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Abstract. We propose methods of 3D visualization of 

the main similarity measures for binary data and 2 x 2 
tables. We present the shapes of Jaccard, Dice, Sokal & 
Sneath, Roger & Tanimoto and other similarity 
measures. Such visualization of the similarity measures 
gives the direct, visual, method of comparison of these 
measures and helps to understand the similarity and the 
difference between them. Based on the visualization of 
the two known parametric families of similarity measures 
the paper proposes the new parametric family of 
measures generalizing these two families and giving the 
possibility to construct similarity measures occupying the 
intermediate position between them.  
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1 Introduction 

Similarity measures have numerous applications in 
computational linguistics, ecology, medicine, 
biology, social sciences, etc. They play important 
role in pattern recognition, machine learning, 
classification and statistics [1, 5-7, 10, 12-14, 16, 
18, 19]. Dozens of similarity (or dissimilarity) 
measures for binary data have been proposed and 
the problem of their comparison and selection for 
specific application is studied in many works [2-10, 
15, 17-20]. In different papers, such measures are 
referred to as association coefficients, similarity 
coefficients, resemblance measures etc. Different 
approaches for comparing similarity measures are 
based on: similarity of the properties of these 
measures, similarity of formulas, possibility of 

transformation of one measure into another one, 
ordering of the measures, distance between them 
etc. [2, 3, 6-12,18-20].  

To the best of our knowledge, there are not 
works on 3D visualization of the binary similarity 
measures. Such visualization can be useful for 
comparing the shapes of similarity measures and 
selecting measure more suitable for specific 
applications. The paper proposes the methods of 
3D visualization of the most popular similarity 
measures used for binary data and 2 x 2 tables. 
Such visualization of similarity measures gives the 
direct, visual, method of comparison of these 
measures and can help to understand the similarity 
and the difference between them.  

Several authors have proposed different 
parametric families of similarity and dissimilarity 
measures [3, 9, 19, 20]. Based on the visualization 
of the two known parametric families of similarity 
measures the paper proposes the new parametric 
family of the similarity measures generalizing these 
two families and giving possibility to construct 
similarity measures occupying intermediate 
position between them.  

The paper has the following structure. Section 2 
considers some basic definition related with the 
similarity measures for binary data and describes 
the most popular similarity measures. Section 3 
proposes the methods of 3D visualization of 
similarity measures for binary data and visualize 
the most popular measures. Section 4 proposes 
the new parametric family of similarity measures. 
The last section contains discussion and 
conclusion. 
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2 Basic Definitions  

Consider objects described by n binary attributes, 
descriptors or properties. The object x is coded by 

the vector 𝑥 = (𝑥1, … , 𝑥𝑛) of n attribute values such 
that 𝑥𝑘 = 1 if the object possesses the property 𝑘 

and 𝑥𝑘 = 0 otherwise.  Such data are called also 
presence/absence data [8, 11]. For any two objects 
𝑥 = (𝑥1, … , 𝑥𝑛) and 𝑦 = (𝑦1, … , 𝑦𝑛) the following 
four numbers are calculated:  

– 𝑎 is the number of attributes such that 𝑥𝑘 = 1, 

𝑦𝑘 = 1; 

– 𝑏 is the number of attributes such that 𝑥𝑘 = 1, 

𝑦𝑘 = 0; 

– 𝑐 is the number of attributes such that 𝑥𝑘 = 0, 

𝑦𝑘 = 1; 

– 𝑑 is the number of attributes such that 𝑥𝑘 = 0, 

𝑦𝑘 = 0. 

The numbers a and d also referred to as the 
numbers of positive and negative matches, 
correspondingly [9, 17]. 

Note that the following is fulfilled for these four 
number: 

𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑛, (1) 

where n is the number of binary attributes. These 
four numbers are represented in Table 1 also 

known as 22 contingency table [1].  

Below there are presented some popular 
similarity measures defined for such tables [4, 5, 
10].  

Jaccard (1908): 

𝑆𝐽(𝑥, 𝑦) =
𝑎

𝑎+𝑏+𝑐
.  (2) 

Dice (1945), Czekanowski (1913), Sorensen 

(1948): 

𝑆𝐶𝐷𝑆(𝑥, 𝑦) =
2𝑎

2𝑎+𝑏+𝑐
.  (3) 

Sokal & Sneath (1963): 

𝑆𝑆𝑆−I(𝑥, 𝑦) =
𝑎

𝑎+2𝑏+2𝑐
.  (4) 

Sokal & Michener (1958) or “simple matching”: 

𝑆𝑆𝑀(𝑥, 𝑦) =
𝑎+𝑑

𝑎+𝑏+𝑐+𝑑
  (5) 

Rogers & Tanimoto (1960): 

𝑆𝑅𝑇(𝑥, 𝑦) =
𝑎+𝑑

𝑎+2𝑏+2𝑐+𝑑
  (6) 

Sokal & Sneath (1963): 

𝑆𝑆𝑆−II(𝑥, 𝑦) =
2𝑎+2𝑑

2𝑎+𝑏+𝑐+2𝑑
  (7) 

Rassel & Rao (1940): 

𝑆𝑅𝑅(𝑥, 𝑦) =
𝑎

𝑎+𝑏+𝑐+𝑑
  (8) 

Faith (1983): 

𝑆𝐹(𝑥, 𝑦) =
𝑎+0.5𝑑

𝑎+𝑏+𝑐+𝑑
  (9) 

3 Visualization of Similarity Measures 

Let us consider parametric families of similarity 
measures that include the known similarity 
measures as particular cases [9, 20]. The similarity 
measures (2)-(4) can be generalized as follows: 

𝑇𝜃 =
𝑎

𝑎+𝜃(𝑏+𝑐)
,  (10) 

where 𝜃 is some positive real number. The 
similarity measures (5)-(7) can be considered as 
the particular cases of the following parametric 
family of functions:  

𝑆𝜃 =
𝑎+𝑑

𝑎+𝑑+𝜃(𝑏+𝑐)
,  (11) 

Table 1. 2 x 2 contingency table 

 
y 

1 0 

x 
1 a b 

0 c d 
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For us it will be more convenient to use the 
following notation of these parametric families of 
similarity measures: 

𝑆(𝑎)(𝑥, 𝑦) =
𝑎

𝑎+𝑡(𝑏+𝑐)
,  (12) 

𝑆(𝑎+𝑑)(𝑥, 𝑦) =
𝑎+𝑑

𝑎+𝑑+𝑡(𝑏+𝑐)
,  (13) 

where t is some positive real number. The similarity 
measures (2)-(4) are obtained from (12) for the 
parameter values t= 1, 0.5, 2, correspondingly. The 
similarity measures (5)-(7) are obtained from (13) 

 

 

Fig. 1(a). Jaccard similarity measure (view 1) 

 

Fig. 1(b). Jaccard similarity measure (view 2) 

 

Fig.  2(a). Rogers & Tanimoto similarity measure  

(view 1) 

 

Fig. 2(b). Rogers & Tanimoto similarity measure  

(view 2) 
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for the parameter values t= 1, 2, 0.5, 
correspondingly. Taking into account that from (1) 
it follows  

𝑏 + 𝑐 = 𝑛 − (𝑎 + 𝑑),  (14) 

the formulas (12) and (13) can be given in such 
form: 

𝑆(𝑎)(𝑥, 𝑦) =
𝑎

𝑎+𝑡(𝑛−𝑎−𝑑)
,  (15) 

𝑆(𝑎+𝑑)(𝑥, 𝑦) =
𝑎+𝑑

𝑎+𝑑+𝑡(𝑛−𝑎−𝑑)
,  (16) 

The parametric families of the similarity 
measures (15) and (16) have been considered in 
[20] in the following forms:  

𝑆(𝐴)(𝑥, 𝑦) =
𝐴

𝐴+𝜃(1−𝐴−𝐷)
,  (17) 

𝑆(𝐴+𝐷)(𝑥, 𝑦) =
𝐴+𝐷

𝐴+𝐷+𝜃(1−𝐴−𝐷)
,  (18) 

where 𝐴 =
𝑎

𝑛
, 𝐷 =

𝑑

𝑛
. Further we will use the 

formulas (15) and (16) for the considered 
parametric families of similarity measures that will 
be referred to as (a)-family and (a+d)-family of 
similarity measures, correspondingly.  

We propose to use the relationship (14) for 
representation of other similarity measures. The 
similarity measures (8) and (9) do not belong to the 
considered families of measures, but, using the 
relation (1), they also can be written as the 
functions of a and d: 

𝑆𝑅𝑅(𝑥, 𝑦) =
𝑎

𝑛
,  (19) 

𝑆𝐹(𝑥, 𝑦) =
𝑎+0.5𝑑

𝑛
. (20) 

As it is clear from the formulas (15), (16), (19), 
(20) for fixed numbers n and t one can build all of 
these formulas in 3D space as the functions of 2 
variables a and d. (The formula (19) will depend 
really only from a). From (1) and (14) we obtain: 

0 ≤ 𝑎 + 𝑑 ≤ 𝑛.  (21) 

This condition defines restrictions on the domain of 
the considered functions. In all figures below we 
use the value n = 100 and build the graphics of all 
functions for values a and d changing from 0 to 100 
with the step 1, with the domain restriction (21).  

Figures 1(a) and 1(b) show in two different  
projections Jaccard similarity measure obtained 
from the parametric formulas (12) and (15) for  
parameter value t=1 as follows: 

𝑆𝐽(𝑥, 𝑦) =
𝑎

𝑛−𝑑
.  (22) 

The domain (21) is presented on the plane S=0 by 
triangle with bold sides. Two black lines show the 
profiles of the surface of the similarity measure: 1) 
for value a=50 and all values of d; 2) for value d=50 
and all values of a. The value S = 0.5 depicts the 
value of the measure S for a = 50 and d= 0. When 
d = 0 we obtain in (22) S=a/n that corresponds on 
Figure 1(a) to the line increasing from 0 to 1 when 
d=0 and a is increasing from 0 to 100. Figure 1(b) 
is obtained from Figure 1(a) by rotation of the axis 
to show the profile of the surface for small values 
of a and large values of d. This situation 
corresponds to large number of negative matches 
d and hence to small values of nominator and 
denominator in (2). The similar comments can be 
done for the figures of other similarity measures 
shown later.  

Figures 2(a) and 2(b) show two projections of 
Rogers & Tanimoto similarity measure. From (6), 
(13) and (16) we obtain for t=2: 

𝑆𝑅𝑇(𝑥, 𝑦) =
𝑎+𝑑

2𝑛−𝑎−𝑑
.  (23) 

Figure 3 shows the surfaces of the following 
similarity measures belonging to the parametric 
(a)-family of measures (from the left to the right): 1) 
Dice-Czekanowski-Sorensen, 2) Jaccard, 3) 
Sokal-Sneath-I.  

Figure 4 shows the surfaces of the following 
similarity measures belonging to the parametric 
(a+d)-family of measures (from the left to the right): 
1) Sokal-Sneath-II, 2) Sokal & Michener, 3) Rogers 
and Tanimoto.  

For all of these similarity measures the formulas 
like (22) and (23) can be easily obtained from their 
original definitions by replacement b+c by n-a-d, 
see (1) and (14). 
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Figure 5 depicts the surfaces of Rassel & Rao 
and Faith measures in the same projection as the 
similarity measures shown on Figures 1(a) and 

2(a). Rassel & Rao and Faith measures do not 
belong nor to (a)-family nor to (a+d)-family of 
similarity measures and one can see that they 

 

Fig. 3. (a)-family of similarity measures in 2 views 

 

Fig. 4. (a+d)-family of similarity measures in 2 views 
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have the shapes quite different from the shapes of 
similarity measures from these families shown on 
Figure 3 and 4.  

The main problem with these two measures that 
they do not satisfy the reflexivity property S(x,x)= 1 

that requires that reflexive similarity measure 
should have the value 1 on the border of the 
domain where a+d= n and b= c= 0. One can see 
that the similarity measures both from (a)-family 
and from (a+d)-family are reflexive.  

 

 

Fig. 5. Russel & Rao (on the left side) and Faith (on the right side) similarity measures  

 

Fig. 6. (a+pd)-family of similarity measures: Jaccard (on the left side) and Sokal & Michener (on the right side)  

 

Fig. 7. (a+pd)-family of similarity measures: Dice & Czekanowski & Sorensen (on the left side) and Sokal & Sneath 

– II (on the right side)  
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4 New Parametric Family of Similarity 
Measures 

As one can see from Figures 3 and 4 the shapes 
of the similarity measures from (a)-family and 
(a+d)-family are sufficiently different. The similarity 
measures S(x,y) from (a)-family are based on the 
positive matches of binary attributes in x and y. The 
similarity measures from (a+d)-family are based 
both on positive and on negative matches. 
Discussions pro and contra of these two types of 
similarities measures can be found for example in 
[5, 10, 17, 19]. We propose the new parametric 
family of binary similarity measures formally 
generalizing both these families and giving the 
possibility to build the similarity measures 
intermediate between these two families. Below 
are the two equivalent forms of the new parametric 
family of measures called (a+pd)-family:  

𝑆(𝑎+𝑝𝑑)(𝑥, 𝑦) =
𝑎+𝑝𝑑

𝑎+𝑝𝑑+𝑡(𝑏+𝑐)
,  (24) 

𝑆(𝑎+𝑝𝑑)(𝑥, 𝑦) =
𝑎+𝑝𝑑

𝑎+𝑝𝑑+𝑡(𝑛−𝑎−𝑑)
,  (25) 

where t is the positive real number and p is the 
number from the interval [0,1]. When p = 0 we 
obtain the (a)-family of similarity measures and 
when p = 1 we obtain the (a+d) family of similarity 

measures. Changing parameter p between 0 and 
1 one can move similarity measure from (a)-family 
to (a+d) family. Generally, the parameters p and t 
can be tuned in some procedure of selection of 
suitable similarity measure for specific application. 
The selected value of the parameter p can reflect 
the trade-off or relative importance of positive and 
negative matches in the constructed similarity 
measure.  

Figures 6, 7, 8 show the shapes of binary 
similarity measures from (a+pd)-family when 
parameter p is changed from 0 (on the left sides) 
to 1 (on the right sides) such that on the left sides 
we have similarity measures from (a)-family and on 
the right sides the measures from (a+d)-family. The 
parameter t has the values 1, 0.5 and 2 on Figures 
6, 7 and 8, respectively. On Figure 6. the similaty 
measures are changed from Jaccard (on the left 
side) to Sokal & Michener (on the right side). On 
Figure 7. the similaty measures are changed from 
Dice & Czekanowski & Sorensen (on the left side) 
and Sokal & Sneath – II (on the right side). On 
Figure 8. the similaty measures are changed from 
Sokal & Sneath – I (on the left side) and Rogers & 
Tanimoto (on the right side). 

5 Discussion and Conclusion 

The paper proposes the methods of visualization 
of the popular similarity measures for binary data 
and contingency 2 x 2 tables. Such visualization 

 

 

Fig. 8. (a+pd)-family of similarity measures: Sokal & Sneath – I (on the left side) and Rogers & Tanimoto (on the 

right side) 
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helps to understand the relationships between 
these measures and can explain why these 
similarity measures joined in clusters of similar 
measures obtained in different works where the 
clustering of these measures is applied [6,12]. The 
new parametric family of the similarity measures is 
proposed. This family generalizes the two known 
parametric families of similarity measures and 
gives the possibility to construct similarity 
measures intermediate between these two 
families. Such intermediate position can reflect the 
trade-off or relative importance of positive and 
negative matches in the construction of similarity 
measures from the new parametric class of 
similarity measures. The proposed methodology of 
visualization of binary similarity measures can be 
extended on other binary similarity and association 
measures considered in literature. 
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