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Abstract. This paper describes the use of Renyi’s
entropy as a way to improve the convergence time
of the Population-Based Incremental Learning (PBIL)
optimization algorithm. As a case study, the algorithm
was used in a hierarchical wireless network-on-chip
(WiNoC) for the sake of performing the optimal task
mapping of applications. Two versions of Renyi’s entropy
are used and compared to the more traditional Shannon
formulation. The obtained results are promising and
suggest that Renyi’s entropy may help to reduce the
PBIL convergence time, without degrading the quality of
the found solutions.

Keywords. Renyi’s entropy, PBIL, wireless network-on-
chip (WiNoC), mapping, convergence time.

1 Introduction

Renyi’s entropy [35], emerges as a generalization
of the Shannon proposal and was defined by the
mathematician Alfred Renyi in approximately 1950.
His main aim was to find a suitable metric for
measuring the amount of information by preserving
simultaneously the additive property of statistically
independent systems [35]. Renyi’s entropy has
been successfully used in several applications,
such as medical imaging for capturing and analysis
[17], heart neuropathy detectors [14], and the DNA
sequence reconstruction process, starting from a
given number of needed readings [18]. In the field

of security and cryptography,Renyi’s entropy has
been used for breaking passwords [21], and it is
also a common tool in financial applications [37],
as well as penalty learning [32].

The population-based incremental learning or
PBIL algorithm is a heuristic algorithm aimed
at optimizing multi-objective problems. PBIL
mixes concepts such as population, coming
from genetic algorithms, with concepts related to
incremental learning, which are usually present
in neural networks. This combination generates
an algorithm that is more efficient than any other
population-based approach in terms of speed and
accuracy [2, 36]. Specifically, relative to genetic
algorithms, PBIL has shown improved performance
for several optimization problems [6, 12, 27] by
reducing the convergence time.

The PBIL applications range from molecular
biology optimization [20] and fuel consumption
reduction in hybrid power cells [22] to conflict
resolution in supply chains [33]. PBIL has
also been used in embedded system design
optimization [11, 7, 5], where the aim was
to perform the static mapping of tasks for
network-on-chip (NoC) systems.

The PBIL algorithm works with a population
of solutions and incremental learning. It usually
represents such a population by means of an array
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of probabilities of occurrence for each potential
solution. In the adaptive version of the algorithm,
the learning process is controlled by a parameter
called the learning rate, which has a strong impact
on the convergence speed of the algorithm. The
learning rate parameter is adjusted based on the
entropy estimates of the probability matrix at any
given time. The most usual way to assess such
entropy is the Shannon formulation [5].

NoC systems are composed of a set of
processing elements and a communication archi-
tecture based on routers. This network approach
appeared as a solution to scaling problems
in high-performance embedded systems. NoC
systems can better resolve latency issues when
the number of processing elements grows or when
compared to traditional connecting approaches,
such as bus topologies. However, since it is
expected that the number of processing elements
will continue to grow, thanks to advances in the
integration scales, the NoC approach might exhibit
some drawbacks. As the number of processors
increases, the communication becomes a complex
problem due to both network loads and the number
of messages, which finally degrades the latency
[13].

The hierarchical NoC is a proposal to address
larger sizes of nets and is based on communication
levels (hierarchies), in order to reduce the
communication latency [13, 15, 9]. It is quite
common that at least one of these levels will
be a wireless network, and for this reason,
these systems are also referred to as wireless
NoCs or WiNoCs. Several technologies have
been proposed for the implementation of WiNoC
systems [16, 25]. Some of these approaches
use antennas, and others are implemented using
waveguides, which can increase the transmission
bandwidth up to tens of gigahertz.

This paper describes some variations of the
adaptive PBIL algorithm, such as the use of
different entropies for adjusting the learning rate
(Shannon, Renyi one, and Renyi two). The
main reason for such variations is to improve the
convergence time of the algorithm. The PBIL
approach is used to find task mapping solutions.
The main difference with respect to previously
reported approaches relies on the fact that this

work performs mapping optimization over a WiNoC
architecture, instead of a classical one (NoC).
Another conspicuous difference is the relationship
with the modelling of the mapping solutions, in
which there is no overlapping of tasks for the same
node.

The focus of this work is to improve the
convergence (mapping) times, which means that
the obtained quality for the whole set of techniques
(genetic algorithms and PBIL with Shannon’s
or Renyi’s entropy), may be equivalent. Such
improved times may serve as a way to reduce
the time to market of embedded designs and may
open the way to dynamic mapping or real-time
approaches.

The rest of the paper is organized as follows.
Section 2 describes the background of the use of
NoC and WiNoC as hardware platforms and the
PBIL algorithm in the problem of the optimization
of task mapping for applications in embedded
systems. Section 3 talks about Renyi’s entropy and
its relationship with Shannon’s entropy. Section
4 describes the adaptive PBIL algorithm, and
in Section 5, the experimental results, analysis,
and discussion are presented. Finally, Section 6
summarizes our main conclusions.

2 Background

The problem of optimizing resource allocation
in embedded system is currently a challenge
for designers because they face constraints
of performance, energy consumption, variability
of applications, reliability, real-time features,
parallelism, and reduction of time in the prototyping
stage [19].

NoC is a suitable hardware platform approach
for dealing with the high complexity and the
variability of applications for embedded system
design. NoC provides adequate, cost-effective
solutions and allows the synchronization of
several complex functions [8, 30]. These
networks are made up of a set of processing
elements and a communication architecture, which
enables improved performance when compared to
communication buses. However, if the number of
processing elements grows enough, latency issues
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and high communication loads appear, reducing
the system performance.

A proposed solution to this problem is the
use of hierarchical architectures or wireless
NoCs (WiNoCs), which are composed of several
levels of communication with different speeds
and connection technologies (wired and wireless).
Such WiNoC architectures behave better regarding
latency as the number of processing elements or
nodes increases.

The latter is a consequence of the availability of
several communication levels, which may reduce
the effective distance between nodes relative to the
more traditional NoC solutions [24, 25]. Given the
plethora of constraints that designers must face,
such as the planning and mapping of tasks, an
optimization or automation tool is very useful to
cope with the challenges in meeting optimization
goals and design times [8, 7].

Several algorithms have been proposed for task
mapping optimization, including exact, mathemati-
cal, and search-based (heuristic and systematic),
[28, 26]. Population-based techniques appear to
be the most suitable strategy, since a parallel
search over the solution space is performed.
Among such population-based approaches, PBIL
stands as an appealing solution, with very
promising convergence times [34, 7]. As stated
previously, the focus of this work is to present a
task mapping solution over a WiNoC based on the
PBIL algorithm, which uses the entropy of Renyi,
for the sake of improving the optimization time.

3 Renyi’s Entropy

Renyi’s entropy is a mathematical generalization of
Shannon entropy, proposed by Alfred Renyi in the
1950s [23]. Renyi’s entropy is defined as a ratio of
the likelihood, as shown in equation (1):

Hα(P ) =
1

1− α
log

n∑
i=1

Pαi ,α 6= 1 ∧ α ≥ 0, (1)

where α indicates the order of the entropy. To
compute the Shannon entropy, it is only necessary
to derive equation (1) and calculate the limit when

α tends to one. The results of deriving Hα(P ) are
presented in Equation (2):

H1(P ) = lim
α→1

(Hα(P ))
′
= −

n∑
i=1

(Pi × logPi). (2)

When α tends to infinity in equation (1), the
entropy presents low values, as shown in equation
(3). This entropy is defined as the Chebyshev
entropy [35]:

H∞(P ) = mini(−logPi) = −log(maxiPi). (3)

The maximum entropy value is obtained when
α is equal to zero in equation (1). This is
known as the Hartley entropy and is presented in
equation (4):

H0(P ) =
1

1− α
log

n∑
i=1

P 0
i = log(n). (4)

Another aspect that is worth mentioning when
working with the entropies of Renyi and Shannon
is the computational complexity of the sample. In
the case of the Shannon entropy, the complexity
grows close to linearly with the size of the alphabet
or number of symbols, while for the Renyi entropy,
the complexity has a sublinear growth.

The complexity of the sample to a discrete
distribution P of R symbols for the Shannon case
is (R/log(R)) samples, whereas in Renyi’s entropy
with α > 1, the complexity is (R1− 1

α ) [1]. Therefore,
when the number of symbols R increases, the
number of samples for Shannon’s entropy grows
faster than that for Renyi’s, as shown in Fig. 1.

As shown in Fig. 1, by increasing the number
of symbols R, the number of samples needed
to compute the entropy increases. However, the
Shannon’s growth rate is greater than that of the
Renyi’s.

It is also observed that the Renyi’s entropies are
below the linear growth, while the Shannon’s is
closer to linear. Such growth behaviour influences
the convergence time.

Some population-based algorithm searches use
such entropies, such as the case mentioned in
[32], wherein the simulation results in a learning
algorithm penalized with Renyi’s entropy converge
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Fig. 1. Numbers of samples for Shannon’s entropy and
Renyi’s entropy with α = 2 and α = 3

faster than when Shannon’s entropy is used.
Furthermore, the number of samples for Renyi’s
entropy with α = 2 is less than with α = 3. This
is because Renyi with α = 2 needs only (R1/2)
samples, whereas for α = 3, more is required
(R2/3). The latter is reflected in Fig. 1, where the
curve for α = 3 grows faster than that for α = 2.

4 Adaptive PBIL Algorithm

PBIL belongs to a group of transformative-heuristic
algorithms that are based on population. It is
based on stochastic estimates for searching across
the solution space, avoiding local minimum issues.
PBIL operates simultaneously with concepts
such as population optimization and competitive
learning. This population is represented as
an array of probabilities of occurrence for each
potential solution, which converge towards an
optimum.

This research presents three modifications to
the adaptive PBIL algorithm proposed in [5]. The
first modification is the change in architecture,
moving from a traditional NoC to a hierarchical
wireless architecture (WiNoC), which has better
performance when the number of nodes increases,
as mentioned [24]. The second modification is
related to the use of three entropies to adjust the
speed of learning. In the proposed algorithm, three
instances of entropy were considered: Shannon’s

entropy and the second- and third- order Renyi’s
entropy. The third change has a relationship with
the modelling of the mapping solutions, in which
there is no overlapping of tasks for the same node,
within the constraints imposed by the application.

The proposed adaptive PBIL algorithm is
depicted in Algorithm 1. The algorithm has three
inputs: the application represented in a task
graph (TG), the hardware platform of a WiNoC
architecture represented by a graph (ArG), and a
population represented by a probability array (Pm).
The dimensions of Pm are related to the number
of tasks to be allocated, which corresponds to
the columns (N ), and the amount of available
processing resources, which corresponds to the
rows (M ). For the sake of giving an equal initial
probability to the whole set of resources, each
entry of matrix Pm is initialized to 1/M , thus
ensuring maximum population diversity.

Algorithm 1: New Adaptive PBIL algorithm
Input: Task Graph (TG), Architecture Graph

(ArG), Probability Matrix (Pm) of
M ×N size.

Output: Optimized solution to the task
mapping.

begin
Pm(i, j) = 1/M ∀ 1 ≤ i ≤M and 1 ≤ j ≤
N ;

repeat
repeat

Pop = Create Population (Pm);
V al = V alidate(Pop);

until Val ;
Fitness = Evaluation Sorting (Pop);
Best = Selection (Pop,Fitness);
H = Entropy (Pm);
LR = Learning Rule (H);
P = Update Array (Pm,Best,LR);

until H ≤ Tolerance;
return Best;

end

As shown in Algorithm 1, a population is created
at the beginning of each iteration, starting from
the probabilities in Pm, which was initialized
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previously. Such a task is performed by the
Initialization Population routine. Then, the
recently created population is validated to ensure
that the solutions meet the constraints imposed
by the task graph (TG). Such a validation is
performed by the V alidate routine. The set
of potential solutions just created is assessed
by a fitness function, which is usually related
to a multi-objective problem. For this work,
three objectives of optimization were considered:
performance, power consumption and bandwidth.
The sum and normalization of these three figures
of merit corresponds to the fitness value.

The solutions of the population are sorted
according to their fitness. This task is performed
by the Evaluation Sorting routine. The Selection
routine is devoted to extracting the best solution
found in the current iteration; this solution helps to
update the probabilities of the array Pm.

The features of the best solution found so far
are strengthened into the population by increasing
the values of its corresponding probabilities. The
function of the PBIL algorithm that is responsible
for updating matrix Pm is called Update Array
in Algorithm 1. The updating increases those
probabilities associated with the best solution and
decreases the remaining values since the sum
along each column in the Pm array must be
equal to one at each iteration. The updating of
the probabilities is shown in equation (5), which
corresponds to a modified version based on the
Hebbian learning rule [31]:

P (i, j)U =

P (i, j)O +
[
1− P (i, j)O

]
· LR, if j = k[

1−P (i,k)U

]
·P (i,j)O

1−P (i,j)O
, otherwise.

(5)

In equation (5), k represents the best solution
obtained for a given attribute j, and the suffixes
O and U denote the old and new probabilities,
respectively.

The adaptive feature of the algorithm is achieved
by changing the learning rate in a dynamic fashion.
To do so, it is necessary to make an estimate of the
current status of the convergence process. This
goal is accomplished by using an entropy measure
of the probability matrix. The value of entropy H
is computed by the Entropy routine and serves

as a measure of the population diversity. Such a
measure is used by the Learning Rule routine for
adjusting the learning rate. Three different learning
rules have been used in the adjustment of the
Learning Rate, namely, Linear, Exponential, and
Bell-Shaped. Table 1 summarizes the form of each
rule.

Table 1. Learning rules for the adaptive PBIL algorithm

Name Learning Rule
Linear LR = LRmax − [HN × (LRmax − LRmin)]
Exponential LR = LRmin + [e−4.5HN × (LRmax − LRmin)]
Bell-Shaped LR = LRmin + [e−

(HN−3)2

2 × (LRmax−LRmin)√
2×π ]

In Table 1, LRmax and LRmin are the upper
and lower limits for the learning rate, respectively.
HN refers to a normalized entropy, which may
be calculated as the ratio of the entropy to the
maximum possible value (HN = H/Hmax). The
LR adjusted value is used by the Update routine
for changing the probabilities in the Pm array.

Equations (6) and (??), describe the computa-
tion of the entropy using the Renyi and Shannon
formulations, respectively, considering that the
PBIL algorithm works with a probability array Pm
of (M x N ) size. Renyi’s entropy (Hα) is computed
according to its order, i.e., α. Equation (??) may be
viewed as a special case of Renyi’s entropy, and it
leads to the Shannon formulation:

Hα(Pm) =
1

1− α
logM

M∑
i=1

N∑
j=1

Pm(i, j)α,α > 1,

(6)

H1(Pm) = lim
α→1

(Hα(Pm))
′

(7)

= −
M∑
i=1

N∑
j=1

(Pm(i, j)× logMPm(i, j)).

The results described here for Renyi’s entropy
were obtained using orders of α = 2, and α = 3, as
shown in equations (8) and (9), respectively:

H2(Pm) = −logM
M∑
i=1

N∑
j=1

Pm(i, j)2, (8)
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H3(Pm) = −0.5logM
M∑
i=1

N∑
j=1

Pm(i, j)3. (9)

The algorithm stops when the value of the
entropy is less than the tolerance value. This
is when the probability matrix tends to focus on
individual entries of each column of the Pm matrix,
i.e., when, the algorithm achieves an optimal
solution.

5 Results and Discussion

The proposed adaptive PBIL algorithm was written
and tested in a Matlab tool (R2016), and two types
of target applications to be mapped were tested.
The first application tested is an MPEG2 video
decoder with 12 tasks [29], and the second test
corresponds to a synthetic application of 16 tasks
selected from the database Power-Struggles [4].
Fig. 2 presents the task graphs for the two target
applications.

As shown in Fig. 2, for each task graph, there are
several tasks that could be executed at the same
time. These applications were selected because
they allow assessing one of the improvements
proposed for the PBIL algorithm, which implies
avoiding the overlapping of tasks on the same
node. The technical specifications of the network
are taken from [10].

For testing, a net of 16 nodes distributed in
four 2D mesh subnets in the first level was used.
Each subnet was interconnected to the second
hierarchical level through wireless connections
with a star topology. The nodes in each
subnet are formed by a processor with different
technological characteristics and a conventional
router (R) for wired communication. The wireless
communication in each subnet used a wireless
router (WR) with four ports and two wired ports.
Communication in the second level is handled by
a wireless router (WR) that has 16 wireless ports,
divided into groups of 4 for each subnet, Fig. 3
shows this communication architecture.

Fig. 3, shows the communication architecture
for a WiNoC with 16 nodes, where wireless
channels are dotted arrows and wired channels
are continuous arrows. The WiNoC then has 16
channels of each of the wireless and wired types.

Fig. 2. Task graphs for the two target applications

Each wireless link has a transfer rate of 32 Gbps
for a wireless bandwidth of 512 GHz, and each
wired link is 64 bits wide with a frequency of 1 GHz,
whereby it has a transfer rate of 64 Gbps.

The tests consisted of measuring the conver-
gence times of the adaptive PBIL algorithm under
different parameters. The first test measured the
convergence time for each learning rule (linear,
exponential and bell-shaped) using three different
entropies (Shannon and Renyi with α = 2 and
α = 3) over a total of 2000 runs of the algorithm,
and the second measured the convergence time
of the adaptive PBIL algorithm for each type of
entropy using the different learning rules reported
above.

The results of the convergence times of the
adaptive PBIL algorithm for implementing the
MPEG2 decoder are presented in Figs.4 and 5.The
convergence times for a synthetic application
based on Power-Struggles are presented in Figs.6
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Fig. 3. Communication architecture for WiNoC

and 7. Figs. 8 and 9 depict the algorithm
performance for the two proposed test applications.

Fig. 4 shows that for the three learning rules,
the convergence time is always greater for the
Shannon’s entropy, followed by Renyi’s entropy
with α = 2 and α = 3. However, in some of the two
thousand executions of the algorithm, there may
be some counterexamples to the general behavior,
due to the random nature of the PBIL algorithm.
The convergence times for the three learning rules
using each form of entropy are shown in Fig. 5.

Fig. 5 also shows that when the proposed
adaptive PBIL algorithm is executed along with
the bell learning rule, the convergence time is
much greater than that for the exponential rule or
linear rule. The average convergence time for this
instance and the bell learning rule was two times
that of the exponential rule and three times that of
the linear case.

In Fig. 6, the results for the second target
application are presented, consisting of a synthetic
application composed of 16 tasks. The profiling
time, power consumption and bandwidth of each
task were extracted from the test bench named
Power-Struggles [3].

As observed in Fig. 6, there is a consistent
behaviour of the test performed for the MPEG-2
decoder. For both target applications, the
convergence times are higher when Shannon’s
entropy is used. In Fig. 7, the convergence times
for the three learning rules are shown.

Fig. 4. Convergence times for adaptive PBIL in the
application MPEG2 Decoder

As shown in Fig. 7, the convergence times of
the PBIL algorithm when the bell rule is used are
higher than those of the exponential and linear
rules. The average convergence time for the
bell learning rule is close to double those for the
exponential and linear cases.

Fig. 8 compares the obtained performances
when the proposed adaptive PBIL algorithm is
executed using the linear rule Shannon’s entropy
and Renyi’s entropy with each application. For
this figure, the performance must be viewed as the
quality of the found solutions.

As shown in Fig. 8, there is no significant
performance difference in the proposed adaptive
PBIL algorithm when Renyi’s entropy or Shannon’s
entropy is used, i.e., there is no performance
degradation when Renyi’s entropy is used.

Fig. 9 shows a performance comparison for
WiNoC and a conventional NoC architecture for
the adaptive PBIL algorithm using the linear rule
Shannon’s entropy and Renyi’s entropy. The
number of nodes for both nets was 16. The
topology for the NoC was a 2D mesh with a size
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Fig. 5. Convergence times for adaptive PBIL in all three
learning rules on the application MPEG2 Decoder

of 4x4 and wired connections, a transfer rate of 64
bps, a frequency of 1 GHz and the basic routing
algorithm XY.

As shown in Fig. 9, for the case of the three
entropies, the WiNoC architecture improves the
performance compared to the traditional NoC, with
a performance improvement of 1.3% by MPEG and
1.1% by Power-Struggles. The performance of a
mesh network is affected by the distance traveled
by the package from source to destination.

The worst case of this distance corresponds to
the diameter of the network (2 x (n1/2-1)), where n

Fig. 6. Convergence times for adaptive PBIL in the
synthetic application 16 Tasks Power-Struggles

is the number of nodes. For the NoC used in these
tests, the maximum distance was six hops.

Another test was implemented by a network
of 36 nodes, and for this case, the WiNoC
architecture achieved an improved performance
of 3.6% by MPEG and 3.0% by Power-Struggles
compared to the traditional NoC.

Then, when the size of the network increases,
the performance of the traditional NoC is affected.
It is in these particular cases where the WiNoC
network has better performance compared to the
traditional NoC.
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Fig. 7. Convergence times for adaptive PBIL in all
three learning rules for the synthetic application 16 Tasks
Power-Struggles

6 Conclusion and Future Work

The convergence time for the adaptive PBIL
algorithm when Renyi’s entropy is used along with
α = 2 and α = 3 are lower than those obtained
when Shannon’s entropy is used. This confirms
using Renyi’s entropy whit α greater than one,
produces fewer samples than Shannon’s entropy.

The convergence times for the adaptive PBIL
algorithm using the bell learning rule are superior
to the linear and exponential rules for the three
cases of entropy. From these tests, it can be
concluded that the best convergence times for the
PBIL algorithm are obtained using a linear learning

Fig. 8. Performance for adaptive PBIL algorithm using
Renyi’s and Shannon’s entropy by WiNoC

rule, combined with an estimate of Renyi’s entropy
with α = 3 or α = 2.

Although the convergence time is lower when
Renyi’s entropy is used, there is no degradation in
the performance caused by the proposed adaptive
PBIL algorithm.

The performance improves when the WiNoC
architecture is used rather that the traditional NoC.
This is because in WiNoC, the distance between
a source and destination node could decrease,
thanks to the combination of wired and wireless
links, which impacts the performance positively.

The results obtained show that the proposed
PBIL technique has good performance when used
in task mapping off-line. The next step is to
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Fig. 9. Performance for adaptive PBIL algorithm using
Renyi’s and Shannon’s entropy by WiNoC and NoC

implement the PBIL technique for task mapping
on-line (i.e., at the execution time).

Acknowledgements

The authors would like to thank Pontificia
Universidad Javeriana Cali, Universidad Nacional
de Colombia, and Universidad del Valle for their
support in the development of the current project.

References

1. Acharya, J., Orlitsky, A., Suresh, A. T., &
Tyagi, H. (2015). The Complexity of Estimating
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