vectorial Lagrange elements
or any other consistently linear 3D-vector functions
over a tetrahedral carry twelve unknowns, three at
each of its four vertices. In addition, the software
stack presented here was designed taking into
account an architecture-aware approach.

The efficiency and accuracy of the code were
evaluated through scalability tests (strong scaling)
and error-norms for different mesh sizes. The
results show not only a good parallel efficiency of
our code but also an acceptable accuracy in the
numerical approximation.

All the experiments were performed on the
Marenostrum supercomputer at the Barcelona
Supercomputing Center (www.bsc.es).

Future work will be aimed at the implementation
of the anisotropy cases and at application of
MPI communications which are needed to use
distributed memory platforms.
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