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Abstract. Low doses radiation in mammography results
in low contrast images. In this paper we propose
a method to enhance the contrast in mammography;
it combines the modification of the coefficients of
the Logarithmic Discrete Wavelet Transform using the
Local Correlation method and Symmetric Logarithmic
Image Processing model. Experimental results shown
the better performance for the anomalies known as
calcifications and masses. This paper also presents a
methodology to select a combination of decomposition
levels to be processed for good contrast improvement
according to the values of measures based on region of
interest. This procedure relies on Principal Components
Analysis of the data. The experiments show that the
chosen combination of levels can improve the contrast in
mammograms, and that the regions of interest definition
is an important factor to explain the poor contrast
improvement of some anomalies.

Keywords. Mammograms, contrast enhancement,
discrete wavelet transform, symmetric logarithmic
image processing model, logarithmic discrete wavelet
transform.

1 Introduction

Breast cancer screening is the medical procedure
of asymptomatic, apparently healthy women in
an attempt to achieve an earlier diagnosis [36].
Mammography is the most common screening
method since it is relative fast, cheap and widely
available. This imaging process use a very low
ionizing radiation dose to examine the human

breast, due to the resulting image has low
contrast and the different parts of the breast
are hard to distinguish, in particular, detecting
masses and microcalcifications requires years of
medical training. The anomalies vary in size
and shape, and might be located in dense
tissues making their detection more difficult. Also,
breast tissues are different in younger and senior
women [18]. Conventional methods like CLAHE,
Unsharp Masking, median filtering and Gaussian
filtering don’t have enough visual quality to help a
radiologist [1].

The wavelets approach has been widely used in
digital mammography with satisfactory results [1].
Nevertheless, there are few works that establish
a procedure to choose the wavelet base and the
combination of decomposition levels that must
be processed to effectively increase the contrast
in mammographies [5]. This paper proposes a
methodology to select the decomposition levels
to be process in wavelet-based algorithms. A
contrast improvement is performed by modifying
the wavelet coefficients using the Local Correlation
method in a logarithmic framework [4, 22].
Quantitative contrast measures [34] and Principal
Components Analysis [15] are used to select the
best combination of decomposition levels.

The rest of the paper is structured as
follows. Section 2, introduce the Discrete
Wavelet Transform and the Logarithmic Image
Processing framework. In Section 3, we
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propose an algorithm based on the Logarithmic
Discrete Wavelet Transform for mammography
contrast enhancement. In Section 4 we
present a methodology to select wavelet base
and combination of decomposition levels to be
processed for a good contrast enhancement of
breast anomalies. The experimental setup is
described in Section 5. In Section 6, the results
are discussed. Some remarks and conclusion are
given in Section 7.

2 Discrete Wavelet Transform and the
Logarithmic Image Processing
Framework

A gray-level image is a function f : D ⊂ R2 →
[0,M [⊂ R. The mammography images used in the
experiments have 12 bits of gray levels, so M =
4096.

The Discrete Wavelet Transform (DWT), derives
from the discretization of the scaling factor a
(dilation or contraction) and the translation (or
localization), parameter b in the mother wavelet:

ζj,k(x) = 2−j/2ζ(2−jx− k), (1)

=
1√
2j
ζ

(
x− 2jk

2j

)
, (j, k) ∈ Z2.

A discrete scaling function ϕ is associated with
the considered mother wavelet ζ:

ϕj,k(x) = 2−j/2ϕ0(2−jx− k), (2)

ζj,k(x) = 2−j/2ζ0(2−jx− k), k ∈ Z,

with these two functions constituting a Riesz
basis [25].

The computation of the DWT can be expressed
by the approximation coefficients WTϕ and the
detail wavelet coefficients WTζ [12]:

WTϕ(j0, k) = 〈f ,ϕj0,k〉, (3)
WTζ(j, k) = 〈f , ζj,k〉,

with j0 ≤ j, ζ is the mother wavelet and ϕ the
scaling function.
ϕ and ζ generate an orthonormal basis of

L2(R). Three directional wavelets are obtained

by the product of a 1-D scaling function and the
corresponding wavelet function:

ζH(x, y) = ϕ(x)ζ(y), (4)
ζV (x, y) = ζ(x)ϕ(y),

ζD(x, y) = ζ(x)ζ(y),

ζi, i ∈ {H,V ,D} allows the detection of horizontal,
vertical and diagonal variations in the image.

According to Mallat [21], the 2-D wavelet is
defined as:

ζij,k(x, y) = 2j2iζi(2jx− k1, 2jy − k2). (5)

The whole image f(x, y) decomposes as:

f(x, y) =
∑
j,k,i

dij,k2jζij,k(x, y), (6)

dij,k = 〈ζij,k, f(x, y)〉.

The DWT provides a ‘measure of similarity’
between the image and the mother wavelet around
the pixel (x, y), at the given scale. It means that if
the image is constant or do not vary ‘too much’ in
the support of a wavelet, then its wavelet transform
will be zero or very small, this is how wavelets
provide information about the local contrast of an
image [28]. This fact is useful because anomalies
can be detected with the detail coefficients and
can be isolated to improve the contrast against the
surrounding region [22, 19, 28].

Generally, the wavelet-based algorithms have
three main stages. First, the image is decomposed
in horizontal, vertical and diagonal detail coeffi-
cients and the approximation coefficients. At this
stage is important to select the wavelet base and
levels of decomposition to be process. Different
approaches for wavelet base selection has been
addresses in [29, 11]. Cheng et al. proposed
an automatic wavelet base selection to enhance
contrast of natural images [5]. In this contribution
we study a way to select the proper wavelet base
to improve contrast in mammography images, also
related with the type of anomaly; to our knowledge
this task hasn’t been done yet.

Usually, in the literature all decomposition levels
are processed until a selected one (each wavelet
base have a maximum level of decomposition).
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A low decomposition level implies more efficiency
of the wavelet decomposition algorithm. In
previous work we founded that its not necessary to
process all the levels to enhance the contrast [37].
Due to, in our proposal we include a methodology
to select levels of decomposition to be process. In
our bibliography study we don’t find evidence of
similar approach.

In the second stage of wavelet-based algorithms,
the detail coefficients of selected decomposition
levels are modified to improve the contrast. Finally,
applying the inverse wavelet transform (IDWT), the
enhanced image is obtained.

There are several methods for modifying the
detail coefficients. A group of algorithms uses
a non-linear function that follows certain criteria
established by Laine and Song [20]. Some
methods apply heuristics over the wavelets
coefficients, e.g. Simple, Threshold, Correlation
and Local Correlation methods [22]. In [37] we
demonstrated that the most effective method is
the Local Correlation. It is based on the following
theoretical concept: coefficients that retain high
values at different decomposition levels must be
correlated and therefore are part of an anomaly.
For detecting high values are only considered the
coefficients of a neighborhood, hence the name
local. This concept was presented by Stefanou et
al. [35] and Chen et al. [4]. This method achieves a
good increment of the contrast of the masses and
other elements such as the pectoral and the edge
of the breast.

2.1 Non-Linear Models for Image Processing

The non-linear models of image processing (NIP,
also known as Logarithmic Models), are an
alternative to the classical image processing,
based on floating-point arithmetic, because this
approach has the limitation of truncating the
sum of pixel values over the limit. These NIP
models modify the basic operations over the
pixel intensities. The superiority against classical
methods has been proved in [10, 17].

NIP models represent an image using an
algebraic structure, so it performs operations
different to the classical ones (point-to-point).

The mathematical construction of a NIP model
starts by the definition of the operational laws (ad-
dition and multiplication by scalar), or equivalently
finding a generating function (isomorphism), that
represents the definition of the model in a real
algebraic structure [10]. What distinguishes the
models is the isomorphism, since it determines
the operations of the algebraic structure. There
are several NIP models, but in the experimentation
performed in this contribution the S-LIP model [26]
was used.

2.1.1 Symmetric Logarithmic Image
Processing Model

The Symmetric Logarithmic Image Processing
Model (S-LIP), was proposed by Navarro et al. [26]
to overcome the disadvantages of previous models
with respect to symmetry and its visual meaning.

This model defines the following isomorphism
Φ : (−M ,M)→ (−∞,∞):

Φ(u) = −Msgn(u) ln

(
M − |u|
M

)
, (7)

with the inverse:

Φ−1(u) = Msgn(u)
(

1− e−
|u|
M

)
, (8)

Φ its necessary to apply traditional tools like Fourier
transform and wavelet transform [17].

Navarro et al. use the Logarithmic Discrete
Wavelet Transform (LDWT), and S-LIP model in
compression, edge detection and noise suppres-
sion in images [25].

3 Logarithmic Discrete Wavelet
Transform for Contrast Enhancement
in Mammography

The logarithmic wavelet was introduced by
Courbebaisse et al. in 2002 [6]. In their paper they
prove the advantages of using this type of wavelet
to solve problems like detection of singularities.
The idea behind logarithmic wavelets is to dilate
and translate a wavelet function in a non-linear
way. This kind of wavelets are superior to the
classic ones because their amplitude changes
logarithmically and remain bounded [25].
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The S-LIP mother wavelet ζ∆ associated with the
linear mother wavelet ζ is defined as [25]:

ζ∆ = Φ−1(ζ), (9)

where Φ is the isomorphism of S-LIP model.

Then,

ζ∆(a, b)(x) =
1√
a
4·
(
ζ

(
x− b
a

))
, (10)

where 4· is the scalar product defined by the
isomorphism of S-LIP model.

The three directional S-LIP wavelet are defined
as:

ζH∆ (x, y) = ϕ∆(x) 4· ζ∆(y), (11)
ζV∆(x, y) = ζ∆(x) 4· ϕ(y),

ζD∆ (x, y) = ζ∆(x) 4· ζ∆(y).

The logarithmic wavelet decomposition of image
f is:

f(x, y) =

∆∑
i,j,k,n

dij,m,n2j 4· ζi∆j,m,n(x, y),(12)

dij,m,n = 〈ζi∆j,m,n, f(x, y)〉∆.

The scalar product in S-LIP model is defined as:

〈f , g〉∆ =

∆∑
i=1,2,···,n

figi. (13)

As we present, the LDWT can be defined using
the non-linear operations of the model, however we
used another approach. This approach consists
in apply Φ to the image, calculate the DWT and
afterward reverse the transformation using Φ−1.
The main difference between both ways is the
computational cost of the isomorphism [25, 17].

The algorithm proposed in our contribution
uses LDWT in a S-LIP model and achieve
contrast enhancement through modifying wavelet
coefficients with Local Correlation method, as
shown in Figure 1.

4 Statistical Analysis for Wavelet
Selection

In this section we propose a methodology for
wavelet selection, i.e. select the wavelet base
and the combination of decomposition levels
to be processed. This approach needs the
wavelet decomposition of an image for a set of
wavelet bases and all possible combinations of
decomposition levels, i.e. the power set of {1, 2,
3, maximum level of decomposition–1}. Then, a
modification of wavelets coefficients is performed
in order to increase the contrast. Finally, we
obtain the reconstructed image through IDWT, and
a quantitative quality measure is computed on it.

The experimentation presented in this research
apply LDWT with S-LIP, model to an image up
to the highest decomposition level using a set
of wavelet bases. After that, modify the wavelet
coefficients by means of the Local Correlation
method. Contrast enhancement quality measures
based on regions of interest are computed for all
the anomalies present in the image.

According to the type of anomaly the best
wavelet base was selected following different
points of view namely: quality measure, descriptive
statistics, visual results, and experiences on wave-
let selection presented in reviewed bibliography.

Having the best wavelet base, we choose
the decomposition level to be processed through
a Principal Components Analysis (PCA) [15],
performed to the data fetched from each basis
where each column is a different combination of
decomposition levels and each row represents
the value of the quality measure matching each
represented reconstructed image.

PCA reduces the data dimension based on
the data variance allowing the visualization of
high dimensional data, correlated variables, and
more significant variables for describing data.
This technique center data with respect to the
data mean and then calculates the co-variance
matrix [15].

PCA allows us to do the loadings plot where
the variance of each combination of decomposition
levels is shown. The interpretation of this plot
enable to know the behavior of level combinations
for contrast enhancement.
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Fig. 1. Proposed algorithm for mammography contrast enhancement

The module of loadings vectors represents the
deviation of each combination with respect to the
data mean. The cosine of the angle between
these vectors denote the correlation between the
variables that its characterize. An angle near to
0o or 180o means co-linearity (redundancy), whilst
an amplitude of 90o and 270o degrees imply low
correlation.

The Manhattan plot [7], is another way to
interpret the variance of each level combination
and complements the results of the loadings plot.
This plot consists on a grid which rows are the
principal components considered and the columns
are the variables of the model (combinations of
decomposition levels in this paper). Each cell of
the grid have a gray intensity corresponding to
explained variance of each variable in the selected
component. The black color means 0% explained
variance and white represents 100% [31].

We considered the two principal components if
these components captures more than 50% of the
data variability. Then, we get the combinations
that capture more than 90% of the variability per
each reconstructed image in the first principal
component.

A combination of levels is called “suitable”
if it displays the highest variance, the lowest
feasible level and the fewest amount of levels
to be processed. This criterion is justified
because wavelet transform is more efficient if the
decomposition is performed to a low level [21].
The obtained combination of decomposition levels
allow us to achieve the best contrast improvement
according to the quantitative quality measure used.

5 Experimental Setup

The algorithm was tested on 94 sub-images of
the image 22670465 of INbreast data set [23].
This image was selected because it contains most
diverse set of anomalies of the data set (one

mass, one spiculated region, one cluster and 92
calcifications). In this image, anomalies called
asymmetry and distortion are not present.

In the used data set each anomaly is annotated
using a contour for masses and calcifications and
a circle for spiculated regions and clusters.

5.1 Contrast Enhancement Quality Measures

A region of interest (ROI), is formed by a
foreground that contains the anomaly, and
the background that comprises the surrounding
tissue. This construction reflects human visual
perception as it perceives an object considering
the environment where it is placed. The ROI’s
based measures quantifies the contrast of a
mammogram’s region chosen by the radiologist or
defined automatically.

The INbreast’s contours by anomaly was
considered as ROI’s foreground. Since a ROI
can vary in forms and size, a flexible background
contour is needed. The adaptive margin for this
contour was calculated according to the algorithm
proposed by Mudigonda et al. [24].

In this paper, the contrast enhancement quality
was quantified using Contrast Improvement Index
(CII) [30] and Combined Enhancement Measure
(CEM) [34]:

CII =
Cprocessed
Coriginal

, C =
f − b
f + b

. (14)

CII capture the gain of contrast between original
and processed images, it is always positive, and
values greater than the unit are considered like a
sign of good contrast improvement [32, 30].

CEM combine other three measures: Dis-
tribution Separation Measure (DSM ), Target-
to-Background Contrast Enhancement Measu-
rement Based on Standard Deviation (TBCs),
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and Target-to-Background Contrast Enhancement
Measurement Based on Entropy (TBCε):

CEM =
√

(1−DSM)2 + (1− TBCs)2 + (1− TBCε)2,
(15)

DSM =
∣∣∣µEF − µEB

∣∣∣− ∣∣∣µOF − µOB

∣∣∣ , (16)

TBCs =

(
µE
T

µE
B

)
−
(
µO
T

µO
B

)
σE
T

σO
T

, (17)

TBCs =

(
µE
T

µE
B

)
−
(
µO
T

µO
B

)
εE
T

εO
T

. (18)

DSM quantifies the overlapping between the
anomaly and the surrounding tissue, TBCs
computes the contrast gain through standard
deviation and the mean value of intensities in
foreground, before and after the application of
the method; and TBCε calculated the ROI’s
homogeneity with entropy [34]. Decrease in CEM
marks the improvement in sharpness and edge
strength [2, 13].

5.2 Software and Hardware

The algorithms in this work were implemented
using Python 2.7.6 programming language [39].
Also we used the modules PyWavelets 0.2.2 [42],
NumPy 1.7.1 [41], SciPy 0.13.0 [16], Matplotlib
1.3.1 [14], skimage 0.9.3 [38], sklearn 0.14.1 [27]
and OpenCV 2.4.6.0 [3].

6 Results and Discussion

The experimentation was split up in the following
steps. First, we apply LDWT with S-LIP model to
the image up to the highest decomposition level
using the following wavelet bases considered in
PyWavelets [42]: Haar, Daubechies 1-20, Symlets
1-20, Coiflets 1-5, Biorthogonal 1.1-6.8, Reverse
Biorthogonal 1.1–6.8 and Meyer. After that,
we modified the wavelet coefficients by means
of the Local Correlation method for all possible
combinations of decomposition levels. CII and
CEM quality measures are computed for all the
ROIs presents in the image.

Fig. 2. Boxplot of the CII measure values for a group of
wavelet bases

The behavior of the CII measure in the quality
of the image contrast enhancement obtained by
different wavelet bases shown low dispersion with
respect to the central value 1.0. Although, we
observed different behaviors for different type of
anomalies (in parentheses we put the values of the
measure): for the masses a meaningful contrast
enhancement was achieved by the wavelet bases
Biorthogonal 2.2 (3.51), Daubechies 3 (3.48) and
Symlets 3 (3.48) and for spiculated regions and
calcifications the worst results are attained by the
Biorthogonal 3.1 (0.14), Reverse Biorthogonal 3.1
(0.55) and Haar (0.55) bases. Also, with this
measure we obtained similar behavior for a group
of wavelet bases, e.g. in a first group the bases
Coiflet 3, Coiflet 4, Coiflet 5 and Meyer; in a second
group the bases Daubechies 10-20; and in a third
group the bases Symlets 7-20.

In Figure 2, the behavior of some selected
wavelet bases is shown, and in Figure 3 we
illustrate the ROIs of the three best and worst
results of the measure CII with the corresponding
wavelet bases and decomposition levels.

The CEM measure gives better results when
their values are positive and close to zero.
Very poor results are obtained for the wavelet
bases Reverse Biorthogonal 1.1 (33.53), Haar
(33.46) and Biorthogonal 1.1 (33.42). The
best contrast increments for this measure were
achieved for the bases Reverse Biorthogonal 3.3
(1.33), Biorthogonal 3.1 (1.33) and Biorthogonal
2.2 (1.34).

In this case we also observed a similar behavior
for group of wavelet bases, e.g. Coiflet 3, Coiflet
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Fig. 3. Best and worst values of CII measure with the corresponding wavelet basis

4, Coiflet 5 and Meyer in a first group; Daubechies
10-20 in a second group; and Symlets 7-20 in a
third group.

In Figure 4 we illustrate the behavior of the
measure CEM for a selected group of wavelet
bases. In Figure 5, ROIs of the three best and
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Fig. 4. Boxplot of the CEM measure values for a
selected group of wavelet bases

three worst results of the measure CEM with the
corresponding wavelet bases and decomposition
levels are shown.

We calculated the average of the measures CII
and CEM for each anomaly and for each wavelet
base. Putting all this curves together we can
observe the behavior of a specific wavelet base
regarding all type of anomalies, as you can see in
Figures 6, 7 and 8.

With respect to measure CII, the contrast
enhancement for the calcifications was poor on
average, See Figure 6. For the masses, the
contrast was always increased except for the
Reverse Biorthogonal 3.1, in fact this was the type
of anomaly with higher values for the measure.
For the cluster anomaly, the higher contrast
enhancement were scored by wavelet bases
Biorthogonal 1.3, Biorthogonal 3.1 and Reverse
Biorthogonal 1.3, and the worst results were
obtained by Biorthogonal 1.1, Haar and Reverse
Biorthogonal 1.1. In the case of the spiculated
regions, the best values for this measure were
achieved with the Biorthogonal 1.1, Daubechies
1 and Reverse Biorthogonal 1.1 bases, reaching
its lower value for the Biorthogonal 3.1 basis (See
Figure 7).

In Figures 9 and 10 we show in the diagonal
the ROIs, for each type of considered anomaly,
processed by the wavelet base which produce the
best contrast enhancement according to quality
measures CII and CEM, respectively. In each row
of both figures the same ROI is processed by the
wavelet bases used successfully for the rest of the
anomalies. This way we can know if we get, with

the same wavelet base, good results to different
anomalies.

Although, the visual results do not match the
successful values of the quality measures, Figure
11 shows a selection of good visual results for a
ROI corresponding to each one of the four types of
analyzed anomalies.

In Figure 12, as you can observe we have
markers with different shapes, indicating the
wavelet base and different colors for each type of
anomaly. The horizontal axis refer to the values of
the CII measure and the vertical one denote the
values of the CEM measure. The optimal location
in this graphic would be as close as possible to
the horizontal axis and as far as possible to the
vertical axis, which means small values of CEM
and large values of CII. As it can be seen, the
points are far from this region. The best values are
below CEM = 7 and 1.0 < CII < 2.5. On this
zone mass anomalies stand out for the Symlets
12, Reverse Biorthogonal 3.3, Biorthogonal 1.1,
Reverse Biorthogonal 1.3 and Biorthogonal 2.2
bases. Only for the mass anomalies the results of
the measures match the visual results.

The quality measures for the enhancement do
not provide enough information on their own for
the best base selection for improving the contrast.
According to research in the literature, Drukker et
al. [9] used Biorthogonal 6.8 and Bhateja & Devi
[1] uses the Daubechies 6 wavelet basis for the
detection of microcalcifications on mammography
images. Our experimentation shows that the
average value of the CII measure for this wavelet
basis isn’t good, nevertheless the value of the
CEM measure is low. Visual results confirm
the effectiveness of the basis for increasing the
contrast on this kind of anomaly. Zhuangzhi et
al. presented an Approximation Weighted Detail
Contrast Enhancement (AWDCE) filter [43] for
detecting masses by the Daubechies 20 wavelet
base. However, no well defined analytic approach
has been applied for determination of the level of
decomposition using Daubechies 20. Schebesch
et al. [33] and Vikhe and Thool [40] used Haar
basis for detection of masses. Zanchetta et al.
used the Daubechies 8, Symlet 8 and Biorthogonal
3.7 bases for classifying masses in normal or
abnormal through supervised learning, achieving
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Fig. 5. Best and worst values of CEM and the corresponding wavelet base

the best results with Biorthogonal 3.7 [8]. In our
experimentation, this basis give the best results
for the mass: on average, the values of the CII
are higher than the unit and the values of the
CEM measure are close to 7. The visual results
of the enhancement are successful. Cheng et al.
used wavelet bases Symlets 4, Symlets 9, Symlets

12 and Symlets 20 for increasing the contrast of
natural images [5]. All these bases display good
results visually, the values of the measures are
similar and satisfactory. Except for the work of
Cheng et al., the choice of these bases is empirical
and doesn’t provide any statistical information that
compares a choice with a greater number of bases
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Fig. 6. Mean values of CII measure for calcifications and
all wavelet families used

Fig. 7. Mean values of CII measure for all type of
anomalies and all wavelet families used

Fig. 8. Mean values of CEM measure for all type of
anomalies and all wavelet families used

nor a methodology is provided to pick up the
decomposition levels to be processed.

Based on previous information and on each
wavelet basis characteristics, we decide to study
how to select the set of decomposition levels
that attain a good increase in the contrast,
matching both quality measures and ROIs visual
content. The following bases were chosen: the
Daubechies 12 for calcifications, Symlets 12 for

cluster, Biorthogonal 2.2 for masses and Reverse
Biorthogonal 1.3 for spiculated regions.

Then PCA was applied to the rotated data (See
Section 4). Figures 13 and 14 shows the loadings
corresponding to Daubechies 12 and Biortogonal
2.2 bases. In Figure 13 meaningful differences are
noticeable amongst three groups of combinations
of decomposition levels: combinations on the first
quadrant, combinations on the fourth quadrant
and the rest of the combinations. The more
pronounced differences (given by the almost
orthogonality of the loadings) are shown in the
combinations of the first and fourth quadrant. In
Figure 14, a combination of levels remarkably
distinguishes from the rest stands out.

Figure 15 shows the Manhattan plot for the
selected bases according to CEM measure. It
can be noticed that two principal components
were enough in order to represent the whole data
variability.

Applying the criterion for the “suitable” levels
combination we get (3, 6) for Daubechies 12
and Symlets 12, and (1, 2, 3, 4) combinations for
Biorthogonal 2.2 and Reverse Biorthogonal 1.3.

In Figure 16 we illustrate that the proposed algo-
rithm with the selected bases and “suitable” levels
combination is successful only for calcifications
and masses.

7 Conclusions

Conventional contrast enhancement methods do
not work properly in mammography images.
The techniques based on wavelet transform
have shown their capability for the detection of
anomalies that can occur in the mammogram
allowing the increase of its contrast.

The presented algorithm, LDWT with S-LIP
model and modification of detail coefficients using
Local Correlation method, has better results
increasing the contrast of calcifications and
masses, although it is able to improve the contrast
of the rest of the anomalies. Values of the quality
measures do not always correspond to the visual
results because the process heavily depends on
the choice of ROI and the measure of quality used.

As result of the experimentation performed
the best wavelet bases were Daubechies 12 for
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Fig. 9. Best wavelet bases by type of anomalies according to CII measure
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Fig. 10. Best wavelet bases by type of anomalies according to CEM measure
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Fig. 11. Some good visual results for each type of anomalies

Fig. 12. Bivariate plot of CII versus CEM

calcifications, Symlets 12 for cluster, Biorthogonal
2.2 for masses and Reverse Biorthogonal 1.3
for spiculated regions. Also, a methodology
was proposed to select the combination of
decomposition levels to be processed. This
procedure consists of performing PCA on the data
by taking the values of the CEM measure.

The variability of the data using Manhattan plots
was studied and an algorithm was proposed to
determine the “suitable” combination of levels.
For the masses and calcifications the “suitable”
combination was (3, 6), and for cluster and
spiculated region (1, 2, 3, 4) was obtained.

The ROI’s definition is an important factor to
explain the poor contrast improvement of the rest
of the anomalies.
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