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Abstract. In this paper, a continuous-time consensus
algorithm with guaranteed finite-time convergence is
proposed. Using homogeneity theory, finite-time
consensus is proved for fixed topologies. The proposed
algorithm is computationally simpler than other reported
finite-time consensus algorithms, which is an important
feature in scenarios of energy efficient nodes with
limited computing resources such as sensor networks.
Additionally, the proposed approach is compared on
simulations with existing consensus algorithms, namely,
the standard asymptotic consensus algorithm and
the finite-time and fixed-time convergent algorithms,
showing, in cycle graph topology, better robustness
features on the convergence with respect to the network
growth with less control effort. Indeed, the convergence
time of other previously proposed consensus algorithms
grows faster as the network grows than the one herein
proposed whereas the control effort of the proposed
algorithm is lower.

Keywords. Finite-time consensus, multi-agent systems,
multiple interacting autonomous agents, self-organizing
systems.

1 Introduction

Motivated by the social insects’ ability to self-
organize and mutually cooperate relying only on
neighbor-to-neighbor communication, there has
been an increasing interest during the last decade
in the distributed algorithms obtaining a desired
global behavior from local interactions. One of
such algorithms is the consensus algorithm [15],
which allows a swarm to agree on a common value
in a distributed fashion (see e.g. [8,9,17,18,21,27]),
using only communication among its neighbors.
One of the possible applications of the consensus
that achieved recently a special interest is the
application to sensor networks [8]. In this scenario,
of energy efficient nodes with limited computing
resources, computationally simple algorithms for
self-organization are of paramount importance.

It has been shown that if the underlying graph
topology is strongly connected then consensus
can be achieved [20]. Moreover, if the graph is
balanced (identical number of in-neighbors and
out-neighbors), then asymptotic convergence to
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the average of the swarm’s initial value is obtained
by the standard consensus algorithm [20]. For
graphs that are not balanced the algorithm can
be modified to still achieve average consensus
whenever each node has knowledge on the
number of its out-neighbors [4], and compensates
accordingly using a surplus variable for each node.

These results have been extended, using
nonlinear theory and scalar functions used in
fixed-time and finite-time stability, to achieve
finite-time [11, 25, 26, 28, 30], and fixed-time
convergent consensus [31, 32], (i.e. there exists
a bound for the convergence time independent
of the initial conditions [10, 22]). However, as
we illustrate later, the convergence time does not
uniquely depend on the initial conditions but mainly
on the network topology, where the convergence
time grows as the algebraic connectivity of the
graph decreases.

In this paper, a finite-time convergence con-
sensus algorithm for fixed networks is proposed.
As a matter of fact, it was claimed in [28], that
the consensus algorithm analyzed in the present
paper could later on be justified as a consensus
algorithm. Nevertheless, neither full rigorous proof,
nor its sketch were provided. It is the aim of
the paper to formally prove that such algorithm is
a consensus algorithm for fixed networks, which
is achieved using homogeneity theory [7, 14, 23].
The hereinafter proposed algorithm is shown to
be computationally simpler than other finite-time
consensus algorithms ( [11, 16, 28, 31]). Namely,
in the proposed approach, each node requires a
single computation of the nonlinear term, while in (
[11,16,28,31]), the number of computations of the
nonlinear term in each node equals the number of
nodes adjacent to it.

Moreover, we illustrate through simulations
that the proposed algorithm shows interesting
robustness properties, in networks with cycle graph
topology, with respect to the network growth
with less control effort, namely that it shows
more robustness to the network growth than
previously proposed consensus algorithms. In
particular, we compare our results with other
consensus algorithms, namely, the asymptotic
consensus [20], finite-time consensus [28] and
fixed-time convergent consensus [31] algorithms.

The paper is organized as follows. In Section 2,
we present the mathematical preliminaries toget-
her with some previously proposed consensus
algorithms. In Section 3, the main results are
presented, followed by an illustrative example in
Section 4. Finally, in Section 5, the conclusions
and the future work are presented.

2 Preliminaries

2.1 Finite-Time Stability

We recall in this section some results on
homogeneity theory [7, 14, 23] and finite-time
stability [1, 2], that will be used later on. Further
facts on finite time stability can be found in [2, 13,
19,24].

Definition 1. [1] Consider the nonlinear system:

ẋ = f(x) with f(0) = 0. (1)

Here, f ∈ C1(D \ {0} ∩ C0(D)) where D ⊂ Rn
is some region in Rn, i.e. an open and connected
subset of Rn. Let ψ(t,x0) and Tm(x0) ∈ (0,∞) be
such that ∀t ∈ [0,Tm(x0)),∀x0 ∈ D \ {0} such that:

dψ(t, x0)

dt
= f(ψ(t,x0)), ψ(0,x0) = x0,

where Tm(x0) is a maximal possible real number
with the above property, or plus infinity, such
Tm(x0) and ψ(t,x0) always exist and are unique
by f ∈ C1(Rn \ {0}).

The origin is called as finite-time convergent for
(1) if there exists an open neighborhood N ⊆ D
of the origin that is forward invariant with respect
to (1) and a function T : N \ {0} → (0,∞),
called the settling-time function, such that for every
x0 ∈ N \ {0}, the solution ψ(t,x0) is defined on
[0,T (x0)), ψ(t,x0) ∈ N \ {0} for all t ∈ [0,T (x0))
and limt→T (x0) ψ(t,x0) = 0. Furthermore, it is
called finite-time stable if it is stable and finite-time
convergent, and globally finite-time stable if it is
finite-time stable with D = N = Rn.

Note that by the uniqueness of ψ(t,x0), it follows
that T (x0) = min{t ∈ R+ : φ(t,x0) = 0} for all
x0 ∈ N \ {0}.
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Definition 2. A function V : Rn → R is
homogeneous of degree l with respect to the
“standard dilation”:

∆λ(x1, . . . ,xn) = (λx1, . . . ,λxn), (2)

if and only if:

V (λx1, . . . ,λxn) = λlV (x1, . . . ,xn),

for all λ > 0.

Definition 3. A vector field f(x), x ∈ Rn
is homogeneous of degree q with respect to
the standard dilation (2) if and only if the i-th
component fi is homogeneous of degree q +
1 with respect to (2), i.e. fi(λx1, . . . ,λxn) =
λq+1f(x1, . . . ,xn), λ > 0, i = 1, . . . ,n.

Theorem 4. [2, Theorem 7.1] Let f(x), x ∈ Rn
be a homogeneous vector field of degree q with
respect to (2). Then the origin of (1) is finite-time
stable if and only if it is asymptotically stable and
q < 0.

Lemma 5. [2] The right-hand side of:

ẏ = −kbyeα, α ∈ (0, 1), (3)

where byeα = |y|α sign(y), is homogeneous of
degree α − 1 with respect to the standard dilation.
Thus, (3) is finite-time stable and its settling-time is
given by T (y0) = 1

k(1−α) |y0|
1−α.

Lemma 6. [29, 32] Consider the
non-homogeneous system:

ẏ = −k1bye2−p/q − k2byep/q, (4)

then the origin of (4) is finite-time stable and
uniformly convergent (i.e. the bound on the
convergence time is independent of the initial
conditions) and its settling-time is bounded by T ≤

qπ
2
√
k1k2(q−p)

.

2.2 Graph Theory

The following notation and preliminaries on graph
theory are taken mainly from [12].

A graph X consists of a vertex set V(X ) and an
edge set E(X ), where an edge is an unordered pair

of distinct vertices of X . We write ij to denote an
edge and say that the vertex i and vertex j are
adjacent or that j is a neighbor of i and denote this
by j ∼ i. A weighted graph is a graph together
with a weight function W : E(X ) → R+ on its
edges. The adjacency matrix A = [aij ] ∈ Rn×n
of a graph with n vertices is a square matrix where
aij corresponds to the weight of the edge ij. In
this paper we only consider undirected graphs
and therefore aij = aji. The Laplacian of X
is Q(X ) = ∆ − A where ∆ = diag(d1 · · · , dn)
with di =

∑n
j=1 aij . For undirected graphs the

Laplacian matrix Q is a positive semidefinite and
symmetric matrix, thus its eigenvalues are all real
and non-negative. If the graph X is connected then
the eigenvalue λ1(Q) = 0 has algebraic multiplicity
one with eigenvector 1 = [1 · · · 1]T .

For the Laplacian Q(X ) there exists a factoriza-
tion Q(X ) = DDT (D is known as the incidence
matrix of X [12]) where D is a |V(X )| × |E(X )|
matrix (where |V(X )| and |E(X )| are the cardinality
of the vertex and edge set, respectively), such that
if ij ∈ E(X ) is an edge with weight aij then the
corresponding column of D has only two nonzero
elements with the i−th element a

1
2
ij and the j−th

element −a
1
2
ij .

A path from i to j in a graph is a sequence
of distinct vertices starting with i and ending with
j such that consecutive vertices are adjacent. If
there is a path between any two vertices of the
graph X then X is connected. Through this work
we consider only connected graphs.

2.3 Asymptotic, Finite-Time and Fixed-Time
Convergent Consensus

In this subsection we present the standard
consensus algorithm with asymptotic convergence
and describe how nonlinear algorithms are derived
from it, with particular focus on finite-time and
fixed-time convergent algorithms.

Let X be a dynamic network. The following
equation defines the consensus algorithm that
follows each agent:

ẋi = ui, (5)

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 547–556
doi: 10.13053/CyS-22-2-2420

A Finite-Time Consensus Algorithm with Simple Structure for Fixed Networks 549

ISSN 2007-9737



where xi ∈ R is the dynamic of the i − th agent
and ui defines the different consensus laws. For
instance, the standard consensus algorithm with
asymptotic convergence proposed in [20] is given
by:

ui = k
∑

j∈{j:ji∈E(X )}

aij(xj − xi), (6)

where aij ≥ 0.
Considering nonlinear functions f(x), f(0) =

0, such that the origin of ẋ = −f(x) is stable,
two directions have been taken to derive nonlinear
consensus algorithms from (6). On the one hand
with the algorithm:

ui = k
∑

j∈{j:ji∈E(X )}

aijf(xj − xi), (7)

and on the other hand with the algorithm:

ui = kf
(∑

j∈{j:ji∈E(X )} aij(xj − xi)
)

. (8)

There by, the consensus algorithms proposed
in [28] and [32] are derived from (3) and (4),
respectively, following the direction (7). Namely,
the finite-time consensus algorithm proposed
in [28] is:

ui = k
∑

j∈{j:ji∈E(X )}

aijbxj − xieα, α ∈ (0, 1). (9)

The fixed-time convergent algorithm proposed
in [31] for fixed topologies is:

ui =
∑

j∈{j:ji∈E(X )}

aij(k1bxj−xie2−
p
q +k2bxj−xie

p
q ),

(10)
where k1,2 > 0, and p, q are positive odd numbers.

Although, both [28] and [32] ( [28] does not
present the proof of the claim), address the
consensus derived from (3) and (4), respectively,
following also the direction (8), the results in both
papers are restricted to static networks, i.e. where
X = X for all t ≥ t0. In the following section
we prove that the algorithm using functions (3)
and direction (8) achieves finite-time consensus
over fixed networks and illustrate by simulations
an interesting property on the robustness of the
convergence time with respect to the growth of

the network. In particular, we show that the
convergence time to the consensus state grows
faster as the network grows (as the smallest
nonzero eigenvalue decreases), in (9) an (10) than
in the proposed algorithm.

3 Main Results

In this section we derive the mathematical proofs to
show the finite-time convergence to the consensus
state of the proposed algorithm under fixed
networks. First, we show using Lyapunov theory,
the asymptotic convergence to the consensus
state. Then, the finite-time convergence follows by
using homogeneity [5–7,14,23] and Theorem 4.

The aim of this paper is to show that, if X is a
connected graph, then the algorithm ẋi = ui, with:

ui = kb
∑

j∈{j:ji∈E(X )}

aij(xj − xi)eα, α ∈ [0, 1),

(11)
where k > 0, b•eα = | • |α sign(•) for α ∈ (0, 1) and
b•e0 = sign(•), achieves consensus with finite-time
convergence.

Remark 7. Notice that using the proposed
consensus algorithm (11), a node requires a single
computation of the nonlinear function f(·), while in
the consensus algorithms (9) and (10) proposed in
[28] and [32], respectively, the number of nonlinear
operations of each node equals the number of
nodes adjacent to it. Thus, the consensus
algorithm (11) is, in general, computationally less
expensive than previously proposed finite-time
consensus algorithms, namely [28] and [31].

Remark 8. In [28] it was shown that (9), is a
consensus algorithm with finite-time convergence.
The authors claimed (without proof), that using
their framework, it can be shown that for ”static
networks” (11), is also a consensus algorithm with
finite-time convergence. In the following we provide
a rigorous proof, using Lyapunov theory and
homogeneity theory [14,23], to show that (11), is a
consensus algorithm with finite-time convergence
in fixed communication networks.
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Let e = [e1, . . . , en]T , where ei =∑
j∈{j:ji∈E(X )}(xj − xi), and notice that

e = −Q(XX (t))x, where x = [x1, . . . ,xn]T

and therefore the network dynamics is:

ẋ = −F (Q(X )x) = F (e), (12)

where

F (e) =

 kbe1eα
...

kbeneα

 .

Thus, the dynamic for e(t) is:

ė = −Q(X )F (e), (13)

where Q(X ) is the graph Laplacian of X .
In the following, (13) will be referred as the error

dynamics. The i-th entry of F (e) is denoted by
f(ei), i.e. f(ei) := kbeieα.

Lemma 9. Let f(ei) = beieα, α ∈ [0, 1). Then:

− (f(ei)− f(ej)) (ei − ej) ≤ 0.

In the case when α ∈ (0, 1) the equality holds iff
ei − ej = 0 whereas for the case when α = 0 the
equality holds iff sign(ei) = sign(ej).

Proof. Straightforward.

Proposition 10. Let X be a connected graph and
let α ∈ [0, 1). Then, the origin of:

ė = −Q(X )F (e), (14)

is globally asymptotically stable.

Proof. Consider the candidate Lyapunov function

V (e) =
1

2

∑
i∈V(X ) e

2
i , then its time derivative along

the trajectories of (14) is:

V̇ (e) =
1

2

∑
i∈V(X )

eiėi = −eTQ(X )F (e).

Then according to Subsection 2.2, there exists
a factorization for the graph Laplacian Q(X ),
such that, Q(X ) = DkD

T
k . Thus, V̇ (e) =

−eTDkD
T
k F (e). Therefore, ij ∈ E(X ), implies that

the entry of eTDk corresponding to the edge ij is
a

1
2
ij(ei − ej); in the same way, the entry of DT

k F (e)

corresponding to the edge ij is a
1
2
ij(f(ei) − f(ej))

[12], therefore due to Lemma 9 we have that:

V̇ (e) = −
∑

ij∈E(X ),i>j

aij(f(ei)− f(ej))(ei − ej) ≤ 0,

(15)
where the equality in (15), for the case when α = 0,
holds if sign(ei) = sign(ej), for each ij ∈ E(X k)),
which implies, since the graph X is connected, that
sign(e1) = · · · = sign(en). In a similar way, the
equality in (15), for the case when α ∈ (0, 1), holds
iff ei − ej = 0 for each ij ∈ E(X k)), which implies,
since the graph X is connected, that e1 = · · · = en.

However, since e = −Q(X )x and 1 ∈ ker(Q(X )),
then 1T e = −1TQ(X )x = 0 i.e.

∑
i∈V(X ) ei = 0

and therefore sign(e1) = · · · = sign(en) and e1 =
· · · = en can only hold iff e = 0. Thus, V̇ (e) ≤ 0
with V̇ (e) = 0 iff e = 0. Therefore, the origin of (13)
is globally asymptotically stable.

Lemma 11. Let α ∈ (0, 1) and let H(e) be the right
hand side of (13), i.e. H(e) := −Q(X )F (e). Then,
the vector field H is homogeneous of degree α− 1
with respect to the standard dilation.

Proof. Notice that the function f(ei) is homoge-
neous of degree α with respect to the standard
dilation, i.e. for λ > 0:

f(λei) = k|λei|α sign(λei),

= k(|λ||ei|)α sign(ei),

= λαk|ei|α sign(ei),

= λαf(ei).

Now, let the i-th component of the vector field
H(e) be denoted as Hi(e), then Hi(e) =∑
j∈{j:ji∈E(X )}(f(ej)− f(ei)) and:

Hi(λei) =
∑

j∈{j:ji∈E(X )}

(f(λej)− f(λei)),

=
∑

j∈{j:ji∈E(X )}

(λαf(ej)− λαf(ei)),

= λαHi(ei).

Since ri = 1, i = 1, . . . ,m, then q = α−1 and H(e)
is homogeneous of degree α−1 with respect to the
standard dilation.
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The main result of this paper is the following.

Theorem 12. Let X be a connected graph. Then,
the algorithm (11) achieves consensus on a fixed
network in finite-time.

Proof. According to Proposition 10, the dynamic
of e(t) is asymptotically stable. Moreover, since
the graph X is connected, e = −Q(X )x = 0
implies that x ∈ span(1), i.e. that consensus
is achieved. The finite-time stability for the case
when α = 0 follows by noticing that if the i-th
agent is the one such that xi(t0) = xmax(t0) =
max(x1(t0), . . . ,xn(t0)) then ui is ui = −k as long
as e 6= 0. In a similar way, if xj(t0) = xmin(t0) =
min(x1(t0), . . . ,xn(t0)) then ui is ui = k as long
as e 6= 0. Thus, the consensus value, with α = 0

is x̄ =
xmax(t0) + xmin(t0)

2
and the convergence

time is treach =
xmax(t0)− x̄

k
. Moreover, the

finite time stability for the case when α ∈ (0, 1)
follows from homogeneity theory, since the vector
field H(e) is homogeneous of degree q = α −
1 < 0, then according to Theorem 4, (13) is
finite-time stable. Hence consensus is achieved
with finite-time convergence in a fixed topology.

Remark 13. Notice that the convergence time
for the case when α = 0 is independent of the
underlying connected graph topology, and thus
independent of the network size.

4 An Illustrative Example Showing
Robustness to the Network Growth

In this section we illustrate that, in networks with
cycle graph topology, the convergence of the
proposed consensus algorithm (11), is more robust
to the network growth than the standard consensus
algorithm (6) proposed in [20], the finite-time
consensus algorithm (9) proposed in [28] and
the fixed-time convergent algorithm (10) proposed
in [31] while requiring less control effort. To
this end, we consider a communication topology
described by an undirected cycle graph Cn, where
Cn is a cycle graph with vertex set {0, . . . ,n − 1}
such that vertex i is adjacent to vertex j, i.e. j ∼ i,
if and only if j − i ≡ ±1( mod n).

We simulate three different scenarios to illus-
trate the convergence of the above mentioned
consensus algorithms with respect to the network
growth (the simulation was performed using the
Modelica R© language and simulated in Dymola R©

using the Euler integration method). Namely, a
network formed by an undirected cycle graph C25,
C200, and C1000, respectively.

We would like to highlight that the initial condi-
tions are set the same for the different algorithms
using the linear congruential generator [3]:

zi+1 = rzi+s ( mod M) n ≥ 0, xi(t0) = l
zi
M
−m,

where r = 45, s = 1, M = 1024, l = 20 and m =
10, which produces a pseudo–random sequence
of initial conditions xi(t0) in the interval [−10, 10].
The parameters of the different algorithms are set
experimentally, according to Table 1, such that, in
the 25 agents network C25, each algorithm achieves
99% of its final consensus value approximately at 2
seconds.

Table 1. Parameters selected for the different algorithms

Algorithm Parameters
Proposed Algorithm k = 7 and α = 0.5
Asymptotic Consensus (6) k = 35
Finite-time Consensus (9) k = 12 and α = 0.5
Fixed-time Consensus (10) k1 = k2 = 8.5 and p/q ≈ 0.5

The evolution of the above mentioned algorithms
for a cycle graph C25 is presented in Fig. 1,
where it can be seen that each algorithm achieves
99% of its final consensus value approximately at
2 seconds, as explained before. At this point,
considering the convergence of the algorithms, no
true advantages are identified from one another.
For instance, even if the convergence of the
algorithm in [20], is asymptotic, the 99% of the
consensus value is achieved approximately at the
same time as the algorithm in [28], which has a
finite-time convergence. Moreover, even though
in [31], there exists a bound for the convergence
time, independent from the initial conditions, in
many applications as in wireless sensor networks,
the initial conditions are within a known range
and such convergence bound also depends on the
network topology which is usually unknown a priori.
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Fig. 1. Different consensus algorithms experimentally set for convergence to the consensus state approximately at 2
seconds under a cycle graph C25 communication topology

Table 2. Total energy comparison among the different
algorithms

Algorithm Total Energy Etot

Proposed Algorithm 26.44
Asymptotic Consensus (6) 83.00
Finite-time Consensus (9) 37.49
Fixed-time Consensus (10) 64.21

Now, let us consider the control effort related to

each agent as Ei =
(∫ t1

t0
u2i

) 1
2

and the total control

effort of the network as Etot =
∑n

1 Ei where n
is the number of agents. Then, the control effort
of the network Etot of the experiment in Fig. 1 is
presented in Table 2, showing that the proposed
algorithm requires less control effort Etot among
the four algorithms to achieve consensus.

However, as the number of agents under a
cycle graph communication topology grows (i.e. as

the smallest nonzero eigenvalue decreases), the
convergence time to the consensus state varies
among the different algorithms.

For instance, when it grows from 25 to
200 agents the convergence of the asymptotic
consensus algorithm grows from 2 seconds to
approximately 120 seconds, as shown in Fig. 2.
The consensus of the finite-time consensus of [28]
grows to 20 seconds, the fixed-time convergent
one to 30 seconds whereas the proposed
consensus algorithm grows from 2 seconds to
7 seconds.

Moreover, as the cycle network grows to C1000,
the convergence time grows to 10 seconds for the
proposed algorithm, 550 seconds for the asymp-
totic consensus algorithm, 60 seconds for the
finite-time consensus (9) and 70 seconds for the
fixed-time convergent consensus algorithm (10) as
shown in Fig. 3.
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Fig. 2. Comparison among different consensus algorithms when the network grows to 200 agents with communication
topology C200

It is worth noting that in many scenarios the
network size is not determined a priori and in
general it cannot be estimated by the agent to
adjust accordingly.

Thus, algorithms that could be used over a
wide range of scenarios (different network size
and topology) with a single parameter configuration
are desirable, contrary to algorithms whose
convergence-time varies so widely that it becomes
prohibited (as the asymptotic consensus algorithm
of Fig. 2) in some applications.

5 Conclusions and Future Work

A continuous-time consensus algorithm with
finite-time convergence over fixed networks was
presented in this paper. Finite-time convergence
was proven using homogeneity theory.

The proposed algorithm is computationally
simpler than previously proposed finite-time con-
sensus algorithms. Moreover, the proposed
approach was compared, in simulations with
existing consensus algorithms, including the

standard consensus algorithm and finite-time and
fixed-time convergent algorithms, showing its
robustness, in a cycle graph topology, to the
network growth.

Future work concerns the analysis of the
proposed algorithm under dynamic networks which
will be reported elsewhere.
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