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Abstract. The great advances in the field of neuron 

tracing have made possible a high availability of free-
access data in the Internet, which motivates the 
realization of automatic classifications. The increase of 
neuronal reconstruction databases makes the manual 
classification of neurons a time-consuming and tedious 
task for the analysts. Classification by human experts is 
also prone to inter- and intra-analyst variability due to the 
process’ inherent subjectivity. In this context, the need 
arises to find new descriptors having discriminative 
properties which allow separating the various neuron 
classes, and this constitutes currently an open problem.  
Such descriptors would contribute to improve the results 
of automatic classification. In this study the attention is 
focused on the use of new morphological features in 
supervised classification of traced neurons. 
Furthermore, we present a comparative analysis of 
different supervised learning algorithms oriented to the 
classification of reconstructed neurons. The results were 
validated using non-parametric statistical tests and they 
show the usefulness of the proposed solution. 

Keywords. Neuron tracing, morphological features, 

feature selection, automatic classification, non-
parametric tests. 

1 Introduction 

The great advances in the field of neuron tracing 
have made possible a high availability of data in 
the Internet, which encourages the realization of 
automatic classifications [21, 3]. Note that although 
the issue of classifying neurons had its beginnings 
since the emergence of the neuroscience as a 
scientific discipline, manual classification is a slow 
and tedious task for human analysts, and this fact 
determines the existence of an increasing interest 
in the use of machine learning techniques for this 

application [2]. It is worth to mention that manual 
classification is also subjected to inter- and intra-
analyst variability due to the subjectivity inherent to 
this process. Major efforts have been made in 
terms of automatic classification of neurons, but 
most of them have been done by using 
unsupervised techniques [14, 19]. These have 
been exploratory techniques aimed at discovering 
new types of cells or to confirm some known 
hypotheses about the neurons. Although useful, 
these classification systems are hampered by at 
least two deficiencies. First, a distinctive feature 
can be shared by several cell types. Second, one 
discriminative feature for certain neuronal types 
may be irrelevant and highly variable for other 
types. It is therefore necessary to find new 
descriptors having discriminative properties in 
regard of neuron classes, in order to improve the 
automatic classification. 

Today neural structures such as the axon and 
the dendrites remain the cornerstone in the 
analysis of neural development; pathology; 
computation and connections between neurons 
[21]. Neuron classification, however, has also been 
treated as a multimodal problem in which in 
addition to the morphological features, biochemical 
and electrophysiological features are also 
employed [13]. There are several software that 
perform morphometric analysis [22, 17, 7, 1]. The 
morphometric features are oriented mainly to the 
density of the branches of neuronal trees, the size 
of the roads and the relationship between their 
thickness, tortuosity, angles at bifurcations, volume 
and area, among others. One of the most 
commonly used ways to quantify neurons is the 
Sholl analysis, to which several modifications have 
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already been made [10, 11]. In order to 
characterize neurons and find common rules in the 
geometry of the dendrites, a study related with the 
angles formed by its branches has been carried out 
in [18]. Another way to represent the structure of 
neuronal trees is proposed in [12], where 
bifurcations are encoded as strings.  

In this study we focus the attention in the use of 
morphological features for supervised 
classification, which has been less treated and has 
shown better results than unsupervised techniques 
[14, 23]. In this case, a priori information which is 
used in unsupervised algorithms only to validate 
the classification process, allowed us to build our 
models. This paper presents a comparative 
analysis among different supervised learning 
techniques, oriented to the classification of 
reconstructed neurons using 
morphological features. 

2 Materials and Methods 

The data used for classification were extracted 
from the NeuroMorpho.Org website, which 
contains a large number of neuronal 
reconstructions from different species, brain 
regions and laboratories [15], freely downloadable. 
Neural reconstructions used in our research came 
from [14], where the procedure for the used neuron 
reconstruction process is explained in detail.  The 
neurons reconstructed there belong to laboratory 
rats. This data set is composed of 318 traced 
neurons, classified by human experts in 192 

interneurons and 126 pyramidal cells. The features 
were computed from arbor reconstruction files in 
the standard SWC file format. From each of these 
cells a set of morphometric features were 
computed to be used later in the classification 
process. The way of representing the neurons is by 
means of a graph, where their branching structures 
are represented by the directed adjacency matrix. 
A tree is composed by a set of labelled nodes 
connected by edges, these edges are also called 
compartments and they have an associated 
diameter. Only the compartments associated to a 
specific feature are to be taken into account, the 
rest being discarded. 

The first data set (called LM) is composed by 
features extracted using the L-Measure software, 
which provides 43 morphological features. Each of 
these features is associated with 7 parameters 
[22], as shown in Table 1. In many cases, some of 
these 7 parameters are meaningless, therefore it is 
necessary to preprocess the data set. The second 
data set (called NF) is composed by new features 
proposed in this research which are shown in 
Table 2. 

The 3rd data set is simply the union of the two 
previous ones (called Union), and it was created in 
order to determine if the incorporation of the 
proposed features can improve the performance of 
classifiers. Three matrices were then formed, 
having 318 rows and a number of columns equal 
to the number of features used. Some feature 
selection techniques were used to reduce the 
cardinality of the data sets. This was made in order 
to comply with the recommendations made in [9], 

Table 1. Examples of some features computed with L-Measure for an interneuron cell 

Metric 
Total 
Sum 

Compartments 
considered 

Compartments 
discarded 

Minimum Average Maximum Std 

Soma 
Surface 

43.709 30 2211 0.184 1.457 2.657 0.693 

Number of 
bifurcation 

123 123 2118 1 1 1 0 

Number of 
tips 

126 126 2115 1 1 1 0 

Volume 1112.2 2240 1 0.011 0.496 155.21 3.557 

Fractal 
Dimension 

177.9 168 2073 1 1.059 1.394 177.97 

Computación y Sistemas, Vol. 21, No. 3, 2017, pp. 537–544
doi: 10.13053/CyS-21-3-2495

José D. López-Cabrera, Juan V. Lorenzo-Ginori538

ISSN 2007-9737



about having an appropriate relationship between 
the numbers of cases and features to prevent 
overfitting of the classification algorithms, This 
procedure tends also to improve the performance 
of classifiers. 

2.1 Feature Selection 

A selection was made of a subset of the features 
included in the original set, with the purpose of 
obtaining maximum performance with minimum 
effort. All feature selection algorithm consists of 
two basic components: evaluation function and 
search method. As search method was used Best 
First, with three alternatives: Forward, Backward 
and Bi-Directional. In the case of the evaluation 
function, the methods used were Correlation-
based Feature Selection (CFS) and Consistency-
based Subset Evaluation. The CFS evaluation 
function tends to produce subsets containing 
features that are highly correlated with the class 
and uncorrelated between them [16]. In the case of 
Consistency, it is characterized by having a strong 
dependence on the training set, trying to remove 
the minimum subset that satisfies an acceptable 
rate of inconsistency, usually set by the user.  

2.2 Neuronal Classification 

The classification process had two purposes: to 
determine whether using the new proposed 
features improved the quality of classification and 
to compare the performance of several classifiers. 
The metric selected to quantify the performance of 
classifiers was the AUC or area under the ROC 
(receiver operating characteristic) curve. As 
methods of machine learning classifiers were used 
Logistic Regression (LR), KNN, Random Forest 
(RF), C4.5 and Naive Bayes (NB) [8]. Both feature 
selection techniques and classification algorithms 
were applied using the widely known open-source 
data mining software tools named WEKA [6]. The 
parameters of the classifiers were those who come 
by default in WEKA. For KNN we decided to use k 
= 3, since this value led to the best result obtained 
during the experiments. 

Table 2. Description of the new features proposed 

Name Description 

IPmean Mean value of the in-plane angle IP.  

IPstd Standard deviation of the in-plane angle 
IP.  

TP5mean Mean value of the torsion angle TP5 

TP5std Standard deviation of angles TP5 

D-CM-C Euclidean distance from C_m to C. 

D-S-CM Euclidean distance from S to C_m 

D-S-C Euclidean distance from S to C 

 
Table 3. Results after applying feature selection 

techniques for each dataset, showing the number of 
feature (NuF) obtained 

Data 
Set 

Search Method Evaluator NuF 

LM Best 
First 

Forward CFS  8 

   Consistency 11 

  Backward CFS  8 

   Consistency 16 

  Bi-
Directional 

CFS  8 

  Consistency 11 

NF  Forward CFS  4 

   Consistency  5 

  Backward CFS  4 

   Consistency  5 

  Bi-
Directional 

CFS  4 

  Consistency  5 

Union  Forward CFS  9 

   Consistency 11 

  Backward CFS  9 

   Consistency 13 

  Bi-
Directional 

CFS  9 

  Consistency 11 

 
Fig.1. Representation of the vectors used to compute 
the angles in a neuron 
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The R software was used, specifically the 
SCMAMP package, in order to apply statistical 
tests [4]. We applied 5x2cv as described in [5] as 
well as the Friedman test, to find out if there were 
significant differences between some of the 
classifiers analyzed. In the case where such 
differences were found, the Finnes post hoc test 
was applied, which is considered generally a good 
choice because of its simplicity and power. 

2.3 New Proposed Features  

The first feature implemented was the in-plane 
angle (𝐼𝑃𝑖). It is computed using three points of the 

neuron, as it is shown in equation 1. Figure 1 
shows the vectors to compute the angles in 
the neurons: 

𝐼𝑃𝑖 = cos−1 (
𝑇2⃗⃗ ⃗⃗  

|𝑇2⃗⃗ ⃗⃗  |
∙

𝑇3⃗⃗ ⃗⃗  

|𝑇3⃗⃗ ⃗⃗  |
), (1) 

where 

𝑇2⃗⃗ ⃗⃗  =  𝑃𝑖
⃗⃗ −𝑃𝑖−1

⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑇3⃗⃗ ⃗⃗  =  𝑃𝑖+1
⃗⃗ ⃗⃗ ⃗⃗  ⃗ −𝑃𝑖

⃗⃗ . 

Notice that the point 𝑃𝑖 has the coordinates 
(𝑋𝑖  𝑌𝑖  𝑍𝑖) in a three dimensional space and in this 
analysis it is represented by a position vector 

 

Fig. 2. Representation of an interneuron cell used in the experiments 

 

Fig. 3. Representation of a pyramidal neuron used in the experiments and some features computed 

related with Euclidean distances 
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traced from the coordinate axes’ origin up to the 
point itself. The number of 𝐼𝑃𝑖 calculated for the 

whole neuron is computed by equation 2, where 𝑃𝑡 
is a total of nodes and 𝑃𝑡𝑒𝑟 is a number terminal 
points. Notice that it is necessary also to subtract 
one, because the initial point is not counted: 

𝑃𝑣𝑎𝑙𝐼𝑃 = 𝑃𝑡 − 𝑃𝑡𝑒𝑟 − 1. (2) 

Another feature implemented was the torsion 
angle. It is composed of the angle between two 
consecutive planes whose pivot point is 𝑃𝑖.  

Then using the procedure described above for 
the vectors associated to points 𝑃𝑖−1   and 𝑃𝑖−2, we 

defined 𝑇1⃗⃗ ⃗⃗   and analogously from the vectors 

associated to 𝑃𝑖+1  and 𝑃𝑖+2  is defined 𝑇4⃗⃗ ⃗⃗  .  

The orthogonal vectors to the two planes 

containing the vectors 𝑇1⃗⃗ ⃗⃗  ,  𝑇2⃗⃗⃗⃗⃗⃗  and 𝑇3⃗⃗ ⃗⃗  ,  𝑇4⃗⃗⃗⃗⃗⃗  were 
obtained using the vector cross product and then 
the angle between these vectors which 
corresponds to the rotation between the two planes 
considered is calculated as shown in equation 3:  

𝑇𝑃5𝑖 = cos−1 (
𝑇1⃗⃗ ⃗⃗  ×𝑇2⃗⃗ ⃗⃗  

|𝑇1⃗⃗ ⃗⃗  ×𝑇2⃗⃗ ⃗⃗  |
∙

𝑇3⃗⃗ ⃗⃗  × 𝑇4⃗⃗ ⃗⃗  

|𝑇3⃗⃗ ⃗⃗  × 𝑇4⃗⃗ ⃗⃗  |
), (3) 

where  

𝑇1⃗⃗ ⃗⃗  =  𝑃𝑖−1
⃗⃗ ⃗⃗ ⃗⃗  ⃗ −𝑃𝑖−2

⃗⃗ ⃗⃗ ⃗⃗  ⃗,  𝑇2⃗⃗ ⃗⃗  =  𝑃𝑖
⃗⃗ −𝑃𝑖−1

⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑇3⃗⃗ ⃗⃗  =  𝑃𝑖+1
⃗⃗ ⃗⃗ ⃗⃗  ⃗ −𝑃𝑖

⃗⃗ , 

𝑇4⃗⃗ ⃗⃗  =  𝑃𝑖+2
⃗⃗ ⃗⃗ ⃗⃗  ⃗ −𝑃𝑖+1

⃗⃗ ⃗⃗ ⃗⃗  ⃗. 

The number of torsion angles calculated for the 
whole neuron is computed by equation 4, where 𝑃𝑡 
is the total number of points (nodes) and 𝑃𝑡𝑒𝑟 is 
the number of terminal points in the neuron:  

𝑃𝑣𝑎𝑙𝑇𝑃5 = 𝑃𝑡 − 𝑃𝑡𝑒𝑟 ∗ 2 − 2.  (4) 

For the list obtained with 𝑇𝑃5𝑖, we compute 

global statistics like mean (�̅�) and standard 

deviation (𝜎). Notice that differently to what is 
proposed in [17], to compute the torsion angle we 
used here five points instead of four, as shown in 
Figure 1. 

The features calculated afterwards are 
associated with the Euclidean distances in the 
three-dimensional space formed between three 
points. The first is the root of neuron tree (soma, 𝑆).  

Table 4. Performance of the Logistic Classifier 

CR SM Evaluator mean std NuF 

LM Forward CFS 0.953 0.022 8 

Consistency 0.965 0.009 11 

Backward Consistency 0.799 0.011 16 

NF Forward CFS 0.776 0.015 4 

Consistency 0.767 0.020 5 

Union Forward CFS 0.974 0.012 9 

Table 5. Performance of the Random Forest Classifier 

CR SM Evaluator mean std NuF 

LM Forward CFS 0.958 0.012 8 

Consistency 0.976 0.009 11 

Backward Consistency 0.883 0.012 16 

NF Forward CFS 0.845 0.024 4 

Consistency 0.848 0.026 5 

Union Forward CFS 0.973 0.009 9 

Computación y Sistemas, Vol. 21, No. 3, 2017, pp. 537–544
doi: 10.13053/CyS-21-3-2495

Automatic Classification of Traced Neurons Using Morphological Features 541

ISSN 2007-9737



The second point is the centroid (𝐶) of the tree, 

and the third is the center of mass (𝐶𝑚). 𝐶 is 
defined by equation 5. 𝐶𝑚 is computed using 

equation 6, where 𝑟𝑖  is the position vector (𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖) 

and 𝑉𝑖 is associated with the cylindrical volume 
formed between two consecutive nodes, which has 
its radius as prior information.  

Its height (ℎ) is calculated as the distance 
between the two node points, as shown in equation 
7. The description of the implemented features is 
shown in Table 2: 

𝐶 =
∑ 𝑟𝑖

𝑃𝑡−1
𝑖=0

𝑃𝑡

, (5) 

𝐶𝑚 =
∑ 𝑉𝑖𝑟𝑖

𝑃𝑡−1
𝑖=0

∑ 𝑉𝑖
𝑃𝑡−1
𝑖=0

, (6) 

𝑉 = 𝜋𝑟2ℎ. 
(7) 

Figure 2 and Figure 3 show examples of the 
classes of neurons that are being analyzed in this 
research. In these figures it is observed the 
graphical representation of some of the new 
features proposed, notice that the distances 
between the above mentioned node points 
are different. 

3 Results and Discussion  

Once the feature selection method is applied, new 
subsets of features are obtained, which coincide in 
many cases, as shown in Table 2. 

In the case of the set LM and using the CFS 
evaluator, the same subset of features is obtained 
by the three search methods. The new subset 
contained 8 features. On the other hand, the 
selection using the Consistency evaluator led to 
different results when compared to the previous 
one. The Forward and Bi-Directional search 
strategies selected the same subset of 11 features 
and in the case of the Backward search method the 
subset had 16 features. 

For the Union set, the results obtained using the 
Consistency evaluator were the same obtained for 
the LM subset, i.e. the feature selection method 
chose the same subset of features in the case of 
LM as well as in the case of Union. Something 
different happened with the CFS evaluator for the 

Union set where nine features were selected. 
Three of these 9 features selected belonged to the 
NF set, these were 𝐼𝑃𝑚𝑒𝑎𝑛, D-S-Cm and 

𝑇𝑃5𝑚𝑒𝑎𝑛 i.e. three out of the nine features 
contained in this set, were among the new features 
proposed.  

In the case of NF with the CFS evaluator, there 
is a coincidence among the sets of features 
obtained for the cases of Forward, Backward and 
Bi-Directional, resulting in a total of four features. 
In the case of the Consistency evaluator, the 
resulting subset contained five features instead 
of 4. 

Table 4 shows the results of the LM classifier 
for the subsets of features obtained with different 
feature selection techniques. Given that in some 
cases the subsets match, the results of the 
classification were also the same. Hence only the 
results that were different are shown. For the first 
subset of features belonging to the set obtained 
from L-Measure, the highest value was 0.965, 
using the Consistency evaluator with 11 features. 
In the case of the second set of features (NF, 
proposed in this research) AUC values ranged 
between 0.76 and 0.77, demonstrating its 

 

Fig. 4. Boxplot of performance of the five classifiers 

according to their AUC values 

 

Fig. 5. Results of the Finnes Post Hoc test, to 

determinate if any of the classifiers showed significant 
statistical differences when compared to the others 
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discriminative power, however they did not reach 
the values achieved by the features from L-
Measure.  

In the case of the last set of features that is the 
union of the previous two sets, relatively higher 
values were obtained than those previously 
achieved independently when using features from 
L-Measure and the AUC for the new features 
attained the value 0.974, and this was the highest 
AUC performance for this classifier. It is pointed 
out that the subset obtained with Union had fewer 
features and better performance in the 
classification, making this subset more 
computationally efficient. 

The Random Forest classifier performance is 
shown in Table 5. It is observed that there was a 
noticeable increase in AUC for the case of the new 
features proposed, because in the previous 
classifiers AUC were around 0.77 while now this 
value was raised up to 0.847. We also found for 
this classifier a higher AUC value of 0.976, which 
was reached with the LM set using the Consistency 
search strategy and 11 features. However, the 
Union set also had a good performance, 
demonstrating that the proposed new features 
together with those calculated with L-Measure are 
a good alternative for automatic classification of 
these classes of reconstructed neurons. 

3.1 Comparison between Classifiers 

Taking into account that the best performances of 
the classifiers were observed for the Union set of 
features, this was used as a basis to determine 
whether there are significant differences between 
the performance of the five classifiers that were 
used in the experiments. Fig shows the distribution 
for each classifier of the calculated AUCs in each 
of the classification experiments.  

After applying the Friedman aligned rank test, 
the p value was less than 0.05, which means that 
there were significant differences between the 
classifiers used. To find out between which of 
these classifier existed significant differences, the 
Finnes post hoc test was applied, the results of 
which are shown in Figure 5. In this figure it is 
observed that there were neither significant 
differences between the classifiers forming the first 
group, LR, RF and KNN, nor differences between 
those forming the second group, e. g. C4.5 and 

NB, while there were significant differences 
between these two groups according to which the 
first group exhibited a better performance. 

4 Conclusions 

In this study, various methods to classify 
reconstructed (traced) neurons were compared, 
based on the extraction of morphological features 
by means of the L-Measure software and new 
features proposed by the authors. Feature 
selection methods were employed to establish an 
appropriate relationship between the number of 
cases and the number of features in order to avoid 
overfitting of the classification algorithms.  

The data used were downloaded from the 
NeuroMorpho.org website, which offers the largest 
number of reconstructed neurons freely 
downloadable in the Internet. There were 
introduced eight new features with the purpose of 
increasing the discriminative power of the 
automatic classification algorithms. These features 
were based on the in-plane deviation and torsion 
angles in the neural tree as well as in the distance 
from S to Cm (D-S-Cm). The Union subset of 
features which contained the new features, 
showed in many cases an improvement of the 
classification performance. In addition, this subset 
had a lower number of features, which made it 
computationally less expensive. The statistical 
analysis showed that the best classifiers were LR, 
RF and KNN. 
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