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Abstract. A browser based protocol is the chief security
component of a safety critical web application, such
as e-banking. Accordingly, browser based protocols
need to be thoroughly verified in order to guarantee
they are up to comply with key security properties. To
this end, we have developed WebMC, a model checker
especially designed to consider web standards, with
the aim of analyzing browser based protocol execution,
as encompassed by the interactions of a typical user,
a browser, and active attacker playing the role of the
network, and one or more servers. In this paper, we
shall show how to use WebMC in the design and the
development of browser based protocols. Our tool has
been successfully validated: WebMC has been able to
reproduce a number of the verification results found in
the literature, but fully automatically.

Keywords. Model checking, browser based protocols,
security protocols, formal methods.

1 Introduction

Web applications permeate our everyday life.
We use them for a lot of different activities,
ranging from financial services, like e-banking,
to containerization in IaaS platforms, like Docker.
Web applications have become of paramount
importance, mostly because they are easy to use;
easy to deploy to large numbers of users; involve
a small cost; and above all, because they run on
a browser, which yields a small footprint on the
client side. Due to web penetration, it is of the
utmost importance that we address the security of
web applications; this includes guaranteeing that

sending critical data through any of these kinds
of applications is secure, even if the associated
servers fail, or even if a server gets compromised
by an intruder.

Proving security properties of browser based
protocols, the key components of secure web
applications, has been largely ignored. This is in
contrast to its counterpart, proving correctness of
security protocols, for which there exists several
tools involving a large degree of automation
(see [12], for a survey), and using either of
various approaches, including formal methods [15].
While such tools offer a good starting point for
the security analysis of browser based protocols,
they are not enough because, in comparison
to security protocols, browser based protocols
involve more complex behavior, and more complex
message structure. Further, tools for general
software analysis require specific machinery and
proof methods that are not suited to the verification
of browser based protocols, because they often
require the complete exploration of the state space
to reach an output decision.

Security analysis of browser based protocols
is complex, error-prone and difficult to automate.
It has to take into account issues that are
beyond the scope of tools for security protocol
analysis. Among other things, this involves
accounting for the effect of browser policies on
information security guarantees; the implications
of browser using of frames, running scripts, and
administering cookies; the intricate interactions
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that may arise amongst a user, the associated
browser, the network, and the servers running the
protocol under analysis; and the behavior of a
complex protocol, which often leaves the user with
incomplete knowledge of what is being executed
and of the information being exchanged.

WebMC is based on Internet standards. The
design of it has taken inspiration from OFMC [2].
WebMC is able to represent widespread attacks,
such as cross site scripting (XSS), cross site
request forgery (CSRF), and session fixation. It
can also automate attacks that require the reuse
of data and cookies contained in messages,
as well as the behaviors that may arise from
the interactions of the different participants in a
browser based protocol.

In this paper, we discuss the way in which
WebMC can be used to analyze the security
guarantees provided by a given browser based
protocol.

The rest of this paper is structured as follows.
We start in Section 2 describing the main attacks
to which browser based protocols are vulnerable
to and which we are interested in automating.
We continue reviewing related work in Section 3,
and then giving an overview of WebMC’s inner
workings in Section 4. Then, we provide an
overview of WebMC’s implementation, Section 5.
After that, we present, in Section 6, a full example
of how WebMC can be used in order to specify
and verify a browser based protocol. Then, in
Section 7, we report on the results of a successful
validation of WebMC; we shall see that our tool has
been able to reproduce a number of the results
found in the literature, but fully automatically.
Finally, we conclude paper and pose ways in which
WebMC can be extended in Section 8.

2 Attacks on Browser Based Protocols

In this section, we shall outline the attacks on
browser based protocols that WebMC aims to
automate. These attacks are all very relevant, in
terms of prevalence, and have caused already in
countless loses.

Cross Site Scripting (XSS) is an attack in which
a malicious script is injected into a web page that
is in control of an honest server. This attack

is used to either make transactions in the name
of a user, steal user data or both. By contrast,
Cross Site Request Forgery (CSRF) is an attack
in which the user accesses an attacker controlled
web page, and in which the attacker tries to take
advantage of the user’s interactions and of the
information inside the browser. CSRF tries to make
requests in name of a user. However, notice that
the attacker does not know if the user already has
an active session with the honest service; nor is
it able to know the information the browser has
about said honest service. XSS and CRSF differ
subtly: the main difference is that in CRSF one
server is fully controlled by the attacker, while both
the server and the service remain uncompromised,
and thus the attacker cannot directly access any of
the information under the browser’s or the server’s
possession.

Cookies are a means in which a servers store
critical information in a browser. They are used
in order to keep a consistent state, given that a
user may access the corresponding service via a
multitude of browsers, from a range of different IP
addresses, and using any of a number of devices.
However, a major drawback of using cookies is that
an attacker may tamper with the data inside them.
Cookie tampering severely affects protocol and
session management, and may lead to an insecure
state, where a user impersonates other or even
the attacker, or where a user sends unintended
information across several sessions. There are
two kinds of successful cookie attacks, depending
on how far, fully or partially, an attacker has been
able at making an honest user impersonate it.
Upon full impersonation, the attacker is capable
of successfully modifying part of an honest web
page, leaving the user none the wiser. Hence,
cookie attacks rely on two things: one is that the
attacker has a means to retrieve information from
an honest server (e.g. by having a valid account
with the service), and the other is that the attacker
is able to inject information (e.g. a cookie) to a
browser without user intervention.

WebMC is able to account for the lot of
interactions that occur in the execution of a browser
based protocol, as compound by the actions of
four nominated, individual components, namley:
a user, the user browser, the network (in our
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case, the attacker), and the server running the
protocol. To automate the attacks presented in
this section, WebMC models HTTPS request and
responses, browser policies, cookie management,
script execution, resource usage and resource
visibility, and it models an attacker who owns the
network and so is able to corrupt servers.

3 Related Work

Several mechanisms for the security analysis of
browser based protocols can be found in the
literature [8, 9, 4, 1, 14, 7, 5, 6, 11, 10]. Most
of them present severe drawbacks. This is
either because the mechanism ignores relevant
details of a browser specification, hence yielding
an oversimplification [8, 1], or because it does
not abstract away intricate details of IETF or
W3C specifications, hence becoming unsuitable
for automation. In what follows, we outline those
mechanisms that have been integrated into an
automated tool.

Information flow analysis [1, 14, 7, 5] has
been used in order to prove confidentiality of
the information exchanged in a browser based
protocol. In particular, Armando et al. [1] have
used the SAT Model Checker (SATMC) to analyze
a set of LTL formulas verifying the Google version
of the SAML protocol. While SATMC has been
able to find an attack on this version of SAML,
protocol specification is not really browser based,
for it does not consider the key characteristics of
a browser. Accordingly, in subsequent papers,
Armando et al. have attempted to overcome this
limitation, improving on their formalism to include,
for example, cookies, and so have been able to
represent more kinds of attacks. However, doing
so requires reworking the models for each new
protocol and property to be verified.

In a different vein, Kumar [10, 11] has argued
that belief logics, not needing an explicit attacker,
are more suitable to analyze browser based
protocols. Kumar has proposed an extension
of BAN, which he has used, along with models
encoded in Alloy, in order to prove security goals.
While Kumar states that his approach simplifies
the models of the protocol components: user,
browser, and servers, he does not explain how

this simplification or encoding should work. The
simplification reduces in about 60% the complexity
of the models, thus speeding up the Alloy analysis.
In order to test his approach, Kumar analyses the
SAML identity linking protocol.

WebMC can be used to automatically verify the
security of a given browser based protocol. The
inner workings of it rely on a state event system,
which we outline below.

4 WebMC: Internal Workings

Analyzing whether or not a given browser based
protocol satisfies a security property amounts to
analyzing that the property holds in every state
reached by all possible traces of the protocol. In
our approach, a step of a protocol trace is a result
of an attacker action or the interaction of two out
of four types of participants: a user, a browser,
the network, and servers. Each participant is
modeled as a state event system; they are all
composed together into yet, another state event
system (see Figure 1), where it is possible to use a
branching-type logic.

Fig. 1. The Models Used by WebMC

Our approach to verifying a browser based
protocol takes three inputs, namely: a protocol
specification, the initial knowledge of the partici-
pants, and the property the protocol is meant to
satisfy. Both the protocol specification and the
knowledge are used to instantiate the complete
behavior of the server, the attacker, and the
user, respectively. The underlying mechanism of
WebMC uses the state event system to generate
and then analyze the protocol, following an on the
fly strategy; the analysis is driven so as to identify
a state that violates the given security property.
As expected, WebMC can take a property other
than one of security; this is useful, for example, to
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prove that a protocol description is feasible in that
it accepts a complete run.

Four key components of WebMC’s underlying
mechanism are the behavioral models of the user,
the browser, the network, and the server. In our
approach, the user participant is key to protocol
analysis: it is taken to drive the overall execution
of the protocol, and, so, is modeled so as not to
be vulnerable to a phishing attack. The browser
participant models a simple browser, which is
able to: communicate with the user via a display;
construct a web page from server’s responses;
execute simple scripts; follow policies; and store
information. The server participant is parametric,
since it is instantiated by the input protocol
specification; however, it contains general rules
to act upon and keep track of protocol execution.
Finally, the attacker participant, which controls the
network. This model is also parametric, since, as
shall be discussed later on in the text, we may like
to conduct protocol analysis under the presence of
an attacker that is able to hold its own sessions with
one or more servers.

WebMC is hence able to account for the lot of
interactions that occur in the execution of a browser
based protocol, as compound by the actions of
the four nominated, individual components: the
user, the user browser, the network (in our case,
the attacker), and the server running the protocol.
To automate the attacks presented in Section 2,
WebMC’s internal machinery handles relevant
issues of browser based protocols, including
HTTPS request or response handling, browser
policy application, cookie management, script
execution, resource usage, and resource visibility;
the analysis includes the intervention of an attacker
who owns the network and is able to corrupt
servers.

In what follows, we complete our discussion
of WebMC’s inner workings outlining protocol
execution state, event transition rules, what counts
as a protocol and a protocol goal, and the attacker.

4.1 The System’s State in Our Tool

As we have said, our tool poses an state event
system which consists of parametric models of a
web user, its browser, the attacker, and a variety

of servers. The state of the system is then the
collection of the states of its components and the
intended goal. We must remark that browser based
protocols have one important difference with other
protocols, that is, the participants excluding the
attacker may not change its roles in subsequent
runs of a protocol. The state of the user, the
browser, the servers, and the attacker consist of
data important for their function.

For example, the browser, as we know, takes
inputs from users and servers, and transforms
these inputs in things the other party can
understand (i.e. transforms user inputs into
requests and responses into a display and maybe
some more requests). The current state of the
browser is then given by a mix of the previous state,
the user’s input, and the responses received until
this point in time. As we know files, web pages,
and scripts are not static and thus are updated with
each input and output in the browser. It is because
of this constant change that the information that the
user and the servers get is just a subset of all the
information possessed by the browser at any given
time.

4.2 Interactions among Participants

WebMC uses a deterministic state event system;
however, several events are able to occur at any
one time. As we have said, each component of
our system (i.e. user, browser, servers, attacker)
is an state event system by itself and since we
are analyzing protocols, transitions cannot be seen
as independent actions performed by a single
participant in a protocol. An event in our method
is the reception or sending of a message by a
participant. Communication between participants
is done by sharing the same events, that is,
an input-output event can occur if there are two
participants willing to perform the complementary
actions.

We must remark that there are states in which
a participant may be able to perform several
synchronizations one after another with one or
more participants. Further, as is common
when dealing with parallel processes after two
participants perform a synchronization the others
can act independently without also synchronizing.
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However, we just have mentioned that principals
may not change roles as such the communication
between processes is restricted by the following:

Definition 1. Let U represent the user process,
B the browser process, A the attacker process,
Sj a server process, X, Y represent any two
principals among the already mentioned and sort
be a function that returns a set of events a given
principal can perform then:

sort(U) ∩ sort(B) = sort(U),
sort(B) ∩ sort(A) = sort(A),

sort(Sj) ∩ sort(A) = sort(Sj),

sort(U) ∩ sort(X) = ∅ whereX ∈ {A,S1, . . . ,Sn},
sort(B) ∩ sort(X) = ∅ where X ∈ {S1, . . . ,Sn},
sort(X) ∩ sort(Y ) = ∅ where X ∈ {S1, . . . ,Sn}

∧ Y ∈ {U ,B,S1, . . . ,Sn}/X,

wherein an empty intersection denotes that
communication cannot happen between the two
principals.

WebMC is then in charge of taking all
of the principal instances and advancing the
execution of a protocol. This is done by
synchronizing the principals using complementary
actions (i.e. sending-receiving a message with
certain characteristics), then updating the state
of the principals and the system by applying the
corresponding rules, and finally by interleaving
these synchronizations among principals. This
means, that the system interleaves the execution of
asynchronous events generated by the principals
in order to create execution traces of protocols.

In principle, parallel composition of the state
event systems allows for the synchronization of
more than two principals with a single action;
however, our tool only takes into account one user,
one browser, one attacker, and several servers.
While there may be several servers, each message
within events states the intended destination,
which means that a server will and must ignore
all messages not directed at it thus preventing
multiway synchronization from occurring.

4.3 A Protocol in WebMC

Let us continue by defining how the different states
the system can reach are related. Let e denote
an event, E represent a set containing all such
possible events; τ then represents a grounded
execution trace in the system, and T represents
a set containing all such execution traces. We
define an execution trace of the system τ ∈ T
as a sequence [e0, e1, . . . , en] with ek ∈ E , ∀k ∈
{0, . . . ,n}.

Definition 2 (Protocol). A protocol P is a subset of
system traces each of which is denoted with a p.

A protocol run p is then a grounded trace that is
an element of P . Traces are deemed to be left-
complete, i.e. each left prefix of a trace is a trace.
The main difference between τ and p traces is that
τ traces may not conform to any given protocol as
defined by its specification. We can say that, for a
user in our system, a protocol is a set of all runs
and each run is given by a p trace. We must note
that this definition can be naturally extended to all
of the components of our system.

Whether a given trace belongs to a protocol
depends on the protocol specification; however,
given a protocol specification WebMC is unable to
generate events that lie outside said specification.
We must also note that since WebMC calculates on
the fly each and every trace of the system our rules
and transitions can be said to behave in branching
time, as such, the set P can also be visualized as
a tree or a graph.

4.4 Goals in WebMC

In WebMC security is mapped to a goal. Goals
are expressed as a list of events that should
never happen and yield an state, if it concerns
a reachability goal then the tool searches for the
occurrence of an event and its resulting state within
all protocol traces; however, if the goal concerns
security the tool searches for the existence of such
event and thus an state that should never happen
within a protocol trace p. For example, if we
want to assure that a protocol is able to terminate
the goal would correspond to the last message
of said protocol or if we want to assure that a
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term guarantees authentication the goal would be
represented as a list containing a message where
such term is being reused by a party. As we
have said messages are components of events and
contain an origin, a destination, and a payload.

4.5 The Attacker in WebMC

Now that we have given a description of how
the system works we will proceed by briefly
discussing the attacker. That is, we will describe
its state, its capabilities, and its relation to the
other parties. As in any work of this kind, the
network is an insecure channel through which
information or more precisely messages flow from
one participant to another. While using this
channel the participants may encrypt some or
all of their messages with either a symmetric
or asymmetric key, and thus while the contents
may remain hidden from an attacker, the attacker
can still capture and may be able to reuse these
messages.

In order to represent different kinds of attack
we model two kinds of attacker and two kinds of
server corruption. Full corruption in which the
attacker has complete control over a server, and
Partial corruption, where the attacker may add data
and instructions to messages but cannot directly
access or retrieve the information contained in the
messages.

The attacker is parametric in that its state
contains several data structures that need to be
specified by the end-user. The attacker state
contains a unique identifier; a couple of sets of
server identifiers denoting the servers that are
either fully or partially under the attacker’s control;
a set of public, private, and symmetric keys
either known or obtained during a protocol’s run;
a set of fields which values will be generated
on-demand (e.g. nonces); a pair of association
lists that contain information the attacker owns and
knowledge about all of the other principals; a set
of files that the attacker has acquired; and a pair of
lists representing request and response queues.

The first type of attacker in our tool is a
somewhat simple attacker, this attacker can corrupt
servers, analyze, separate, and concatenate
messages as well as to encrypt, sign, and decrypt

messages to which he possesses the adequate
keys; however, it may not hold sessions in his name
with different servers. In other words, the main
goal of this attacker is to observe, gather, include
pertinent data and instructions in the messages
that it has access to, and see if the data it has
gathered is enough to construct an attack on either
the user or on one of the honest servers. The
second type of attacker is a fully active attacker.
This second type of attacker is able to do the same
as the previous but it does not have the restriction
on being able to have its own sessions, thus it is
also able to create, send, and receive messages to
and from both servers and browsers.

As we can see, the actions the attacker is
able to perform closely follow the actions of the
Dolev-Yao attacker. The actions of the Dolev-Yao
are simple yet powerful enough to describe what
both attackers need to do; however, in order to
better understand and characterize the actions
an attacker may perform in WebMC we give the
attacker’s actions new names that describe better
their interactions with the system and bundle some
of them together, when required, to make the
process easier to understand as well as accessible
for the automation of attacks.

The attackers are then able to perform at the
following actions while still conforming to the
expected messages of a protocol.

— Add cookies to messages it has access to.
— Add visible and invisible elements to mes-

sages it has access to.
— Add instructions to messages it has access to.
— Get knowledge from corrupted servers.
— Encrypt, sign, and decrypt information it has

access to with known keys.
— Synthesize messages from knowledge.
— Act as the initiating party to any protocol.
— A combination thereof.

In order to limit the size of the search space,
the Attacker is only able create messages that
correspond to a protocol. Messages outside of
the protocols are deemed to be useless since the
servers just send error responses and just increase
the size of an already infinite search space. Also,
as can be seen from the actions we described,
we removed the ability of the attacker to flush the
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channel and thus will not model or analyze any kind
of denial of service attacks.

In the simplest of terms the attacker is a buffer,
which in the case of the second type is also able
to send and receive its own messages as long as
it has the necessary information to create and read
them. An example of the attacker’s behavior is
the following: If the attacker receives a message
whose intended destination is different from one
of the fully corrupted servers the attacker will just
add it to the corresponding queue. On the other
hand, if the intended destination of the message is
a fully corrupted server, the attacker will take all of
the information and add it to its knowledge about
the principal who originated the message.

5 The WebMC Implementation

The main use for WebMC is to try to solve
the Security Problem, the Intuder Deduction
Problem, and a third problem that arises from
the characteristics of the browser (i.e. the attacker
being able to use secrets that are not known to
him by using the Browser as an intermediary). In
other words, our tool is able to encode properties
relating to secrecy and confidentiality in order to
find counterexamples to the presented goals.

WebMC is thus an state exploration tool that
takes a protocol specification, and a set of
properties that should never hold (i.e. events
representing attacks or flaws in authentication).
The tool lets us to either interactively traverse
all of the possible protocol execution paths or
automatically find attacks using the two kinds of
attacker. WebMC, tries to find counterexamples to
the defined goals or properties (i.e. states where
the attacks are feasible) by calculating, on the fly,
all of the possible execution paths of the protocol
or application.

5.1 Protocol Specification in WebMC

A server and protocol specification is a set of
rules written as a Haskell program that define
the behavior of the server. The specification
must contain at least the name of the server, the
expected URLs, and what messages are to be
sent upon receiving a request to a given URL.

The specification may also contain data and keys
known at the start of a run (e.g. credentials and
trusted server keys), which data is to be kept
for persistent sessions, which information is to be
freshly generated, which nonces and information
should be tracked to avoid replays, and what
messages are to be sent in case of receiving an
unexpected or invalid message.

We must note that neither the method nor the
tool are able to verify if a given server specification
corresponds to an actual protocol but is able to
verify that a protocol is able to finish successfully
if the end user states explicitly that the goal is to
search for protocol completion. WebMC is able to
check for well-formedness according to data types;
however this does not guarantee that the protocol
is well specified. This means that WebMC may
get stuck on a loop and never find an attack if
not tested correctly. This is why protocol analysis
should start with proving the feasibility of protocol
execution successful.

Now that we have discussed protocol speci-
fication let us continue with the implementation
of WebMC. WebMC is implemented in two ways
the first of them, to be discussed in Section 5.2,
is a module in charge of generating the search
space on the fly and allows the end users to
explore interactively the different ways in which
a protocol’s execution can take place while our
second implementation is an automatic tool which
will be discussed in Section 5.3.

5.2 Interactive Tool

The interactive implementation of WebMC was
programmed so the end user of the tool is able to
select the branch to be analyzed and go back to
another branch if she chooses to do so. In other
words, the interactive WebMC presents all of the
possible actions to the end user, lets her choose
which to execute, and is also able to present the
current state of the different principals. Interactive
WebMC has been tremendously useful since it has
let us explore the execution of the protocols we
are specifying, find ways in which the search for
counter examples can be structured, and debug
the features included in the implementation of our
models.
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We decided to model the interactions between
the different agent as events that are fully executed
when received, this in order to avoid having
wait states in which nothing evident happened.
However, for the sake of clarity our implementation
we decided to include the changes the attacker
makes to messages as its own set of actions,
allowing us to see better what are the steps needed
in order for attacks to be successful.

Now that we have explained the characteristics
of our interactive tool we will proceed to explain the
implementation detail of the automatic version of
our tool.

5.3 Automatic Search

While proving security in WebMC is roughly
equivalent to encoding security properties in a
set LTL formulas and then proving these formulas
hold; we took a more straightforward and slightly
different path. As we have said, the properties
WebMC looks for are encoded as attacks and, in
order to avoid the complexities arising from more
than one event being able to occur at any one time,
we use an heuristic to select and analyze only one
branch at a time. Our tool calculates the execution
tree on the fly since calculating said tree at the start
is not feasible due to its size.

The search in the automatic version of WebMC
is implemented as a deterministic hybrid search
with no hard maximum depth level. WebMC
searches the state tree as long as it has not found
any attacks and as soon as an attack is found
the execution trace is returned to the end user.
The evaluation function penalizes repeated events
and paths that lead to useless states (e.g. the
user and in turn the browser sending an empty
request to a server that does not handle empty
requests) while trying to lead the search in a way
that resembles the normal protocol execution and
giving preference in the following order: first the
events of the attacker, then those of the servers,
the browser, and finally the user. This means that
we have a preference for the attacker’s actions
while taking into account the state of all the other
participants and the characteristics marked as valid
for the attacker, as such, the heuristic usually leads
to a normal execution of a protocol but does not

Fig. 2. The WebAuth protocol

guarantee that if there is an attack it will find the
shortest attack trace.

Regarding the performance of the search we
consider it to be good since it takes less than one
second to find most of the attacks to the protocols
we tested; however, it’s performance for worst case
scenarios could be made better by detecting and
avoiding the exploration of states equivalent to
those already explored (a technique used in Binary
Decision Diagrams [3]).

6 Protocol Testing and Verification
with WebMC

So far we have discussed protocol specification
and how WebMC searches for attacks; however,
this is not enough to give a full idea of the way in
which it can be used. As such, we will now proceed
to give a detailed example of how a protocol is
specified and how the tool should be used. To do
so we will discuss the WebAuth Protocol, what we
consider to be a flaw in its specification, and how it
was specified for WebMC.

WebAuth (see Figure 2) is an authentication
protocol for web pages in which the first time
a User attempts to access a service, they
will be sent to an authentication server and
prompted to authenticate. Once the user has
logged in, the authentication server will send
their encrypted identity back to the original web
page and the identity will also be stored in a
cookie set by the authentication server. The
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Fig. 3. Attack to the WebAuth protocol

user will not need to authenticate again until
their credentials expire, even if they visit multiple
protected services. The attack to WebAuth (see
Figure 3) consists on reusing the cookie provided
by the authentication server in order to make
an honest user impersonate the attacker and
use services in its name; as we can see, the
authentication posed by the protocol compromised
and thus an attack is possible.

As we can see the attack is pretty straightforward
but it has been overlooked, thus highlighting the
need for a tool that is able to automatically find
these kinds of attacks. With that said, we will now
proceed to give a detailed description about how
we can model this and other protocols in our tool.

6.1 Protocol Specification in WebMC

As we have mentioned previously, specifying the
servers is equivalent to specifying the protocol.
In this section we will discuss how the WebAuth
protocol is specified. For specifications to
work we will use a header, like the one in
Listing 1, containing the name of the file (usually
corresponding to the name of the protocol to be
specified), and the different libraries or modules we
want to use. In this case we will use WebKereberos
as the name for our file and protocol, the Haskell
Map library, the Attacker and Server modules of
WebMC that provide the implementations of the
attacker and the server models respectively and
the Types module that corresponds to the data type
definitions of WebMC.

Listing 1. Header for specifications, including the name
of the protocol to specify
module WebKereberos where
impor t q u a l i f i e d Data .Map as Map
impor t Server
impor t A t tacker
impor t Types

After providing the header we need to proceed to
specify the servers. As we can see in Figure 2, the
WebAuth protocol requires three kinds of servers.
The first kind of server corresponds to a Service
Provider (webAS) in charge of providing a service
to the user, the second kind corresponds to an
Identity Provider (webKDC) in charge of asserting
the identity of users so that the service knows who
is using it, and a third server fully controlled by the
attacker (aServer).

The code inside Listing 2 corresponds to the
specification of the webAS server specification. In
the case of our tool, the specifications are functions
that receive a server name and return an instance
of the corresponding server. For a server to be
instantiated it receives the following information
in order: its unique identifier, the values which
will be generated automatically, a description of
the persisted data to store, a list of fields which
contain keys, a list of fields to keep track of so
as to not accept repeated values, a list of known
keys, an association list of known information,
and an association list of recognized URLs and
the corresponding actions that should take place.
The full specification of each server comes after
the where clause. In case the server being
specified does not need to generate automatic
values (e.g. nonces), keep track of persistent data,
keys or previously used values, etcetera. We leave
some of fields empty in order to instruct our tool
not to use said characteristics. Since servers do
know information and need to respond to certain
messages we fill the known data and rule fields
corresponding to the last two arguments of the
instantiation code.

Usually, the known data fields correspond to
things like known user names, passwords, URLs,
and other data that needs to be verified upon
arrival. On the other hand the rules field
corresponds to an association list of URLs, the
different fields they expect on requests, the
requests and responses that should be made if
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Listing 2. Specification for the Service Provider Server in WebAuth
webAS : : S t r i n g −> S t r i n g −> Server
webAS cName kdc =

in i tEmptyServer cName [ ] ( ’ ’ ’ ’ , [ ] ) [ ] [ ] [ pkey ] Map. empty ruleMap
where kdcUr l = Ur l kdc ’ ’ one ’ ’

pkey = Pub kdc
u r l 1 = Ur l cName ’ ’ one ’ ’
cbUr l = Ur l cName ’ ’ two ’ ’
i n s t 1 = I n s t r u c t i o n ( Right True ) Rule { rType = RuleType Normal Fu l l , rMethod = Post ,

r U r l = L e f t kdcUrl , rContents = Map. s i n g l e t o n ’ ’ cbUrl ’ ’ ( show cbUr l ) }
response1 = Response { d e s t i n a t i o n I d e n t i f i e r = ’ ’ ’ ’ , o r i g i n = ur l1 , resNonce = ’ ’ ’ ’ ,

csp = emptyCSP , componentList = [ ] , f i l e L i s t = Map. empty ,
i n s t r u c t i o n L i s t = Page Ins t ruc t ions { a u t o L i s t = [ i n s t 1 ] , c o n d i t i o n a l L i s t = [ ] }}

i n s t 2 = I n s t r u c t i o n ( L e f t 1) Rule { rType = RuleType Normal Fu l l , rMethod = Post ,
r U r l = L e f t u r l1 , rContents = Map. s i n g l e t o n ’ ’ success ! ! ’ ’ ’ ’ ? ’ ’ }

component2 = Component { cOr ig in = ur l1 , c L i s t = [ i n s t 2 ] , cPos = 1 , c V i s i b l e = True}
response2 = Response { d e s t i n a t i o n I d e n t i f i e r = ’ ’ ’ ’ , o r i g i n = ur l1 , resNonce = ’ ’ ’ ’ ,

csp = emptyCSP , componentList = [ component2 ] , f i l e L i s t = Map. empty
i n s t r u c t i o n L i s t = Page Ins t ruc t ions { a u t o L i s t = [ ] , c o n d i t i o n a l L i s t = [ ] } }

i n s t 3 = I n s t r u c t i o n ( L e f t 1) Rule { rType = RuleType Normal Fu l l ,
rMethod = Post , r U r l = L e f t cbUrl , rContents = Map. s i n g l e t on ’ ’ success ! ! ’ ’ ’ ’ ? ’ ’ }

component3 = component2 {cOr ig in = cbUrl , c L i s t = [ i n s t 3 ]}
response3 = response2 { o r i g i n = cbUrl , componentList = [ component3 ] }
ruleMap = Map. f r omL i s t [ ( u r l1 , [ ( [ ’ ’ i d token ’ ’ ] , [ ] , response2 , Just response1 ) ,

( [ ] , [ ] , response1 , Nothing ) ] ) ,
( cbUrl , [ ( [ ’ ’ i d token ’ ’ ] , [ ] , response3 , Nothing ) ] ) ]

the server where to receive a valid request to said
URL, and an error response in case the request
is not valid. In the case of our servers these
rules are located at the end of the definitions and
are constructed by using all of the information
(i.e. request, responses, components, instructions,
and known information) declared previously.

6.2 Goal Specification in WebMC

After defining the behavior of the servers in the
protocol, we need to provide the security goals and
define the attacker to be used by our tool. To do
so we use the getServers and secondGoal functions,
as in Listing 3. The getServers function takes no
argument and returns a list of servers, a security
goal in the form of a list of requests and responses,
and the instance of the attacker to be used by
the tool when searching for the attacks. While the
secondGoal function takes an initial state and based
on that returns a new state under which the search
is to continue in order to find the attack.

As we can see in Listing 3, we are instantiating
one webKDC server, one webAS server, one
aServer server, the attacker, and defining the
goals. The servers are instantiated by calling the
previously crafted server specifications, while we

construct the goal with a request saying that the
attacker should send a valid request to the webAS
server. Finally, we instantiate a type two attacker
(by telling it that it may create new messages with
the True flag). The attacker also possesses a list
of the servers it has fully corrupted (the aServer),
a list of servers it has partially corrupted, a list of
all servers participating in the protocol, a list of
fields it can generate automatically (e.g. nonces),
an association list of known or acquired files, and
its knowledge (in this case a valid account at the
webKDC server). After the getServers function we
specify another function which will be called after
the first goal is reached. The secondGoal function
adds information to the user, changes the attacker
to a type one attacker, and defines a new goal
consisting of injecting the cookie to the user and
the user being able to access the original webAS
using the attacker identity.

6.3 Creating an Entry Point for WebMC

Once the servers, the goals, and the attacker
have been specified we can continue by creating
the entry point of our program. The explanation
of this entry point will be divided in two parts
presented in Listings 4 and 5. The first part, in
Listing 4, corresponds to the header. In the header

Computación y Sistemas, Vol. 21, No. 1, 2017, pp. 101–114
doi: 10.13053/CyS-21-1-2483

Victor Ferman, Dieter Hutter, Raúl Monroy110

ISSN 2007-9737



Listing 3. Sever and Attacker instantiation, specification of the goals for the WebAuth protocol
getServers : : ( [ Server ] , [ E i t h e r Request Response ] , A t tacker )
getServers = ( [ kdc , was , aServ ] , goals , myAttacker )

where kdc = webKDC ’ ’ kdc ’ ’
was = webAS ’ ’ was ’ ’ ’ ’ kdc ’ ’
aServ = aServer ’ ’ a t t ’ ’
cbUr l = Ur l { server = ’ ’ was ’ ’ , path = ’ ’ two ’ ’ }
aKnown = Map. f r omL i s t [ ( ’ ’ user ’ ’ , ’ ’ uname ’ ’ ) , ( ’ ’ pass ’ ’ , ’ ’ pass ’ ’ ) , ( ’ ’ cbUrl ’ ’ , show cbUr l ) ]
rPayload1 = Map. f r omL i s t [ ( ’ ’ i d token ’ ’ , ’ ’ ’ ’ ) ]
req1 = Request { o r i g i n I d e n t i f i e r = ’ ’ a t tacker ’ ’ , d e s t i n a t i o n = cbUrl , reqNonce = ’ ’ ’ ’ ,

method = Post , payload = rPayload1 }
goals = [ L e f t req1 ]
myAttacker = i n i t A t t a c k e r ’ ’ a t tacker ’ ’ True [ ’ ’ a t t ’ ’ ] [ ] [ kdc , was , aServ ] [ ] Map. empty aKnown

secondGoal : : State −> State
secondGoal cState = nState

where cUser = user cState
cAt tacker = a t t acke r cState
cGoals = mGoals cState
u r l 1 = Ur l { server = ’ ’ was ’ ’ , path = ’ ’ one ’ ’ }
aUr l = Ur l { server = ’ ’ a t t ’ ’ , path = ’ ’ ’ ’ }
kUr ls = [ aUr l ]
req2 = Request { o r i g i n I d e n t i f i e r = ’ ’ browser ’ ’ , d e s t i n a t i o n = aUrl , reqNonce = ’ ’ ’ ’ ,

method = Get , payload = Map. empty }
rPayload = Map. f r omL i s t [ ( ’ ’ i d token ’ ’ , ’ ’ ’ ’ ) ]
req3 = Request { o r i g i n I d e n t i f i e r = ’ ’ browser ’ ’ , d e s t i n a t i o n = ur l1 , reqNonce = ’ ’ ’ ’ ,

method = Post , payload = rPayload }
nUser = cUser {knownUrls = kUr ls}
nAt tacker = cAt tacker { asSessions = False }
nGoals = L e f t req2 : L e f t req3 : cGoals
nState = cState {user = nUser , a t t acke r = nAttacker , mGoals = nGoals}

of our entry point we should include the search
heuristic to be used or if the program is to be
interactively executed (in this case we are using the
hybrid search), the browser module to be used, the
protocol specification to be used, the user model to
be used, the data types of our method, and finally
some libraries that help us measure the execution
time of our program.

Listing 4. Header for entry point file
impor t BFTest
impor t Browser
impor t C r i t e r i o n . Measurement
impor t Data . Functor
impor t Data .Map as Map
impor t WebKereberos
impor t Types
impor t User

The second part of our entry point program, as
presented in Listing 5, is composed of the user
knowledge we want to use, the instantiation of the
browser we want to use, and the call to the search
heuristic (or the interactive version) we want to
use. After writing the entry point and the protocol
specification we just need to compile the entry

point, and execute the resulting file in order for the
search to start.

6.4 How Results are presented by WebMC

Finally, after compiling our code, we can execute
the program which will output either a trace that
leads to an attack (as presented in Figure 3) like
the one in Listing 6 or a message saying that it
reached its iteration limit and that no attack was
found for the protocol being analyzed.

In the case of the WebAuth protocol we present
in Listing 6 an excerpt of the output generated by
our tool. This excerpt serves as a sample of what
is to be expected from our program; however, we
must mention that since we are using a heuristic in
order to search all of the possible executions for an
attack the tool does not usually return the shortest
attack trace but first one it found. In this case, the
trace presents the same steps needed by Figure 3
in order to reach the point in which the user is able
to send the attack message.

Now that we have concluded our explanation of
how our tool works, how protocols are specified,
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Listing 5. Body of the program in charge of executing and defining User Knowledge
main : : IO ( )
main = do

putSt rLn ’ ’ Welcome ’ ’
( pFlag , pState ) <− l oopSta te i S t a t e
i f pFlag

then do
putSt rLn ’ ’ ’ ’
pu tSt rLn ’ ’ Cont inu ing wi th second goal ’ ’
loop ( secondGoal pState )

e lse putSt rLn ’ ’ : ( ’ ’
secs <\$> getCPUTime >>= p r i n t
putSt rLn ’ ’ ’ ’
pu tSt rLn ’ ’ Bye ! ’ ’
where u r l 1 = Ur l { server = ’ ’ was ’ ’ , path = ’ ’ one ’ ’ }

aUr l = Ur l { server = ’ ’ a t t ’ ’ , path = ’ ’ ’ ’ }
kUr ls = [ aUrl , u r l 1 ]
myUser = i n i t U s e r ’ ’ user ’ ’ Map . empty Map. empty kUr ls
myBrowser = in i tEmptyBrowser ’ ’ browser ’ ’
( myServers , goals , myAttacker ) = getServers
i S t a t e = State myUser myBrowser myServers myAttacker goals [ ]

and how protocols are instantiated in order to
be analyzed; we will proceed to discuss some
experimental results of using WebMC.

7 Experimental Results

So far we also have analyzed and reproduced
the results of [1] in which is reported an attack
to a version of the SAML protocol, found two
attacks for the OAuth 1.0 protocol that had been
reported by security researchers like the one
in [13], and found what we consider to be a
vulnerability on the WebAuth protocol (a version
of the Kereberos protocol for the web). As we
can see in table 1, our tool and method are able
to reproduce several kinds of attacks previously
reported by security researchers in both theoretical
and practical scenarios. We also report the time it
took for our tool to find each of the attacks, when
the attacks require characteristics not present on
one of the attackers we report NA and when the
tool was not able to find an attack in less than a
day either due to the characteristics of the attack
or the size of the search space we simply report an
NF.

The attack to SAML (see figure 4) consists on
reusing the token provided by IdP in order to use
a different service; as we can see, the secrecy of
the assertion is compromised and thus an attack
is possible. The attacks on the Oauth 1.0 protocol

Table 1. Experimental results

Time to Find the Attack

Protocol Type Two Attacker Type One Attacker

SAML <1s <1s

Oauth 1.0 (Attack 1) <1s NA

Oauth 1.0 (Attack 2) <1s NA

WebAuth
full NF NA
Sub Goals <2s

Session Establishment <1s NA
Session Fixation NF <1s

SAML-Fix NF NF

OpenID 1.0 NF NF

rely on the fact that tokens are not scoped by the
specification. While the first Oauth attack obtains
a new token and uses it to perform an arbitrary
action, the second obtains an already valid token
and uses it to perform an arbitrary action. As we
can see, the problem with Oauth is that tokens
can be freely obtained, and thus, do not offer any
kind of security beyond a weak authentication also
broken by the second attack. The vulnerability
we found in the WebAuth protocol relies on the
fact that cookies are used for user authentication,
which means that if an attacker possesses valid
credentials for the Kereberos/Authentication server
then it could inject cookies with its identity to
honest users. Finally, we found no attacks to the
proposed fix to SAML protocol and OpenID 1.0 if
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Listing 6. WebMC Sample Output for the WebAuth protocol attack
At tacker Send [ ] to Ur l {server = ’ ’ was ’ ’ , path = ’ ’ one ’ ’} wi th a t t acke r
was −> a t t acke r : Response nonceat tacker1
At tacker Pass Response : was −> a t t acke r
A t tacker Send [ ’ ’ cbUrl ’ ’ ] to Ur l {server = ’ ’ kdc ’ ’ , path = ’ ’ one ’ ’} wi th was
kdc −> a t t acke r : Response nonceat tacker2
At tacker Send [ ’ ’ user ’ ’ , ’ ’ pass ’ ’ , ’ ’ cbUrl ’ ’ ] to Ur l {server = ’ ’ kdc ’ ’ , path = ’ ’ two ’ ’} wi th a t t acke r
A t tacker Pass Response : kdc −> a t t acke r
A t tacker Pass Response : kdc −> a t t acke r
Cont inu ing wi th second goal
U −> B: Send Url U r l {server = ’ ’ a t t ’ ’ , path = ’ ’ ’ ’}
B −> a t t : request
A t tacker Pass Request : browser−> a t t
a t t −> browser : Response noncebrowser1
At tacker Add I n s t r u c t i o n s : a t t −> browser
A t tacker Add Cookies : [ Right ( Ur l {server = ’ ’ kdc ’ ’ , path = ’ ’ ’ ’} ) ,

R ight ( Ur l {server = ’ ’ was ’ ’ , path = ’ ’ ’ ’ } ) ] to a t t −> browser
A t tacker Pass Response : a t t −> browser
B −> was : request

’ ’ 1 .359 s ’ ’
Bye !

Fig. 4. The SAML protocol and an attack

formalized as described without adding or leaving
out any of the required functionality described in
the specifications.

We can see in Table 1 the results of our
experiments and would like to point to an
interesting result. While the tool is able to find
an attack to the WebAuth protocol it would take
too long to find it if it were to be specified with a
single goal, this happens due to the characteristics
of our heuristic and the great amount of messages
the attacker can construct. In order to find this
vulnerability we separated the search in two; the
first, using a type two attacker, in order to prove
that an attacker with valid credentials could get a
valid identity cookie; and the second, using the
type one attacker, in order to limit the interactions of

the attacker and to prove that the cookie could be
injected and then used by an unsuspecting victim.

8 Conclusions and Future Work

Browser based protocols, as expected, share
countless similarities with other protocols and
applications; however, in the case of browser
based protocols the participants in them do not
have a complete understanding of what is the
correct information flow or know about all of
the data being transfered from one participant to
another. Because of these differences is that we
need a model tailored specifically for them. A
tool the one presented would not only lead to a
better understanding of browser based protocol
properties, allow us to analyze potential security
vulnerabilities and shortcomings said protocols
may have, but also aid in the development of
new policies and capabilities for browsers and
servers since testing their security would require
little modification to the tool.

Tools encoding formal models of existing
software tend to be somewhat incomplete since it
would be impossible to formalize all of the existing
characteristics and interactions that arise in our
everyday world; however, we have identified some
ways in which WebMC can be expanded, and
enriched. We consider the following features the
most important to be added:
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— Accessing files within the host computer
— Modifying previous instructions
— Calculating values to be sent
— Inter-Frame communication
— A language for the specification of protocols,

applications, and security properties
With this said, the results of using WebMC

are promising, and we are working towards the
formalization of other protocols and finding new
attacks. We aim at making protocol verification
an integral part of the design process in order to
create better applications and protocols that take
security as one of their foundations.
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