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Abstract. Velocity in the Particle Swarm Optimization
algorithm (PSO) is one of its major features, as it is
the mechanism used to move (evolve) the position of
a particle to search for optimal solutions. The velocity
is commonly regulated, by multiplying a factor to the
particle’s velocity.  This velocity regulation aims to
achieve a balance between exploration and exploitation.
The most common methods to regulate the velocity
are the inertia weight and constriction factor. Here,
we present a different method to regulate the velocity
by changing the maximum limit of the velocity at each
iteration, thus eliminating the use of a factor. We
go further and present a simpler version of the PSO
algorithm that achieves competitive and, in some cases,
even better results than the original PSO algorithm.

Keywords. Particle swarm, velocity, limits.

1 Introduction

The Particle Swarm Optimization (PSO) algo-
rithm was originally proposed by Kennedy and
Eberhart in the mid-1990s [10, 6]. PSO is
a population-based stochastic search algorithm
whose original aim was to solve continuous

optimization problems. The members of the
population are called particles in PSO, and they
are represented in vectorial form by their position
x in the search space. A particle also stores the
position p (its personal best) with the best fitness
value that this particular particle has reached so
far. The particles change their position through
a process that incorporates a velocity. Such
a velocity is computed using the personal best
position p of the particle and the position g of the
particle with the best known fitness value of the
swarm (called the global best). The formula to
compute the velocity is shown in Equation (1):

Vi1 = vi+rici(p—x) +reca(g —x). (1)

The current velocity v;; is computed by adding
two components to the previous velocity v, of the
particle. The first component is the difference
between the current position « of the particle
and the position p with the best value obtained
by the particle. This is called the cognitive
component. The second component is computed
by the difference between the current position x of
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the particle and the position g of the best known
value of all particles of the swarm. This is called the
social component. The components are multiplied
by the learning constants ¢; and c;. Usually the
value of these constants is the same, and greater
than one. Each component is also multiplied by
random numbers r; and r,, respectively. Using this
computed velocity, the next position of the particle
is updated using Equation (2):

Tiy1 = T+ Vgl (2)

One of the keys for the popularity of the PSO
algorithm is its simplicity, since, as shown before,
it consists only of two equations to update the
position of the particles.

2 Velocity Regulation

The regulation of the velocity has been important
since the initial developments of the PSO
algorithm; Eberhart [6] discussed the use of a
maximum value for the velocity, and showed results
for different values of the maximum velocity. A
more complete study on the effects of the velocity
limit is shown in [9] by Kennedy and later in [11],
where Shi and Eberhart introduced the Inertia
Weight method (IW) to limit the velocity of the
particles. The IW method consists in multiplying
a factor w called inertia to the previous velocity of
the particle when the current velocity is computed,
thus Equation (1) is rewritten as:

Uiyl = wogtrie(p— )+ rece(g —x). (3)

In order to balance global and local search,
the inertia factor w is introduced. In [11], the
authors also used a maximum velocity value. They
also tested several values for the inertia weight
in order to determine which of them produced
better results. In a further paper (see [12]) a
linear decreasing value for the inertia weight factor
w, is proposed. In this case, the authors also
limited the maximum value of the velocity. Shi and
Eberhart [12] also proposed to use the maximum
value of the position as a limit to the velocity,
and thus the maximum values for the velocity, for
dimension i are (—Vimax, Vimax) With Vimax =
Xi,max-
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The second most popular method to regulate
the velocity is the constriction factor, which was
originally introduced by Eberhart [7], and is
discussed in detail in [5]. This method also
consists in multiplying a factor not only to the last
computed velocity but to the full computed velocity
as expressed in Equation (4):

viy1 = X[vetriei(p — @) +raca(g — x)] (4)

The constriction factor x is computed as a
function of the learning constants as shown in
Equation (5)

2K
Xl Ve a9

where ¢ is the sum of the learning constants
¢ = c1 + co, and k is an arbitrary constant in
the range [0,1]. Eberhart [7] recommended as
a rule of thumb, to use a velocity limit along
with the constriction factor method. Bratton and
Kennedy [4] defined a standard PSO algorithm
(SPSO), for which it was suggested the use of a
local ring topology. In SPSO a particle can only
communicate with a limited number of particles
(typically, with only two other particles) and not with
the full swarm. The Constriction Factor model uses
a swarm size of 50 particles, with a non-uniform
initialization of their positions. Additionally, this
approach allows the particles to leave the feasible
search space, but when that happens it does
not evaluate the best position of such infeasible
particles. This approach does not include a limit to
the velocity but recommends the use of a generous
Vinaz value.  Thus, although the aim of the
inertia weight and the constrictor factor methods
is to achieve a balance between exploration and
exploitation, it also attempts to limit the particles’
velocity. In order to avoid that the particles stray
far away from the boundaries of the search space,
the use of an explicit velocity limit is recommended.
Other research works [8] try to adapt or modify the
value of w, but they do not discard the use of a
factor to limit the velocity.

Barrera and Coello [3] proposed a version of
the PSO algorithm without the use of the Inertia
Weight factor or Constriction model, but introduced
a parameter r € (0,1). A factor r* is used

(5)
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to compute a new velocity limit, as show in the
following equation:

lit = Tt li7 (6)

where [;; is the velocity limit for the i*" variable at
iteration number ¢, and I; is the initial velocity limit
for the it" variable.

In a more recent work, Adewumi and Ara-
somwan [1] presented the Improved Original
PSO (IOPSO) with dynamic adjusted velocity and
position limits. The velocity limits for each variable
are computed in this case as a fraction of the
current limit for the position. Thus, the maximum
and minimum velocities for the i'* particle are
computed using the following equations:

Umaz = ULmax;
Umin = HTmin,

where x,,;, and x,,,, are the minimum and
maximum values for the position of a particle,
respectively.

The values for z,,;, and z,... are computed
at each iteration by finding the minimum and
maximum values for all variables of all particles.
This is done by first computing the upper and lower
bounds L, and Sy:

L4 = max (Inax(:cg)) ,

? J

Sq = min (mm(zf)) ,
i J
where z7 is the value of the i*" particle of the j'*
variable. The x,,;, and z,,,, are computed as
follows

Tmazx = max(‘LdLlSdD’
Tmin = ~Tmaz-

Thus, the value of the velocity limit is changed
dynamically as the values for z,.. and zmn
change.

Here, we propose a method that only uses
the velocity limit. We argue that our proposed
approach is simpler than the existing ones,
since it does not use any factor to alter the
particle’s velocity. In fact, our proposed approach
somehow provides a simplified version of the PSO
algorithm, since it eliminates the use of the learning
constants.

3 Velocity Limit Decreasing Method

In order to have a good balance between
exploration and exploitation by only using a velocity
limit, the limit of the velocity is changed at every
iteration of the PSO algorithm. To do this, the
velocity limit L; for the i*" variable is initialized to
half of the length of its search limits, as defined in
Equation (7):

(Xi,maa: - Xi,min)

L; =
2

(7)

Then, at each iteration, to compute the current
velocity limit I;(¢), the initial velocity limit L; is
multiplied by a factor which is a function of the
current iteration t. Therefore, the limit for the
velocity at iteration ¢ is:

Li(t) = f(t)Li, (8)

where f(¢) is a given function. The simplest case
to test is a simple straight line, as defined in
Equation (9):

f(t)=—-t+1. 9)

The plot of the function f(t) is shown in Figure 1.
The function in Equation (9) is defined in the range
[0,1] and returns values in the same range. For
the initial value ¢ = 0, f(0) = 1, and for the last
value, t = 1, we have f(1) = 0. In order to use
the function of Equation (8), we divide the current
iteration by the total number of iterations. The
velocity limit at iteration ¢ is computed using:

lb(t) = f(t/tmaw)Lia (1 O)

where t,,.. is the total number of iterations. The
idea is that gradually decreasing the velocity limit
helps the swarm to converge at the end of the
evolutionary process but, at the same time, it
allows the particles to explore the search space
at the beginning. Equation (10) can be adjusted
if the termination criteria is a maximum number
of function evaluations e,,,, instead of a given
number of iterations. Equation (10) is written as
follows:

li(e) = fe/emax ) Lis (11)
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where e is the current number of function
evaluations and e, is the maximum number of
evaluations.

Contrasting with the work of Barrera and
Coello [3], we present here a more general
method. Setting the function f(¢) in Equation (8):

f)y=r", (12)

for a certain fixed value of r, it produces the
method described in [3].  Function f(¢) can
be modified to use more parameters, although
our goal is to have a simpler version of the
PSO algorithm.  We avoid adding any extra
computations or dependencies. We also avoid
limiting the position of the particles. Unlike the
method proposed by Adewumi and Arasomwan [1],
we do not modify the position of the particles if
they go out of the feasible space. Thus, we have
less extra computations. Additionally, the particles
out of range are not evaluated in order to avoid
performing unnecessary function evaluations.

A simple linearly decreasing velocity limit may
result in an equilibrium between local and global
search, but we aim to give PSO the capability
to perform global search for a longer time or to
achieve a faster convergence. We explored the
use of polynomial functions to regulate the form the
velocity limit decreases with time.

We used the following set of functions to try to
enhance the global search over the local one:

gi(t) = —t* +1, (13)
ga(t) = —t3 +1, (14)
g3(t) = —t° +1, (15)
ga(t)=—t"+1 (16)

The g functions are derived from the simplest
non-linear function, the parabola g(z) = 2. Close
to the value x = 0 the function is evaluated to
g(0) = 0 and for x = 1 we have g(1) = 1. Thus,
g(z) is a good candidate to be used as our f(t).
The parabola function is easily transformed first by
a reflection in the z-axis by multiplying by —1 with
the result go(r) = —2? and values go(z = 0) = 0,
and go(xz = 1) = —1. Finally, we add 1 to get the
required values for the function f(¢). That is, we
have ¢1(z) = —22 + 1 with values g;(z = 0) = 1
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Fig. 1. The most simple function to limit the velocity

and g;(z = 1) = 0. The rest of the g functions are
obtained using a similar method, but increasing the
power of the variable being evaluated. This gives
us the result of a slower decrease at the values
close to t = 0 and a faster decrease at the values
closetot = 1.

The change in the power of the variable ¢ gives
flexibility in the adjustment of how the velocity limit
decreases. It is also possible to use fractions in
the power value to have a function f(t) close to the
behavior of a straight line.

Those functions decrease more slowly in the
values closer to zero, and decrease faster as their
argument is closer to one. As we increment the
value of the power of z, the longer is the effect of
a slow decrement. Conversely, the decrement is
faster as the argument is closer to one. The plot of
the ¢ functions is shown in Figure 2.

On the other hand, in order to enhance the use
of local search over the global search, we used the
set of functions h, described in equations (17-20):

ha(t) = (t = 1)%, (17)
ha(t) = —(t = 1)°, (18)
hs(t) = —(t = 1)°, (19)
ha(t) = —(t — 1) (20)
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Fig. 2. Collection of functions to try to increase the global
exploration of the PSO algorithm

The plot of the h functions is shown in Figure 3.
The h functions in contrast to the ¢ functions,
decrease faster if their argument is close to zero,
and more slowly as it approximates to one. The
h functions are derived with a similar method as
the ¢ functions, and from the same base function,
the parabola. In this case, a reflection is not
needed but a displacement of the position where
the parabola evaluates to zero. This is done by
subtracting 1 from the variable, so we have hy(z) =
(x—1)2, and no further modification is needed since
ho(x = 0) = 1 and ho(z = 1) = 0. Thus, we set
hi(t) = (t — 1)2. In this case, it is necessary to
be careful if we raise the value of the power. For
the odd values 3,5,7 a reflection in the z-axis is
needed to achieve the desired results.

Using the functions described above, we start
with a velocity limit of L, and then decrease the
limit, slowly at the beginning and faster at the
end, for the set of functions ¢, and faster at the
beginning and slower at the end for the set of
functions h. An alternative strategy is to start with
a small value for the velocity limit /;, increase to a
maximum, and then finally decrease it again. In
order to achieve this, we use the functions | and
m which are defined in equations (21) and (22),
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Fig. 3. The set of functions h. These functions decrease
faster as they approach zero and they decrease more
slowly as they approach one

respectively:
I(t) = —4(t — 0.5)% + 1, (21)
() = 412 if0<t<05 (22)
U=V ae-1)2 ifs<t<1

The plot of function ! is shown in Figure 4. The
function is a parabola adjusted to have values of
zero at the positions ¢t = 0 and ¢ = 1 and to have
a maximum value of one in the position ¢ = 0.5.
Function [ increases and decreases fast.

The plot of function m is shown in Figure 5.
Function m is a composition of two parabolas
adjusted to have values of zeroatt =0and ¢t = 1
and have a maximum value of one at ¢t = 0.5. The
function m increases and decreases slower than
function [.

We do not make any change to the original
equations for computing the position and velocity
of a particle. Thus, we use the following equations
to compute them:

Vi1 = v +rici(p—x) 4+ raca(g — x), (23)
Tyl = T+ Uiyl (24)
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Fig. 4. The function I. This function starts with a small
value and it increases and then decreases slowly
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Fig. 5. The function m. This functions starts with a small
value and it increases and then decreases fast

The algorithm for our version of the PSO
algorithm is outlined in Algorithm 1. The only
change in the algorithm, with respect to the original
PSO, is the computation of the velocity limit for the
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current iteration or function evaluation count (lines
1 and 13).

Algorithm 1: Basic PSO algorithm with
computed velocity limit at each iteration.

1 Compute initial velocity limits;
2 Initialize position;

3 Initialize velocity;

4 while termination condition is not fulfilled do
5 foreach particle do
6
7
8
9

compute velocity (using equation 23);
limit velocity;

compute position (using equation 24);
if position in feasible space then

10 | evaluate position;

1 end

12 end

13 Compute new velocity limit;
14 end

4 Experiments and Results

The PSO algorithm used in the experiments is
presented in Algorithm 1, where the initialization of
the position of the particles is asymmetric (only in a
region of the search space). The topology adopted
is the global best (gbest), that is, the best position
g is selected from all particles in the swarm. If
a particle leaves the feasible space, its position
is not updated, i.e., the position and velocity of
the particle are not modified. The iteration of the
PSO algorithm ends when the maximum number
of function evaluations is reached. The reported
results are the numeric error computed as |f(x) —
f(z*)|, where f(z) is the best value obtained after
the termination criteria is reached, and f(z*) is
the value of the optimum of the test function being
evaluated.

The parameters used in the experiments are the
same as those adopted in [4]. Such parameters
include a swarm size of 50, a number of 300,000
function evaluations, and 30 dimensions for the
n-dimensional test functions. The inertia weight
is w = 0.729 and the learning constants are ¢; =
co = 1.49445. The initialization of the position of
the particles is asymmetric [2], and 30 independent
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runs were performed to collect our statistics. In the
following sections we present a comparison of the
results obtained with the standard PSO and using
the described functions to decrease the velocity
limit with the description of the obtained results.

4.1 Standard PSO and Linear Decreasing
Velocity Limit

The first experiment is to use the linear function
described in Equation (9) to decrease the velocity
limit (see Figure 1). Results for the comparison
of the standard PSO versus the linear decreasing
limit, mean value only, are shown in Table 1.

Table 1. Comparison of the results of the standard PSO
and the linear decreasing velocity limit

standard PSO  Linear decreasing

Function mean mean

ackley 1.9733E+01 1.9980E+00
camelback 4.6510E-08 9.8186E-06
goldsteinprice 2.4300E+01 4.7737E-05
griewank 1.7208E-02 1.0668E+00
penalizedone 1.2097E-01 2.9167E-01
penalizedtwo 4.6242E-02 3.8737E-01
rastrigin 1.7113E+02 6.3297E+01
rosenbrock 4.4084E+01 4.1856E+02
schwefelone 1.8303E+01 5.7644E+02
schwefeltwo 1.6349E+04 1.7797E+04
shekelfive 5.0524E+00 5.0534E+00
shekelseven 5.2741E+00 4.9237E+00
shelelten 5.3608E+00 5.3616E+00
sphere 2.0311E-18 7.7532E+00

From Table 1, we can observe that in three test
functions the method of linearly decreasing the
velocity limit produced better results. In the other
test functions, the results are comparable, although
in the case of the Sphere, we obtained a worse
result than the standard PSO.

4.2 Balancing Exploration and Exploitation

To try to balance exploration and exploitation, we
used second order polynomials to limit the velocity.
Such polynomials are described in equations (13-
16) and they decrease first slowly and then fast.
We expect this to help the exploration phase of
the PSO algorithm. Conversely, the polynomials

described in equations (17-20), which decrease
first fast and then slower, are aimed to foster the
exploitation phase.

The results of the g family function are shown in
Table 2. The first column corresponds to the test
function being used. The second column contains
the mean value for the standard PSO (SPSO) and
the rest of the columns show the mean values for
the g function family. The results in Table 2 show
than in some cases we have better results but this
is not the general case. The results for the Sphere
test function are worse than those obtained from
the simple linear decrease of the velocity limit.

Table 2. Comparison of the results of the standard PSO
and the g family function

SPSO g1 g2

Function mean mean mean

ackley 1.9733E+01  2.9982E+00  3.6223E+00
camelback 4.6510E-08 5.8372E-05 1.1289E-04
goldsteinprice  2.4300E+01  3.5533E-04  5.1748E-04
griewank 1.7208E-02 1.2698FE+00  1.6192E+00
penalizedone  1.2097E-01  1.1242E+00  2.3880E+00
penalizedtwo 4.6242E-02 1.7024E+00  4.3971E+00
rastrigin 1.7113E+02  9.4992E+01  1.4980E+02
rosenbrock 4.4084E+01  1.0466E+03  3.4962E+03
schwefelone 1.8303E+01  1.4625E+03  2.0464E+03
schwefeltwo 1.6349E+04  1.8399E+04  1.8819E+04
shekelfive 5.0524E+00  4.2201E+00  3.4036E+00
shekelseven 5.2741E+00  4.2305E+00  4.2445E+00
shelelten 5.3608E+00  4.4778E+00  4.1323E+00
sphere 2.0311E-18 3.3257E+01  6.9510E+01

93 94

Function mean mean

ackley 4.7230E+00  5.6539E+00
camelback 2.2151E-04  4.1503E-04
goldsteinprice 1.9029E-03  1.6954E-03
griewank 2.6719E+00  4.1273E+00
penalizedone 5.1595E+00  8.7892E+00
penalizedtwo 1.7640E+01  1.1807E+02
rastrigin 1.7465E+02  1.9648E+02
rosenbrock 9.1464E+03  2.2028E+04
schwefelone 3.0486E+03  3.8498E+03
schwefeltwo 1.9409E+04  1.9721E+04
shekelfive 3.8006E+00  3.9139E+00
shekelseven 3.9175E+00  3.4235E+00
shelelten 3.3001E+00  3.9070E+00
sphere 1.7368E+02  3.4825E+02

Next, we test the h family functions. With
this family of functions, we expect to favor the
exploitation phase of the PSO algorithm. Table 3
shows the results for the & family of test functions.
The results follow the same order as that in Table 2.

Computacién y Sistemas, Vol. 20, No. 4, 2016, pp. 635-645
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Table 3. Comparison of the results of the standard PSO
and the h family function

SPSO h1 ho

Function mean mean mean

ackley 1.9733E+01  8.3318E-02  1.2198E-03
camelback 4.6510E-08 4.7206E-08 4.6510E-08
goldsteinprice  2.4300E+01  4.6752E-09  5.6184E-13
griewank 1.7208E-02  3.9121E-02  8.1718E-03
penalizedone  1.2097E-01  2.2566E-02  5.3250E-02
penalizedtwo 4.6242E-02  1.6585E-03  2.1687E-03
rastrigin 1.7113E+02  4.8563E+01  4.6929E+01
rosenbrock 4.4084E+01  2.0997E+02  1.1411E+02
schwefelone 1.8303E+01  1.9258E+01  1.8257E+00
schwefeltwo 1.6349E+04 1.7870E+04  1.7729E+04
shekelfive 5.0524E+00 5.0524E+00  5.0524E+00
shekelseven 5.2741E+00 5.2741E+00 5.2741E+00
shelelten 5.3608E+00  5.1821E+00 5.3608E+00
sphere 2.0311E-18 7.1315E-03  3.0900E-05

h3 ha

Function mean mean

ackley 3.1058E-02  5.9267E-02
camelback 4.6510E-08 4.6510E-08
goldsteinprice 3.6306E-17  4.4366E-17
griewank 1.1079E-02  1.0822E-02
penalizedone 1.3823E-02 2.0628E-02
penalizedtwo 3.6625E-04  7.3249E-04
rastrigin 4.8521E+01  4.8521E+01
rosenbrock 1.2790E+02  1.0887E+02
schwefelone 5.7513E-02  2.3524E-02
schwefeltwo 1.7673E+04  1.7423E+04
shekelfive 5.0524E+00  5.0524E+00
shekelseven 5.2741E+00 5.2741E+00
shelelten 5.1821E+00 5.3608E+00
sphere 4.0248E-09  3.0825E-12

In the case of the h family of functions only
in three test functions the SPSO algorithm is
better: Rosenbrock, SchwefelTwo and Sphere.
The results for the SchwefelTwo test function
show a small difference, but a more complete
test is necessary to assert any statement about
the differences in the results. The functions of
the h family show better or comparable results
in the rest of the test functions. The A family
functions decrease the velocity limit faster in the
initial iterations of the PSO algorithm. Intuitively,
this must reduce the exploration phase of the PSO
algorithm, in contrast with the ¢ function family,
which shows worse results.

4.3 Increasing and Decreasing Velocity Limits

The last functions used to limit the velocity are !
and m. They show an unexpected behavior in
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the experiments. A particular case is SchwefelTwo
using function [ to limit the velocity. In this
case, once the termination criterion of a maximum
number of function evaluations is reached, we
observed a large number of particles going out of
the limits of the search space. As the changes
in the limit of the velocity are computed using the
number of function evaluations, the limit does not
change fast enough. We believe that, since we did
not use any other method to reduce the velocity,
the particles continued to go out of the limits of
the search space, which is the reason why a much
larger computational effort is required in this case.

The plot in Figure 6 shows the number of
particles that go out of bounds in each cycle. As
we can observe, the number of particles out of
bounds increases quickly, and close to iteration
1000 almost all the particles are out of bounds of
the search space. The method used to handle the
particles when they go out of bounds, does not
evaluate the particle in its new position. Thus, the
best position of the particle is not evaluated either,
but the velocity is preserved.

0 500 1000 1500 2000 2500 3000

Fig. 6. The number of particles that go out of bounds of
the search space at each iteration

Another method consists on setting the position
of the particle to the corresponding limit only in
the dimension that is exceeding, i.e., if the particle
exceeds the upper limit for the search position in
dimension k, then the position of the particle in the
k" index is set t0 Xy maz, OF Xk min as deemed
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appropriate. The experiments where repeated and
the results are shown in Table 4.

Table 4. Comparison of the results of the standard PSO
and the /; and m; functions

SPSO 51 mi

Function mean mean mean

ackley 1.9834E+01  1.9973E+01  2.0000E+01
camelback 4.6510E-08  9.2869E-05 5.8087E-08
goldsteinprice  4.0500E+01  7.2902E+01  7.8300E+01
griewank 7.8270E+01  1.3388E+02 2.1072E+02
penalizedone  8.5333E+06 8.5333E+06 1.7067E+07
penalizedtwo 5.4675E+07  9.5681E+07  6.8344E+07
rastrigin 2.6460E+02 2.8186E+02  4.0506E+02
rosenbrock 2.6683E+06  1.8659E+07  3.1972E+07
schwefelone 4.2088E+04 5.6748E+04  1.1819E+05
schwefeltwo 1.7122E+04  1.6953E+04  1.6723E+04
shekelfive 5.0524E+00 5.0631E+00  5.0524E+00
shekelseven 5.2741E+00 5.2850E+00  5.2741E+00
shelelten 5.3608E+00 5.3726E+00  5.3608E+00
sphere 1.1000E+04 1.5104E+04  2.9333E+04

We can observe from Table 4 that using the [;
and m; functions does not produce better results,
but the use of the method to limit the position of
a particle also affects the results of the SPSO.
To achieve better results, it is necessary to find a
different method to limit the position of a particle.
This will be part of our future research given that
the methods to limit the position of a particle
require a comprehensive review.

4.4 Learning Constants

The learning constants are adjusted in the SPSO
algorithm as well as w in the Inertia Weight model,
and x in the Constriction Factor model. In our case,
we do not use any factor to limit the velocity. We
only use a change in the velocity limit. The results
shown in Tables 1, 2, and 3 were computed using
the values ¢; = ¢ = 1.49445. We performed
experiments using values of ¢; = ¢ = 1.0,
adopting the hy and hs functions, which were the
functions that produced the best results to limit the
velocity.

From Tables 5 and 6 we can observe that in
some cases we have better results but not in all
of them. It is worth mentioning that in all cases
the results are not too different. By setting the
values of the learning constantto ¢; = ¢, = 1.0, we
can obtain good results and we can further simplify

Table 5. Comparison of the results of the standard PSO,
using the hs function, and the hy function with ¢; = 1
and ¢ = 1.

SPSO ho ho
cr=c2=1
Function mean mean mean
ackley 1.9733E+01  1.2198E-03  3.8233E-01
camelback 4.6510E-08 4.6510E-08 4.6510E-08
goldsteinprice  2.4300E+01  5.6184E-13  1.9394E-12
griewank 1.7208E-02  8.1718E-03  1.0389E-02
penalizedone 1.2097E-01  5.3250E-02  4.5596E-02
penalizedtwo 4.6242E-02  2.1687E-03  2.2044E-03
rastrigin 1.7113E+02  4.6929E+01  4.3820E+01
rosenbrock 4.4084E+01  1.1411E+02  2.1497E+02
schwefelone 1.8303E+01  1.8257E+00  2.1560E+00
schwefeltwo 1.6349E+04 1.7729E+04  1.7608E+04
shekelfive 5.0524E+00 5.0524E+00  5.0524E+00
shekelseven 5.2741E+00 5.2741E+00 5.2741E+00
shelelten 5.3608E+00  5.3608E+00  5.0034E+00
sphere 2.0311E-18 3.0900E-05 1.1508E-04

Table 6. Comparison of the results of the standard PSO,
using the hg function, and the hs function with ¢; = 1
and ¢z = 1.

SPSO hs hs
c1=c2 =1
Function mean mean mean
ackley 1.9733E+01  3.1058E-02  1.9835E-01
camelback 4.6510E-08 4.6510E-08 4.6510E-08
goldsteinprice  2.4300E+01  3.6306E-17  3.0134E-17
griewank 1.7208E-02  1.1079E-02  9.6877E-03
penalizedone  1.20975-01  1.3823E-02  1.0387E-01
penalizedtwo 4.6242E-02  3.6625E-04  1.4650E-03
rastrigin 1.7113E+02  4.8521E+01  5.5353E+01
rosenbrock 4.4084E+01  1.2790E+02  3.3805E+02
schwefelone 1.8303E+01  5.7513E-02  1.0583E-01
schwefeltwo 1.6349E+04 1.7673E+04 1.7556E+04
shekelfive 5.0524E+00 5.0524E+00  5.0524E+00
shekelseven 5.2741E+00 5.2741E+00 5.2741E+00
shelelten 5.3608E+00  5.1821E+00  5.1821E+00
sphere 2.0311E-18 4.0248E-09  2.8470E-08

the equation to compute the velocity of a particle,
which can be written as follows:

Vi1 = vit+ri(p—x) +ra(g—z), (25
T4l = T+ vy (26)

Equation (25) still depends on the best position
p of the particle and the global best g of the swarm,
but it is simpler.
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5 Conclusions and Future Work

We have shown a method to limit the velocity of
the particles in the PSO algorithm that was able
to produce competitive or even better results than
other schemes to limit the velocity of a particle. The
proposed approach does not require any factor to
limit the velocity of a particle, since it only limits
the maximum velocity. This leaves the equation to
compute the velocity as simple as the original PSO
algorithm. The functions used to limit the maximum
value of the velocity are also simple: single term
polynomials.

The proposed method can use values for the
learning constants equal to one. This selection of
values does not affect the performance of the PSO
algorithm and, in some cases, it leads to better
results. This makes the equation to compute the
velocity of a particle even simpler. We concluded
with a simple and efficient PSO variant.

Although the values of the learning constants are
not critical for the results of the PSO reported in
this paper, there are others factors that can affect
the performance of the algorithm. The method to
limit the position of the particles can be relevant in
the overall performance, not only in the final results
but in the runtime of the algorithm.

The results of the experiments reported in
Tables 1 suggested that more exploration was
needed. This hypothesis was rejected by the
results in Table 2, where more exploration was
performed and the results got worse. The
results in Table 2, produced using functions that
limited the exploration and favor the exploitation
turned out to be better. In future work we will
explore different function shapes to find a balance
between exploration and exploitation in traversing
and searching the feasible search space.

Although the PSO algorithm is well known for its
simplicity and its fast execution, there are several
factors that can affect its performance. Some of
them have already been examined but others have
not, e.g., how to limit the position of a particle. It is
necessary to examine in detail the implementation
of SPSO in all of its phases and determine how the
different methods affect its performance.
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