
SimulES-W: A Collaborative Game to Improve Software Engineering
Teaching

Elizabeth Suescún Monsalve1,4, Mauricio Toro1, Raúl Mazo1,2, David Velasquez1,
Paola Vallejo1, Juan F. Cardona1, Rafael Rincón1, Vera Maria Werneck3,

Julio Cesar Sampaio do Prado Leite4

1 Universidad Eafit, Grupo de Investigación Desarrollo e Innovación en Tecnologías de la
Información y las Comunicaciones (GIDITIC), Medellín,

Colombia

2 Université Panthéon Sorbonne, Centre de Recherche en Informatique (CRI), Paris,
France

3 Universidade do Estado do Rio de Janeiro,
Departamento de Informática e Ciência da Computação,

Brazil

4 Pontifícia Universidade Católica do Rio de Janeiro,
Departamento de Informática, Rio de Janeiro,

Brazil

{esuescu1, mtorobe, rimazop, rrincon, dvelas25, pvallej3, fcardona}@eafit.edu.co,

vera@ime.uerj.br, julio@inf.puc-rio.br

Abstract. There is empirical evidence concerning the

effectiveness and benefits of game-based learning
(GBL). Our mainly interest is to present a tool that can
be used to complement teaching software engineering in
a motivating and didactic way. This paper studies the
use of a GBL tool called SimulES-W (Simulation in
Software Engineering), to teach Software Engineering in
an undergraduate engineering program. SimulES-W has
three characteristics: it is based on real software cases,
it can be customized during the learning process, and it
is a collaborative game. These characteristics are
important because they help us understand and propose
a new learning scenario, and to research with this the
learning processes in their environments According to it,
the first characteristic of SimulES-W makes it a
motivating and engaging game, which brings up cases,
which usually are only present in real software projects.
Thanks to the second characteristic, the educators can
use SimuelES-W to customize the education material,
and tune the game for specific software engineering
courses. The third characteristic is related to the
proposed game as activity that involves group
discussions and decision-making. This paper presents
SimulES-W a digital version of SimulES and reports the

results of an evaluation from a pedagogical perspective,
where game adequacy for teaching a subject and
positive potential impact in student’s academic
performance are investigated.

Keywords. Software engineering, game-based

learning, games, pedagogy of software engineering.

1 Introduction

Computer games and simulations have been
applied to explore reality in many educational
areas. Conolly et al. [1] produced a systematic
review of computer and serious games showing
that games can be considered for motivation and
effective impact on the learning environment. GBL
literature reports that games are effective for
learning with entertainment and to simulate
situations that occur in real software projects.
Games simulating software engineering projects
allow students to take the role of a project manager
and deal with software engineering management

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

ISSN 2007-9737

mailto:esuescu1@eafit.edu.co
mailto:mtorobe
mailto:rimazop
mailto:rrincon
mailto:dvelas25
mailto:pvallej3
mailto:fcardona@eafit.edu.co
mailto:vera@ime.uerj.br
mailto:julio@inf.puc-rio.br

issues, which are difficult to simulate during
traditional lectures.

In this paper, we present a Software
Engineering (SE), collaborative board game,
called SimulES-W, used to teach concepts
enacting a software engineering process. In
SimulES-W players perform different roles, such
as software engineer, technical coordinator,
project manager and quality controller. Players
deal with budget, software engineers hiring and
firing, and construction of different software
artifacts. The game simulates a development
process where players must deal with:

i. The complexity and size of a software product,

ii. The concept of product quality based on
verification through inspection,

iii. The risk of having poor quality products,

iv. Budgeting,

v. Admission and dismissal of software engineers,

vi. Human resources as a matter of cost,
productivity and maturity, and

vii. Construction of several different artifacts
required for project completion.

In addition to different roles, SimulES-W allows
players to have a strategy-oriented game, where
each player could (i) pose problems to other
players and (ii) use concepts to improve their ability
to solve these problems. In SimulES-W, both a
competitive process and a collaboration process
are used. The competitive process, implemented
as a special round, is enacted as each player
chooses which other player will receive a “problem
card”.

The collaborative process occurs since players
who have a “concept card” may use it as a counter
measure for the “problem card”, but only if the other
players agree with the argumentation of why that
card could “solve” the problem given by the
opponent. This discussion, mediated or not by an
instructor, is a way of discussing concepts,
problems and possible resolution schemes (of the
corresponding cards), which becomes an
opportunity to learn the fundamentals of SE.

This paper is organized in six sections.
Section 2 introduces SE education and reviews
some games and proposals that are used to teach
this discipline. Section 3 gives an overview of how
the previous SimulES versions were improved, the
SimulES-W development process and it also

explains the game components, rules and its
dynamic play process. Section 4 describes how
SimulES-W can be used to teach concepts of
software engineering. Section 5 reports on an
experiment of using SimulES-W in the classroom
evaluated by different criteria, including exam
impact. Section 6 presents our conclusions.

2 Teaching Software Engineering

Software engineering is an area of computer
science that offers methods, techniques and tools
for building software with quality. Teaching SE just
based on traditional lectures and providing
emphasis on theoretical aspects fails to pass to
students the major challenges/problems a
software engineer faces in real projects. Therefore,
students need to face practical aspects and project
decisions, which are difficult to identify in a
theoretical way. According to Boehm [2] game-
oriented SE education is forecasted as one of the
future trends of the SE field.

2.1 Related Work

In the past, it was already clear the need to
simulate the processes of SE, as it is presented by
Lin et al. [3]. Their work examines trade-offs of
cost, schedule, and functionality, and to test the
implications of different managerial policies on a
project’s outcome and enable software managers
to gain a better understanding of the dynamics of
software project development and provides a
learning environment through simulation where the
implications of different policies on a project can be
studied, and insight can be gained into the causes
of project dynamics.

In this same direction, Kellner et al. [4] focused
their work on simulation; it offers a set of
simulations that can be selected and serve as
guides to practical application, so it uses a set of
working hypotheses through models. There are
also works that show how to simulate processes in
requirements engineering [5, 6]. They show, as the
major goals behind the modeling and simulation
effort are to assess the issues associated with the
social and behavioral aspects of the EasyWinWin
process, and to explore how these issues affect the
overall outcome of the process. Pfahl et al. [7]

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

Elizabeth Suescún Monsalve, Mauricio Toro, Raúl Mazo, David Velasquez, Paola Vallejo, et al.954

ISSN 2007-9737

present concepts of a computer-based training
(CBT) and argue that university education needs to
provide to their computer science and SE students
not only technology-related skills but also a basic
understanding of typical phenomena occurring in
industrial (and academic), software projects. Thus,
in a recent study, Chen and Chong [8] show that
some aspects in SE education can be taught
through simulations by offering comprehensive
training that explores subjects such as
collaborative software development, team projects
and the social aspects of software development. It
allows students to experiment real problems rather
than mere academic exercises.

Wangenheim et al. [9] identified the potential to
teach SCRUM in concrete situations through an
educational game and complement the learning
process through theoretical lectures. According to
authors, SCRUMIA was created based on
experience in class and using instructional design.
This game has been applied several times in two
undergraduate project management courses. They
also evaluated the competency, understanding
and motivation. SCRUMIA explores a specific
situation through a case study.

Other authors such as Qin et al. [10], Barros
and Araújo [11] and Alvarez et al. [12] Carried out
some experiments in which they taught SE with
games in small software projects. Bollin et al. [13]
highlight the importance of using real (usually
large) projects to teach SE in addition to soft skills
such as economic planning responsibility, ethic
and project evaluation. These issues should be
better taught by means of simulations or games,
which caught partial situations of real projects.

For example, the AMEISE system [13] allows
students to exercise their software project
management skills and reflect about their
decisions. These decisions are based on
incomplete and uncertain information and
feedback, which are provided by the system.
Certainly, GBL could be used efficiently to supply
and simulate real processes.

In the same way, GBL (of board, cards and
computer), simulators and others are being
explored to support teaching in different areas of
knowledge [14, 15, 16].

These approaches mainly support the idea that
GBL should be combined with aspects such as
motivating the students, being enjoyable and

providing software, as well as providing an
environment where students do not feel like they
are learning [14]. GBL also is an important didactic
proposal to explore collaboration. For instance,
Alvarez et al. [12] show the benefits of including
GBL tools in the classroom to foster collaborative
learning and active student participation. The
authors believe that games can be used as a tool
supporting teaching methods that are effective
towards the educational objectives.

Ebner and Holzingerb [14] suggest that there is
evidence, which shows the learning result of using
games is at least equivalent to the results from
learning using the traditional method. For that
reason, it is important to consider games as a
modern and useful method for learning as they do
not disturb or not offer disadvantage for the
learners. Quite the contrary, the study carried out
points out that GBL is one of the most preferred
modes of learning from the point of view
of students.

There are others approaches to teach SE by
means of the implementation of computer game-
development course. The students perform
different roles in different areas of SE, the aim is to
improve abilities, skills and prepare software
engineers for industry demands in an interesting
way as they use game-inspired exercises [17]. In
addition, Qin and Mooney [10] proposed to use
game-oriented projects as a promising choice to
make the learning environment as close to the real-
world software development environment
as possible.

Claypool and Claypool [18] suggested building
today’s entertainment applications, which use
computer games, coupled with the software
engineering discipline, arguing that it presents an
opportunity to use computer games as a means to
better train software engineers. Project-based
modules can be used to illustrate all aspects of the
software process, tapping into a broad range of SE
disciplines as is required to build current
applications while enticing students to grasp and
apply software engineering to such disciplines by
using games as a powerful motivator.

There are quite a lot of papers providing
evidence that games and SE have attracted
attention of software engineer’s educators [19, 20,
21]. Hainey et al. [22] Describe problems that are
associated with traditional approaches to teaching

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

SimulES-W: A Collaborative Game to Improve Software Engineering Teaching 955

ISSN 2007-9737

requirements elicitation and analysis, with the
authors suggesting that this is very difficult for a
traditional course teaches students some of the
skills that are required of professional software
developers, and that traditional lectures do not
adequately tackle the software
development process.

Nevertheless, there are advantages and
disadvantages of GBL as compared to traditional
teaching as listed by Hainey et al. [22]. For
instance: lectures have as advantages control of
the learning experience and provide models of how
to address problems; as disadvantages there are
no mechanisms to ensure that students are
intellectually engaged, it is possible to lost the
attention after a short time, and it is assumed that
students are at the same level of understanding
even if they are not engaged.

Just like GBL has advantages providing a safe
environment to increase practice experience, GBL
helps the students can naturally transfer what they
have experienced in class to real life because they
receive immediate feedback. Nevertheless, there
are disadvantages: it has to be well planned,
monitored and in some cases, it could put pressure
on learners and could result in embarrassment. On
the other hand, the authors also contribute to the
empirical evidence in the context of teaching
requirements elicitation and analysis, as they
report on a five evaluation experiments comparing
a GBL approach to a role-playing and paper-based
approach. This evidence is collected thought of
evaluations took place in Higher Education (HE)
and Further Education (FE). Moreover, the results
showed a significant increase in knowledge at both
FE and HE level after the experiments had been
applied. They also believe that the GBL approach
to teach requirements elicitation and analysis may
be more suitable to HE level than FE level. Finally,
they suggest that initial knowledge should be taken
into account when considering a GBL approach for
different educational levels.

Paraskeva et al. [23] describe online computer
games and its teaching potential, highlighting
some studies that have been focused on
classifying types of teaching, which are supported
by games. The authors also show the potential to
draw together players from different contexts to
communicate and collaborate. More than that, they
suggest that with GBL it is possible to address

ways that the student does strategies, hypothesis
testing, or problem solving, preferably with higher
order thinking rather than rote memorization or
simple comprehension.

Paraskeva et al.’s work shows that the
successful games have to be related to
characteristics like rules, goals and objectives,
outcomes and feedback, conflict (and/or
competition, challenge, opposition), interaction,
and representation of story. Finally, this work also
examines the educational value of games doing.
Along of a literature review this value is described,
showing the games’ potential for player
engagement, justifying with research reports on
factors such as game use (frequency of game use,
gender differences, identification with the
characters, game preferences), and some
psychosocial factors that may influence learning
(academic performance, self-esteem,
computer self-efficacy).

Boyle et al. [24] and Connolly et al. [1] present
two systematic review of empirical research. They
examined different aspects related to engaging
and enjoyable activities in games. On the one
hand, Boyle et al. focused in showing aspects of
experiences with entertainment games like
motivation for playing games; game usage and
time spent playing games and the impact of playing
on life satisfaction. Boyle et al. show that
understanding game usability has had priority over
understanding game enjoyment, cognitive and
emotional involvement. The authors describe that
subject, as real world dissociation, challenge and
control are aspects little explored.

On the other hand, Connolly et al. [1] focused
on computer games and serious games showing
empirical evidence about the positive impact of
learning and how they are still growing, as noted
earlier. They also quote modern theories that
suggest that learning is most effective when is
active, experiential, situated, problem-based, and
provide immediate feedback. Connolly et al. [1]
show in their related work how games are
integrated into the learning experience indicating
aspects as feedback, strategies for varying difficult
level, and availability of support memory that are
keys to the success of the games-based approach.
For that reason, the authors suggest that to
encourage the use of games in learning it is
important to develop a better understanding of the

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

Elizabeth Suescún Monsalve, Mauricio Toro, Raúl Mazo, David Velasquez, Paola Vallejo, et al.956

ISSN 2007-9737

tasks, activities, skills and operations and, to be
fair, examine how these might match desired
learning outcomes.

Although authors like Caulfield et al. [25]
expressed that more evidence and research is
required to prove the efficacy of games in teaching
SE, we believe that teachers should consider using
games as part of their courses because they could
become useful and interesting add-ons.

2.2 Using Game Tools in SE Education

Given this context of GBL, we will focus on SE
education on a game named SimulES and its

evolution with different versions until it becomes a
digital version named SimulES-W.

We agree with Liu et al. [26] that if students
learn computational problem solving with games
they will be more likely to perceive a flow learning
experience than in traditional lectures. They also
confirm that there is a close association between
the students’ learning experience and their
problem solving strategies.

Our study with SimulES-W, analyzed feedback,
examined the differences between the game and
traditional lecture and problem solving behaviors.
We found that these behaviors are strongly related
to: a) understanding the problem, b) devising a

Table 1. Summary of Software Engineering game features

Game name Game goal Player goal Game modeling

1. Problems and
Programmers
(PnP)

Teach software
engineering.

Simulate the process of
development in waterfall.

Does not have.

2. SESAM
Teach project
management.

Create a model of software
development process and run it
using a simulation system.

Documentation related to
specification, architecture,
design, definition, and
implementation of work
environment.

3. SimVBSE
Teach software
Engineering value.

Identify the stakeholders in the
system with what they perceive
as critical success factors and
values, all of that in a simulated
setting.

Development based on
prototypes.

4. SimSE
Teach software
engineering process.

Complete a software
engineering project.

Modeling as it has different
version of the game.

5. Planager
Teach some project
management concepts.

Simulate some of the processes
used in project management,
mainly planning processes.

With object-oriented UML.

6. Scrumming

Teach through
simulation agile project
management practices,
mainly SCRUM.

Make a simulation assuming the
role of SCRUM Master.

With object-oriented UML.

7. X-MED v1.0
Teach software
metrics.

Simulate a measurement
program aimed at project
management. All of that aligned
to maturity level 2 of the CMMI-
DEV.

Based on its architecture, ie.
it was developed from a
layered architecture.

8. SCRUMIA
An educational game
for teaching SCRUM in
computing courses.

Strengthen the understanding of
SCRUM concepts and to
exercise the application of the
SCRUM process.

The game has been
systematically developed
following the Instructional
Systems Design Model.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

SimulES-W: A Collaborative Game to Improve Software Engineering Teaching 957

ISSN 2007-9737

solution plan and c) testing the plan as was
mentioned in Liu et al. [26]

Fully understanding the game is important to
meet learning aims because perception of the
game gives players “the true game” [27]. In other
words, when a player has a much better
understanding of the game than the other player,
the first can enjoy more with less effort and
consequently achieve aims in an appropriate way.

The results presented in Hanaki et al. [27] show
that players might feel good without fully
understanding highly complex strategic
environments. The authors thought their results
suggested that players might have a good
understanding about the dynamic of the game, but
it is necessary to maintain a level of mystery
enveloping the game strategies as to live space for
discovery. In the same way, it is necessary that

Table 2. SimulES to SimulES-W evolution

Version 1 (Board game)

Characteristics

- Evolution from PnP.

- It integrates evolution concepts in the game.

- It incorporates the first board game.

- It uses a flexible development process.

Experience of

Use
It was used in PUC-Rio when it was built. Until now, it is used in UFMG. Both to teach
Software Engineering.

Version 2 (Board game)

Characteristics

- It includes a modeling based on scenarios.

- It incorporates the individual board.

- Proportion of defects in white and gray cards was balanced. As well as time points.

Experience of

Use
 Interactions with undergraduate and graduate students in PUC-Rio.

Version 3 (Board game)

Characteristics - It includes an intentional modeling based on i* framework.

Experience of

Use
 Interactions with graduate students in PUC-Rio and Universidade do Estado do Rio de Janeiro
(UERJ).

Version 4 (Web game)

Characteristics

- Digital version named SimulES-W.

- It includes an intentional modeling based on i* framework.

- Proportion of defects in white and gray cards was balanced. As well as time points.

- It is customizable according to issue that will be taught.

- Online references can be consulted and discussed.

Experience of

Use
Interactions with undergraduate and graduate students in PUC-Rio and UERJ.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

Elizabeth Suescún Monsalve, Mauricio Toro, Raúl Mazo, David Velasquez, Paola Vallejo, et al.958

ISSN 2007-9737

players have a reasonable knowledge about their
playoffs and opponents’ playoffs.

In the case of SimulES-W, payoffs can be
higher if the game is in a more advanced stage
when players have more artifacts, such that
players can improve their game and damage
opponents’ games, despite the SimulES-W
randomness provided by throwing dice. It is
interesting to notice how the players enjoy and feel
satisfaction with the game’s payoff and how they
use them.

There are simulators to teach software
engineering such as SESAM [28], SimVBSE [20],
SIMSE [21], and others presented in Table 1.

SESAM [28] works as a simulation system that
is able to execute models. It is focused on teaching
software management. The basic idea of the game
is to create a software process model with
particular data, which is then simulated by the
system. Quantitative data is generated based on
the user selections for the specific project. As a
result of the simulation, it is possible to analyze the
process and the user choices.

SimVBSE [20] is a game for students, which
help them to better understand value-based
software engineering. It departs with what the
stakeholders have defined as critical factor of its
success and the preference values, this last one is
a concept predefined in the game and that allows
to be analyzed in detail. The users (students)
should identify what stakeholders regard as critical
success factor (choose this concept) and
determine a strategy to balance the critical factors
with the other preference values.

SIMSE [21] is an interactive educational
software that is used with a single player and
simulates a software engineering process.
Therefore, it guides students through the different
software processes, in which students have to deal
with budget, project time and other difficulties that
arise when the simulation is running.

At the same time, students must make
decisions that could affect positively or negatively
the project. The idea in this game is to finish the
project within the stipulated time and budget.
These games are similar to SimulES because they
were evolutions of the game "Problems and
Programmers", also known as PnP [29].

Approaching these games from the point of
view of how they were specified or modeled, we

observed the following. (a) SESAM game does not
have any pre-defined method related to
documentation on specification, design and
architecture. (b) SimVBSE was built by prototyping
method based on the different evolutions of itself.

And (c) SIMSE has been modeled for each one
of its versions, i.e. each version of the game has
its own specification, modeling and architecture
with an individual approach to each. PnP was the
source of inspiration for the different versions of
SimulES up to SimulES-W.

3 SimulES-W

SimulES-W incorporates the concepts of SimulES,
therefore, it contains the concepts of the PnP game
[29]. The difference between SimulES and the PnP
game is that the first one does not impose an order
to build software artifacts or a particular software
development process. A brief compilation of the
game's history, SimulES was conceived after an
analysis of advantages and disadvantages of PnP,
as detailed by Figueiredo et al. [30].

This analysis led to the creation of the first
version of SimulES. This version included
important differences between both games, for
example: SimulES integrated the concept of
evolution by incorporating a new board in the
game, as well as improved and reformulated
the cards.

But, the most representative improvement has
been that it allowed the players to use a flexible
development process. This means, when the
players (students), develop a software product,
they can choose a developing strategy according
to their convenience and ability.

This resembles the reality of real projects
whereas each project may decide which process to
enforce or may decide not to enforce a specific
software process like PNP using phases to
develop a software product, which is still taught in
some software engineering courses. Figueiredo et
al. [30] also provided some challenges for future
research, which included automation and more
usage of the game as to gain more insight of its
potentialities as well as its drawbacks.

The elements used to improve and evolve
SimulES are the results, feedback and
observations of the users [31, 32, 33]. Table 2

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

SimulES-W: A Collaborative Game to Improve Software Engineering Teaching 959

ISSN 2007-9737

summarizes the SimulES versions characteristics
and experience of use.

Version 2.0 of SimulES, described in [34],
included different improvements. One of the
improvements was the usage of a scenario-based
specification [35] to describe the game behavior
and its rules this as part of the game analysis and
design artifacts. Another improvement was the
redesigned of the main board as to better guide the
players, this element allow player organize public
information related to the game. This version also
reduced the proportion of defects (bugs), and
changed the value of time points on the white and
gray artifact cards as to create a better balance
among card types.

This version was used in the works of Serrano
et al. [34] and Napolitano [32], which profited from

the experience with the game as it was played by
different students and researchers.

Napolitano [32] used the i* [36] language to
model SimulES. This work was the seed for
SimulES version 3.0.

As depicted in Table 2, we presented the
evolution of SimulES to SimulES-W [37]. This last
is a digital version of the game created on top of a
refinement of the goal model presented by
Napolitano [32].

The design of SimulES-W was a combination of
several elements. Firstly, we studied other online
games. After, Monsalve played SimulES to better
understand it, and we continue observing how
players interacted with the board game. This
experience was reported in [38] and [39].

Study

Play

Model

Build

Prototypes

Experiment

Implement

SimulES

v 2.0

L
A

L

S
c

e
n

a
ri

o
s

K
n

o
w

le
d

g
e

 o
f

S
.
E

In
it

ia
l

U
n

d
e

rs
ta

n
d

in
g

N
e

w
 U

n
d

e
rs

ta
n

d
in

g

T
h

e
s

is
 o

f
N

a
p

o
li
ta

n
o

 [
1

8
]

i*
L

A
L

i*

S
c

e
n

a
ri

o
s

E
li
c

it
a

ti
o

n
 T

e
c

h
n

iq
u

e
s

G
e

o
m

a
ti

c
s

 G
ro

u
p

R
e

q
u

ir
e

m
e

n
ts

E
v

o
lu

ti
o

n

C
la

s
s

e
s

 o
f

S
im

u
lE

S

S
c

e
n

a
ri

o
s

 o
f

S
im

u
lE

S

B
u

il
d

 P
ro

to
ty

p
e

J
a

v
a

N
e

tB
e

a
n

s

M
y

S
Q

L

J
a

v
a

 S
c

ri
p

t

H
ib

e
rn

a
te

In
te

n
ti

o
n

a
l
M

o
d

e
ls

 V
.
0

 [
1

8
]

J
a

v
a

M
y

S
Q

L

J
a

v
a

 S
c

ri
p

t

H
ib

e
rn

a
te

N
e

tB
e

a
n

s

In
te

n
ti

o
n

a
l

M
o

d
e

ls
 V

 1
.0

S
im

u
lE

S
-W

Fig. 1. SADT diagram – The process to build SimulES-W

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

Elizabeth Suescún Monsalve, Mauricio Toro, Raúl Mazo, David Velasquez, Paola Vallejo, et al.960

ISSN 2007-9737

Monsalve [38] presents the results of an
experience in which an interdisciplinary group
plays with SimulES.

Using observation techniques and
questionnaires, information was collected. This
information was important for providing insights
and ideas, which helped tuning the SimulES-W
design process. An example is the case of initial
training before the game, also the contents in the
cards should been revised because some were
difficult to understand by the average students and
some rules of the game needed to be sharpened.

The experience was also important to confirm
the acceptance of SimulES by students. They
reported that SimulES was a positive, motivating
and entertaining experience.

Monsalve et al. [37] provide extended
observations on the use of SimulES-W as a
learning tool for SE students, mainly because it is
fun and motivates a healthy competition. The work
also reports on new feedbacks that led to the
improvement of SimulES-W. Next section stresses
these new features of SimulES-W; some control
actions are now delegated to SimulES-W, freeing
students to better focus on the goals of the game.

3.1 SimulES-W Development

The development process of SimulES-W was
performed by six steps as illustrated by the SADT
diagram in Fig. . The first step was based on a
review of the literature related to educational
games as explained in [38]. In addition, we studied
the available documentation about the previous
versions to gain an initial knowledge about the
game. This theoretical knowledge was allied with
the practice of playing the game, still in its manual
version was used when playing the game.

As such, we gained a new understanding about
the game and the intentional model of the game
was useful for that [32]. Intentional modeling, with
i* [36] for instance, was chosen because it
represents the interaction among players; other
representation approaches researched did not
consider this interaction. The modeling language
used in [32] follows the ERi*c method [40] which
helps to create i* models.

During the elicitation process we used i* models
to represent the interaction among players, and to
show the game dynamics.

For the creation of these models we adopted
the ERi*c method [40] that builds these models
using six steps, interconnected by means of
requirements baseline. These steps are: (i) goal
and actor elicitation, (ii) SDsituations identification,
(iii) goal modeling for each actor, (iv) rationale
modeling for each actor, (v) SDsituations
specification, and (vi) analysis of SD and SR
models as described by Monsalve et al. [38].

Each round of the game is represented in
SDsituation, which represents in a structured
diagram the situations of strategic
interdependence between actors sharing a goal
common within an organizational context.
Monsalve et al. portray the round Play Round to
Start in [38]. In Figure 2, the oval-shaped
represents a goal that must be met and in which
two actors interact, such as: Player in turn interacts
with SimulES.

In the syntax i* this means that the actor Player
depends on the actor SimulES (the system) to
Game be started, the system available resources,
publishes movements. In like manner SimulES
depends on Administrator (role) to Entry of player
be closed and type of cards be chosen. Also,
Adversary depends on Player in turn to Project be
accepted, as Player in turn depends on SE to be
hired. In addition, the box-shaped figure represents
resource; they may be read as follows: Player in
turn depends on SimulES to available Dice. In
Figure 2, the cloud-shaped represents a soft goal
or a non-functional requirement and can be read
as follows: Player in turn depends on SimulES to
the game is availability.

Figure 3 presents the description about the
model view controller architecture resuming the
heuristics used to identify the elements of modeling
that were subsequently used in the
implementation. Summarizing, the behavior found
in each SDsituation, presented in Figure 8, was
implemented as user interfaces or
related modules.

Symbols in Lexicon, which are a starting point
to describe the vocabulary of the application, were
modeled in i* diagrams as resources or actors and
then they were mapped to the diagram class
(Figure 4).

Goals and tasks represented in i* diagrams
which were categorized as verb type symbols were
implemented as methods.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

SimulES-W: A Collaborative Game to Improve Software Engineering Teaching 961

ISSN 2007-9737

Simultaneously, as we were using these
models to develop SimulES-W, we did one
experience with an interdisciplinary group what
had interacted with SimulES. We used elicitation
techniques, such as the observation of the players
and questionnaires, to evolve the requirements.

SimulES-W was developed mainly in Java with
the support of other software tools and frameworks
such as MySQL, Hibernate, and Javascript. The
base used for the implementation was the ERi*c’s
models which were mapped to a general MVC
(Model View Controller) architecture [41] and the
code was instrumented with scenarios describing
i* tasks. This process is detailed in [38].

The development environment used was
NetBeans version 6.5. Figure 5, shows the

packages that separated each component of the
MVC pattern (Control, Model, and View).

In addition, two additional packages were
created in the group Servlets and Util Classes. The
project was written on Java and Javascript.

As source code metrics, we presented Code
lines by Packages: View: 18034, Control: 4292,
Model: 1806, Util: 506, Servlet: 367.

Classes by packages: SimulES: 79, Model: 22,
Control: 18, Util: 8, Servlet: 3. Total methods: 1326.
Classes with the biggest number of methods:
Index: 96, SourceCardsPage: 85,
ProblemsByPlayerPage: 71, SubmitProblems
Page: 66, SessionBean1: 59. Frameworks used
jMaki Ajax, Visual Web JavaServer Faces,
JavaServer Faces and Hibernate.

Fig. 2. SDsituation: Play round to start

Fig. 3. General heuristics

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

Elizabeth Suescún Monsalve, Mauricio Toro, Raúl Mazo, David Velasquez, Paola Vallejo, et al.962

ISSN 2007-9737

This code was documented using scenarios
[35] and we used MySQL as a database server.

Figure 6 shows the main page of the game. This
page exhibits the messages exchanged between
players and system messages according to moves
made in the game. These last messages are
displayed when a player makes some moves in
the game.

Furthermore, the chosen project and its
modules are also displayed. Apart from that, a list
of moves accepted between players is displayed in
the bottom area of the screen as well as players
that are online who are already registered in
the game.

The version of SimulES-W presented in [38] is
being packed and will be released as soon as open

Fig. 4. Partial UML Class diagram of SimulES-W

Fig. 5. SimulES-W packages

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

SimulES-W: A Collaborative Game to Improve Software Engineering Teaching 963

ISSN 2007-9737

source software. Being open software allows
anyone to evolve it.

Furthermore, it will work as a web application
and therefore it will not require downloads,
installations or special configurations. However,
the main advantage of SimulES-W is that it can be

easily customized. That means, categorization can
be incorporated; it will happen if the instructor
chooses to approach the issue from a different
angle or just want to stress specific topics.

For example, if the instructor identifies that the
topic, which should be used in the training, is

Fig. 6. Main Page of SimulES-W

Fig. 7. Example of an individual board

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

Elizabeth Suescún Monsalve, Mauricio Toro, Raúl Mazo, David Velasquez, Paola Vallejo, et al.964

ISSN 2007-9737

Requirements Engineering Management or
Software Verification and Validation, then the
instructor could produce cards to address the topic,
and consequently the discussion generated when
the players are interacting with the game will be the
targeted one. In fact, the customization allows
cards to be edited and stored in named files, so the
game can be played with different emphasis as
well as with different philosophies.

Other customization may be enacted, for
example: changing the rate of white and gray cards
or different calculations for time points, and

analyze different players and tune the game
accordingly with the observations found. Another
advantage of SimulES-W is that concept cards and
problems cards do handle links to web material,
thus making possible direct access to bibliography
or other resources. Having a direct access to
supporting material is supposed to improve student
performance, since the bibliography would be
easily accessed in the right context.

This enables an even more targeted education,
with a combination of cards and proper educational
material.

Fig. 8. Example of Project Card

Fig. 9. Graphical interface to manage of software engineers cards

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

SimulES-W: A Collaborative Game to Improve Software Engineering Teaching 965

ISSN 2007-9737

3.2 Game Components

The most important idea in SimulES-W is that it
simulates the SE process where each player takes
the role of a software project manager in his own
game, consequently he has to: deal with budget,
deal with SE employment, build different software
artifacts and control its quality by inspecting them
before submitting the final product.

During the game, other players, named
adversaries, such that new problems may be
assigned to disrupt the player´s situation in the
game, can establish some situations.

It is also the case that the player analyses his
own game and the others player’s games to create
a strategy of development, which allows one’s
player game to become a better game than of his
adversaries.

This strategy is based on the analysis of the
player’s resources (problems cards and concept
cards), the project budget and the skill that its
software engineers have.

If he has a good and big team he can develop
quickly and inspect all the artifacts latter or he can
mix constructing artifacts and inspecting them.

The resources used during the game are: the
main board (Figure 6), the individual boards
(Figure 7), the project cards (Figure 8), the
software engineer cards (Figure 9), the concept
cards (Figure 10), the problem cards (Fig.), the

white and the gray artifact cards (Figure 7) and the
dice.

The Individual Board is the base for playing, this
is the area of the game in which each player places
their Software Engineers in the columns and the
artifacts in the rows.

Each project requires constructing artifacts of
the following types: Requirements, Design, Code,
Traceability and Help. Figure 11 shows the
Individual Board in a game scenario with three
Software Engineers.

The artifacts are placed in cells of the board,
below the software engineer who produced them
and in rows for their types. These types represent
the same type of real software project artifacts that
must be built. At first when the game starts, the
project has to be established and it will be available
for all players.

This definition is made randomly so all players
have to roll the dice and the player who got the
highest dice result is the one who execute the
action to get the project card and starts the game.
This movement is important so all the players start
to get involved in the game and starts to know
SimulES-W interface and how the project
characteristics will influence their moves. Figure 12
exemplifies a Project Card and its features, like
description, complexity, size, quality, and budget
and modules descriptions.

Fig. 10. Graphical interface to manage of Concept Cards

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

Elizabeth Suescún Monsalve, Mauricio Toro, Raúl Mazo, David Velasquez, Paola Vallejo, et al.966

ISSN 2007-9737

The project complexity is related to the white
cards value, so the white cards will be worth the
value, which is indicated in the complexity, and
gray cards will be worth half of this value. The size
denotes the number of modules to be built in each
project and the quality shows the amount of error
free modules that the final product must have to
win the game.

The budget is the total project cash and defines
the amount of money available to be spent.

Finally, the modules description describes the
quantity and the type of modules to build on the
individual board.

There is a round where each player throws the
dice once. The dice result allows the player to draw
white cards, gray cards and software engineers, if
the dice upshot is less than three, then he will draw
only concepts and problems cards according to
this result. On the other hand, if the dice upshot is
more than three he will draw concepts and
problems cards and software-engineer cards.

The quantity of software engineer cards will be
the difference between three and the dice result
(dice upshot – 3). As an illustration, if Mary threw
the dice and its result was 2, then Mary would draw
2 cards (problems and concepts). Nonetheless, if
Mary threw the dice and its result was 4, then Mary

would draw 3 cards (problems and concepts) and
1 software engineer card, these cards will be kept
until that player needs them to make his move in
the game, namely the player applies concepts or
submits problems or places a software engineer
card on the individual board.

Placing a software engineer (Figure 13), on the
board (Figure 11) means that the player has hired
a software engineer, but that action is limited to the
project budget, since each hiring subtracts the
salary of a software engineer from the total budget,
so a new hiring is dependent on the number of
software engineers already on the board and their
salaries.

Fig. portrays a characteristic software engineer
card and its features like name, description of his
personality, salary, which is related to the budget,
an ability, which is related to the project complexity,
and a maturity, which is occasionally used in
problem cards conditions.

A software engineer can execute one or more
actions in the individual board (Figure 11) such as
build artifacts, inspect artifacts, correct defects and
integrate artifacts in the module. He does these
actions according to his ability, a number (see Fig.
), which determines how many moves he can do in
each action and is related to the project complexity.

Fig. 11. Graphical interface to manage of Problems Cards

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

SimulES-W: A Collaborative Game to Improve Software Engineering Teaching 967

ISSN 2007-9737

It is also known as time points. For example, if the
software engineer has an ability level of 2 and the
project complexity is 2 he can build in each round
one white card artifact.

The ability is the number of points of time
(productivity) that the software engineer has to
spend on each round, so it defines the number of
white and gray artifacts cards that can be produced
by him. In Figure 12, white artifact cards costs 2
and gray cards costs 1, so Karen (Figure 13) with
the ability of 2 points of time and with the project
complexity (2) can build 1 white artifact card or 2
gray artifact cards. Therefore, if the player has
engineers with higher ability, then the player will
have more productivity (will build more artifacts,
and as such may finish earlier).

Each artifact is built either with a white or gray
card. As shown in Figure 12, the quality attribute

determines the number of modules that will have to
be bug free, and the budget attribute defines the
amount of money available to be spent in hiring
software engineers.

Concept Cards and Problem Cards have a
name, description and a reference. The reference
shows the concept source and explains it in detail
justifying its use. Thus, if the players are interested
in some issues, then they could research more
about it. The description in both type cards
(Concept Cards and Problem Cards) describes
how cards have to be used, some of them may also
have a cost associated with it.

As a result, the player can use the Concept
Card not only to block a Problem Card, but he can
also use it to improve the player´s performance.
Hence, both types of cards have the sufficient

Play round

to start

Play round to

actions

Integrate

artifacts in a

module

Build

artifacts
Inspect

artifacts

Correct

artifacts

Play round

to concepts

Manage

problems

Submit

product

Y

N

T1

T2

T3

T4

N

[Choose action]

[Do you have problem

cards?]

[Can you submit product?]

Y

[Choose action]

Fig.12. SimuES-W SDsituations - the rounds in the game [39]

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

Elizabeth Suescún Monsalve, Mauricio Toro, Raúl Mazo, David Velasquez, Paola Vallejo, et al.968

ISSN 2007-9737

information to present a concept or highlight a
common problem.

3.3 The Game Rounds

SimulES-W has different types rounds where
players execute their moves such as: Start,
Concept and Manage problems, Actions (Build,
Inspect or Correct artifacts and Integrate Artifacts
into a Module), and Submit product. Figure 12, an
SDSituation diagram of the ERi*c method [40]
illustrates these rounds in a time-oriented
flow chart.

When the game starts, one project must be
chosen from those available [T1] in Figure 12. The
dice is rolled and the one who gets the highest dice
result chooses the project and starts the game.
Furthermore, the information about the project is
displayed to all players.

After that, each player assembles an individual
board and picks up one software engineer in the
stack of SE cards.

In the “play round to actions” [T2], each player
with the information of his/her software engineers
(ability and salary) and the information in the
project card (size, complexity and budget) uses a
software engineer to: build artifacts, Inspect

artifacts, correct artifacts and Integrate artifacts in
a module (see [T2] in Figure 12). In the action build
artifact, if the player builds with white artifact cards,
he/she will spend the points of time as per the
complexity in the project card, but if he builds with
gray cards then he/she will spend half of the points
of time.

However, white artifact cards (5 cards to 1
defect) have a lesser defect rate than gray artifacts
cards (3 cards to 2 defects). Inspect artifact is an
action of turning up an artifact card under the
responsibility of a software engineer, disclosing its
quality status (with or without a bug – see (Figure
7). The cost of inspection is fixed by 1 point of time
per card if it is performed by the same software
engineer that built the artifact and 2 if it is
performed by another software engineer. Correct
defect action has to be performed when the
software engineer inspects an artifact card and
finds a defect (“bug”).

By correcting a defect, he/she spends 1 point of
time if it is performed by the same software
engineer that built the artifact and 2 if it is
performed by another software engineer. Integrate
Artifacts in a Module action has to be performed
before the player submits the product. This

Fig. 13. Graphical interface to manage Individual Board

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

SimulES-W: A Collaborative Game to Improve Software Engineering Teaching 969

ISSN 2007-9737

situation happens when the player has built all
types of artifacts required in a module (Figure 8).

The player can choose the artifacts that are
available in his/her individual board, considering
the artifacts types described in the project card to
compose a module.

The artifacts can be originated from different
software engineers (columns in the individual
board).

In the “play round to concepts” [T3] in Figure 12,
each player rolls the dice once. The dice result
allows the player to draw concept/problem cards.
These cards (concepts and problems) are shuffled
together and piled upside down in the main board.
If the dice shows a number greater or equal to 3,
then software engineering cards may also be
drawn. The quantity of software engineer cards will
be the difference between three and the dice result
(roll of the dice – 3). Thus, the greater the result
from rolling the dice, the more resources the player
will have.Here is where luck comes into play.

At this point, the player has to think about team
composition: the number of software engineers is
limited to the overall budget (see Figure 4), that is
the sum of the salaries of the software engineers
posed in the Individual Board. This implies the
possibility of hiring and firing software engineers
(project management skills). Note that there is an
educational purpose of making students deal with
real world issues (hiring/firing) by means
of simulation.

In [T3] the player uses concept and problem
cards. So during the game, the player can receive
problem cards from the other players. These cards,
when received, are to be used in the next round.
The objective is to damage the game of the other.
However, if the player has one card, which
invalidates some problem cards (a concept card),
the player will be able to use it and the action
described in the problem card will not affect his
game. Then he must discard both cards. On the
other hand, if he does not have any card that
invalidates the problem cards, this problem will be
applied to his game. At this point in the game, the
educational goal is that the players discuss both
problem and concept cards claimed to pair. A
player using a concept card has to build an
argument as why that card neutralizes the
problem card.

This argument can be discussed, but it will only
take effect if all players agree. As mentioned
before, this discussion can be mediated by an
instructor. The “submit round” [T4] can be
performed in the beginning of the player turn.
When the player integrates all his modules, he can
submit the product.

Then the other players have to inspect those
artifacts that are not inspected (faced up). The
product will be accepted, and wins the game, if
there are n number of modules free of bugs,
whereas n is indicated by the Quality attribute in
the Project card Figure 8.

Figure 13, shows two different situations in The
Individual Board: a) Build Artifact and b) Inspect
Artifact. At the top the Software Engineers who is
employed by the player. The Individual Board
(Figure 13 a) portraits the White artifact Cards and
the Gray artifact Cards. It illustrates cards, which
have not been inspected yet. Alike, the part b of
Figure 13 shows when artifacts have already been
inspected and also the result of the inspection. This
figure also shows when the artifact has a defect
(bug) or not. This result is chosen randomly by
SimulES-W and is based on the rate of defects
mentioned before. Both sides part a and b at the
bottom of this figure present the different
operations, described above, that can be executed
by the player based on his own board.

Each player would use his knowledge about SE
in Play Round to Concepts and Manage Problems.
This type of round is where he can throw problem
cards (Figure 12) to another player, treat problems
and improve his game if possible.

This round allows the player to use Concept
Cards and Problem Cards which describe a typical
process, good practice or problem in a specific
area of SE.

Figure 10, portrays some typical processes and
tasks of SE. These cards can be used by player to
improve his game or block some problem that he
has. After that the player analyzes his own game,
looks if he has problems to deal with that have
been submitted by other players and if some card
could be used to treat or invalidate these problems.
In similar fashion there are concept cards that can
be used at any time and that can improve his game
giving advantage over his adversaries. To illustrate
it, there are concepts which enable to increase the
budget, solve problems related to inspection, solve

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

Elizabeth Suescún Monsalve, Mauricio Toro, Raúl Mazo, David Velasquez, Paola Vallejo, et al.970

ISSN 2007-9737

a specific problem and improve the ability of
engineers to better build the software product that
is asked in a more efficient way.

Problems Cards, shown in Figure 11, represent
typical problems in SE process. This is the view of
the player when his adversaries have submitted
problems to him. The objective is to damage the
game of the other and to try to win the game. [T3]
above describes the mechanics of this type of
round.

By the end, if player understands what the
cards means and has the opportunity to use them,
then he will apply the Problems Cards to halt the
adversaries’ progress.

For this reason, the proper use of these cards
could lead to the creation of a good strategy game
that is reflected in the good performance of the
player. This could lead to winning, but it is clear that
there is a component related to the fate of the
player and he has to have the right cards and know
how to use them at the right time.

4 Learning Software Engineering with
SimulES-W

There are two important issues that are taught
through SimulES-W: one is the dynamics of
software construction and the other is related to
problems and concepts about SE in an
interactive way.

When a student or player is building his
software product on his individual board, he will be
able to choose a way to address his game, namely
he has different ways to organize his activities or
to establish some tactic to conduct activities. In
other words, he can choose his own strategy to
assemble his product, which means that he can
choose when to address quality issues of his cards
(inspect and correct actions).

This situation is explained in [30] SimulES
implement a dynamic software development
process that mean, it is geared towards evolution,
and does not preach a fixed process with well-
defined and fixed stages. SimulES-W strategy also
avoids the concept of complete requirements,
which in reality is a misconception that is repeated
in several teaching materials.

As a result, SimulES-W presents an open
development process that is dynamic and not

structured so the student can learn that different
context implies different strategies.

Furthermore, it is possible to refine, inspect or
correct any artifact or artifacts. In other words, the
dynamic nature of the process in SimulES-W
allows the student to realize the evolving nature of
the artifacts in a software project, mainly the
requirements. Therefore, requirements are present
at any stage of the development process and they
could be tackled whenever necessary.

This concept is taught to students in the game
when they have to build their software product,
showing this as an open option where they choose
a way to build and their own strategy. However, the
teacher should highlight the importance of the
requirements in all stages of development. In fact,
players can suffer a penalty if they do not regard
the requirements in the development process.

5 SimulES-W Experience

5.1 A Proposed Process to Teach with
SimulES-W Didactic Concepts

As described in [37] the proposed educational of
SimulES-W is based on collaborative experience.
This means that teachers address experimental
learning to a specific issue and trainees or students
should be able to learn through discussions and
decisions making techniques which are
represented by the game rounds. All the time, the
players are interacting with each other. In the same
way, these actions will be reflected in the final
result of each student’s game. We strongly
recommend teachers or trainers to offer a previous
training about the game dynamics and how to use
the software.

Alike, when the experience has finished,
evaluations should be applied, one to evaluate the
software acceptance and other to evaluate
concepts that were learnt.

The teacher is the one who decides these
contents according to what issue is necessary to
teach. In Figure 14, we propose a didactical
process that we established in order to apply
SimulES-W as an education tool. The following
parts were identified: Prepare Train, Execute,
Feedback and Analyze.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

SimulES-W: A Collaborative Game to Improve Software Engineering Teaching 971

ISSN 2007-9737

(i) Prepare: the teacher should analyze some
features related to the students’ skill and goals
of the course, like interests, previous
knowledge, and importance of the issue in the
course. After that, the teacher chooses the
specific issue, collects, and prepares the
information related by creating specific
concept and problems cards. The project and
software engineer’s cards can also be edited
to specific classes characteristics. Afterwards,
the contents are added into the SimulES-W
database. Finally, some test should be made
to check the contents. Of course, that courses
could be reused, so in that case there will be
needed for customization, but just the
selection of previous produced material.

(ii) Train: students receive information related to
SimulES-W origin of the game, historical
review, basic rules, dynamic rules, goals and
main screens. After that, students use the

tool. Instructions about the use of the tool,
including navigation, interface features and
execution of actions, are explained. All in all,
the activity (play the game) could begin.

(iii) Execute: we recommend the activity to take
place in a classroom situation with a teacher
or instructor who guides the students and who
answer questions related to the activity.
SimulES-W allows to at least two players and
no more than five players play online at the
same game. That means that if there are more
than that amount, students should be
arranged within groups not exceeding five,
because many online players could slow
down each round and, consequently, the
activity. During the activity the teacher
emphasizes the concepts and problems
addressed in the game and discuss with the
students each round of all players. Each
student should participate in the turn of their

Preparate

Train

Execute

Feedback

Analyze

Bibliography enabled

D
o

c
u

m
e

n
ta

ti
o

n
 r

e
la

te
d

 t
o

S
im

u
lE

S
-W

D
o

c
u

m
e

n
ta

ti
o

n
 r

e
la

te
d

 t
o

s
p

e
c

if
ic

 i
s

s
u

e

In
it

ia
l
m

a
te

ri
a

l
o

f
a

c
ti

v
it

y

N
e

w

u
n

d
e

rs
ta

n
d

in
g

C
o

n
te

n
t

in
 S

im
u

lE
S

-W

re
la

te
d

 t
o

 i
s

s
u

e

P
ro

p
o

s
a

ls
 f

o
r

im
p

ro
v

in
g

 o
f

a
c

ti
v

it
y

N
e

w

u
n

d
e

rs
ta

n
d

in
g

F
e

e
d

b
a

c
k

 P
la

n

C
la

s
s

ro
o

m M
o

d
e

ls
 S

im
u

lE
S

-W
 A

ll

P
ro

p
o

s
a

ls
 f

o
r

im
p

ro
v

in
g

 o
f

S
im

u
lE

S
-W

SimulES-W

S
tu

d
e

n
ts

 s
k

il
ls

T
e

c
h

n
iq

u
e

s
 f

o
r

a
n

a
ly

s
is

o
f

in
fo

rm
a

ti
o

n

S
im

u
lE

S
-W

 t
e

a
m

In
te

rn
e

t

C
la

s
s

ro
o

m

C
la

s
s

ro
o

m

T
o

o
ls

 t
o

 o
f

a
n

a
ly

z
e

in
fo

rm
a

ti
o

n

In
te

re
s

t
o

f
s

tu
d

e
n

ts

S
im

u
lE

S
-W

Students registered

Fig. 14. A SADT model of the process we propose to use SimulES-W

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

Elizabeth Suescún Monsalve, Mauricio Toro, Raúl Mazo, David Velasquez, Paola Vallejo, et al.972

ISSN 2007-9737

adversaries to agree or not based in contents
of problem and concept cards.

(iv) Feedback: we recommend two kinds of
feedback of information to be collected. One
related to the tool, such as user experience,
expectations, improvement suggestions,
navigation aspects, appearance, tasks
execution and strengths and weaknesses and
the second one related to concepts
addressed in the activity, and specific
questions about topics taught. In this manner,
information collected could be used to

improve not only the process around the
activity but also the tool.

(v) Analyze: the teacher should address the
feedback and clear some misconceptions or
loose ends identified. With respect to tool
feedback, this should be directed to the
developers to further improvement.

5.2 An Assessment Scenario

In this section, we present a comparison of two
education strategies for a part of a SE

Table 3. Closed Questions Related to SimulES-W as a Tool

1) How does the game SimulES-W is usable from perspective of a software system?

(1) Easy to use (2) Usable, (3) Reasonable (4) Little usable (5) Hard to use

N Mean Median
Standard

Deviation
Upper 95% Mean

Lower 95%

Mean

14 2.1428571 2 0.9972489 2.73589 1.5498243

2) Accordingly to student’s point of view, how SimulES-W game is?

(1) Motivating (2) Interesting (3) Neutral (4) Tiring (5) Nothing to do

N Mean Median Standard

Deviation

Upper 95%

Mean

Lower 95% Mean

14

1.9285714

 2 0,7300459 2,3500874 1.5070555

3) In your role as student, how SimulES-W game is?

(1) Teaches (2) Informs (3) Neutral (4) Distracts (5) Disturb

N Mean Median Standard

Deviation

Upper 95%

Mean

Lower 95%

Mean

 14

1.5714286

1,5 0.6462062 1.9445369 1.1983202

4) According to your own opinion, does SimulES-W show the dynamics of a software project?

 Value N Percentage

 Yes (1) 11 78.571%

 No (0) 3 21.429%

 Total 14 1.00000

N Mean Median Standard

Deviation

 14 0.6923077 1 0..480384

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

SimulES-W: A Collaborative Game to Improve Software Engineering Teaching 973

ISSN 2007-9737

undergraduate course. The focus of our
assessment relies on the part of the course that
deals with Software Risk Management (SRM). One
approach was just based on lectures, and the other
was the use of the SimulES-W game to present the
SRM material together with lectures. We report on
the information collected and lessons learned from
this experience.

This activity took place in the second semester
of 2014; at the Universidade do Estado do Rio de
Janeiro, Brazil. 37 students attended this activity
divided into two groups. The division was made
alphabetically. The first group (14 students) had
one class using SimulES-W.

After that, in another class they answered a
survey and attended to a SRM lecture. Another
group (23 Students) only attended the SRM
lecture. Each activity lasted 90 minutes. Both
groups were tested by a software engineering
exam with one question on SRM.

At first, to prepare the SRM contents in
SimulES-W, two co-authors read [42] Chapter 5
and studied how SRM involves identifying risks
and developing plans to minimize the risk effect on
software projects, stressing the tasks of risk
analysis, risk planning, risk identification and
monitoring. These tasks involve other activities
like: identify project, product and business risks,
evaluate the probability and consequences of risk,
prioritized list of risks and also if risk could be
known, predictable, unpredictable; risk type like
project, product and business and related to
technology, people, organizational, tools,
requirements and estimation.

Once knowledge had been obtained on the
subject, we divided the activities to create problem
cards and concept cards to SimulES-W based on
software engineering contents. Three people (one
teacher and two graduate students) were
responsible for the activity. The students made the
problems and concept cards to the game; these
cards were created and separated by subject in the
book. After that, the teacher according to his
experience and the reference book revised and
validated the cards. They were refined and a final
version was available. Finally, these contents were
incorporated in the SimulES-W database.

Then the contents were analyzed by means of
tests. The SimulES-W was ready to the activity
with the students.

5.3 Data Collection (Feedback)

To assess the results of the experience a survey
was designed using closed and opened questions
to measure perception. In the first group of
questions (closed) the students were asked to give
a grade to some issues about SimulES-W usability,
motivation, role in learning and if SimulES-W
shows the dynamic of software
development process.

Table 3 summarizes the answers by giving the
statistical numbers and Figure 15, shows in a
graph how the answers were distributed to the
different questions. Questions 1, 2 and 3 used a
Linkert scale and question 4 was a binary question.

For the first question proposed to the students:
how do you perceive SimulES-W usability? As
presented in Figure 15, the most of them report
that SimulES-W is perceived as easy to use (57%),
22% of them claim that they find it easy to use. A
lesser proportion of students claim that it is
reasonable (15%) while 7% declare that it is hard
to use. The results suggest that the game
according to the appreciation of the players can
become usable therefore; this could be a proposal
to support software engineering class.

The statistics of Table 3 suggest positive
results, given the median, the mean and the
standard deviation, so: second question of Table 3
is related to motivation, that is, if the student found
motivating or tiring the game. Figure 15 shows that
most of them find SimulES-W interesting (72%),
motivating (21%) and 7% of them report that it is
tiring. Even with the positive result, we believe that
it is necessary to better understand this question.
For that reason, new studies are necessary. In a
similar fashion, the median and the mean confirm
the trend, thus, median with value 2 points to the
answer Interesting, the mean shows the inclination
for that answer (1,929) and standard deviation
shows how far the lie from the mean.

Question 3 (Table 3) portrays the result related
to how students perceived the role of the game, if
it is oriented to teaching or otherwise if it disturbs.
The result shows that most of the students agree
that SimulES-W (Figure 15) teaches (50%) or
informs (43%). Nevertheless, there are 7% who
think that SimulES-W is neutral.

We think that this experience with SimulES-W
was positive, and the result supports this thought.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

Elizabeth Suescún Monsalve, Mauricio Toro, Raúl Mazo, David Velasquez, Paola Vallejo, et al.974

ISSN 2007-9737

In a similar fashion, the median with value 1.5
refers to middle value between teaches and
informs also mean shows the intermediate trend
for those answers (1.571) and finally the value
0.646 as standard deviation shows how far the
values lie from the mean. Finally, Question 4
(Table 3) enables us to identify if students
recognize the dynamic of a software project in
SimulES-W. The majority of the answers shows
that the students recognized the existence of
software process as the basis for the game (Figure
11), (79%), followed by a group who reports that
they do not identify the notion of process in
SimulES-W (22%). For this question we have
interviewed some of the respondents and found
out that of those who answered yes, found that the
notion of a software project is clear, as well as the
process for producing artifacts; for those who
answered no, there was a consensus that the
notions are still provided in a superficial way and it
gives just a rough idea.

The second set of questions (open) was
designed to gather student’s opinion in a free style
text. With these questions we collected information
related to problem and concept cards, strengths
and weaknesses of SimulES-W and information

about aspects of navigation, appearance and task
execution. These questions are shown in Table 4.

In the fifth question, “What do you think about
problem cards?” most of respondents answered
that the goal is clear and that they represent real
problems in software engineering.

Even thought, it is necessary to increase the
number of problems cards so the game will be
more interesting.

In the sixth question, “What do you think about
concept cards?” most of respondents think that the
goal is clearer than problem cards. “Concept cards
are clear, when they did not apply to specific
problem, they were useful to exemplify situations.”
On the other hand, some students claimed that the
game was too fast, and that for that reason it was
impossible that some of them could recognize the
cards quality and their details, as well as claims
that some cards were hard to understand.

There are many positive aspects that were
collected with question number seven, “In your
opinion, what are the strengths of SimulES-W”
Some of them were: “SimulES-W encourages me
to learn software engineering.”, “it was a challenge
that SimulES-W gets to simulate a software
engineering environmental.”

Fig. 15. Answers of Closed Questions Related to the use of SimulES-W by UERJ Students

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

SimulES-W: A Collaborative Game to Improve Software Engineering Teaching 975

ISSN 2007-9737

“With SimulES-W it was possible to play in
group and discussions are brought up.”, “it is
possible to recognize the value of quality and the
quality of software engineers in the software
project.”, “this game tries to show stages in a
software project.”, “with this kind of game is
possible that class in software engineering
becomes more practical.”

The eighth question, “In your opinion, what are
the weaknesses of SimulES-W?” allowed us to
identify aspects to improve in SimulES-W. Naming
only a few: “there are many actions that are based
on good luck”, students think that many actions in
game should not depend on the dice, that it is
required to improve performance and response
time of the software, students suggest developing
some strategy to improve the time that students
wait between each round. Students propose to
spend more time in training so they would
understand better the software. It is necessary to
improve the software navigation, interface and
layout, create more alert messages being activated
when users execute some action.

Students have also been asked to tell us more
about contents and learning elements that were
passed on SimulES-W (Table 5).

The goal with this part of the survey was to
target a more depth on student´s understanding
that is if SimulES-W communicated the contents
planned.

In the first question, most of the respondents
agree that concepts were taught related to typical
problems in software development project
combined with requirements, prototyping, and risk
analysis. In a similar fashion, respondents think
that SimulES-W teaches how the different tasks in
software construction are important and some
techniques to approach these tasks. It is also the
case that students understand the importance of
software engineers to the projects. One student
claimed that he did not remember what was
thought and other said that SimulES-W does not
achieve the goal proposed.

In the second question, most of the
respondents answered that the concepts were
passed through the concept and problem cards,

Table 4. Open Questions used in Activity with SimulES-W to evaluate the tool

Open Questions Related to SimulES-W as a tool

5) What do you think about problem cards? Is the cards goal clear?

6) What do you think about concept cards? Is the cards goal clear?

7) In your opinion, what are the strengths of SimulES-W?

8) In your opinion, what are the weaknesses of

SimulES-W?

9) What aspects of navigation, appearance and task execution would you like to see performed better?

Table 5. Survey related to Contents and Learning Elements.

Survey related to Contents and Learning Elements

1) According to your own opinion, what concepts

2) did SimulES-W teach?

2) How were these concepts approached by the game?

3) According to your own opinion, what did conditions

4) Lead to lose or win the game?

5) According to your own opinion, does SimulES-W

6) Simulate a real situation?

5) Identify the risks of a software project.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

Elizabeth Suescún Monsalve, Mauricio Toro, Raúl Mazo, David Velasquez, Paola Vallejo, et al.976

ISSN 2007-9737

and by the Project manager tasks of hiring
and budgeting.

The third question, “According to your own
opinion, what conditions lead to lose or win the
game?” most of respondents said that luck was the
main condition to win or lose the game, other
students said that it was necessary more time to
end the game. In addition, students also believe
that inexperience, shallow knowledge about
project management and knowledge on decision
making were important factors.

The fourth question, “According to your own
opinion, does SimulES-W simulate a real
situation?” most of respondents said yes (64%),
furthermore they complemented the answer saying
that it is necessary in software projects some kinds
of strategy and to be aware that problems can
occur. They also mentioned that the tasks of
software engineers are clear, and also that some
of the problems that may occur in real projects are
presented, as in the case of dealing with personnel
and budgeting. Students who answered negatively
(29%) had problems with the problem cards, either
because they failed to apply them or because they
did not see them fit in their game. They also
pointed out that the game is superficial since they
did not use the concept or problem cards as
expected, they consider that the game does not
provide a real SE situation.

5.4 The Software Engineering Exam

For the sake of assessment of using SimulES-
W we compared two groups of students, one using
SimulES-W and the other with just regular lectures.
An exam was used to test students of both groups.

As such, in this part, we included an analysis
related to the exam applied after SimulES-W
activity. The idea with this analysis was to look
through the exams and find useful information
related to the usage of SimulES-W. That means,
our analysis is basically centered on identifying the
student´s performance on questions related mainly
to risk analysis, which was the emphasis given in
the SimulES-W activity as well as their general
performance. Finally, we compared the
performance between students who attended the
activity (playing with SimulES-W) with those who
did not participate.

The exam had five questions and each question
had different values.

1. The first question the students suggested a
software architecture for one specific
problem, describing and listing the criteria
which justified the choice. The value
question was 3.0 points.

2. The second question was related to testing and
students had to explain a sentence
describing why testing is not sufficient to
ensure software quality. To be fair, they
had to describe techniques, which could
be used towards quality control. The value
question was 2.0 points.

3. The third was addressed to students classified
a list into the corrective, adaptive and
evolutionary maintenance of software. The
value question was 1.0 point.

4. The fourth, students were asked to explain why
the quality software depends on the quality
of software development process. The
value question was 2.0 points.

5. And finally, the fifth question was related to risk
management. Here students had to
identify two risks, give two examples and
explain strategies that could help to
mitigate risks. The question valued
2.0 points.

Although just the last question was geared
towards SRM, questions two and four are topics
dealt by the dynamics of SimulES-W with type of
artifacts and verification by inspection. The exam
was a general one, but will be used in our
assessment since part of its questions was dealt
by the game. It is also the case that we are not
doing a direct comparison of learning with or
without the game.

We understand this as an advantage of our
assessment, since we using the exam as a
confirmation of the survey result and not as the
prime result, which would be required a more
complex assessment structure.

As such the hypothesis we are trying to check
with the exam is if the students who used SimulES-
W had at least equivalent learning results as the
ones that used only traditional methods [14].

So, if there are no disadvantages for the
learners who used the game, then we may assume

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

SimulES-W: A Collaborative Game to Improve Software Engineering Teaching 977

ISSN 2007-9737

that using SimulES-W does not influence learning
in a negatively way.

All the students in the class took the exam. As
noted earlier, the exam was composed by five
questions and one question was about SMR, the
target issue of this SimulES-W cards.

A total of 37 students took the exam, in which
23 had not played the game and 14 who did. Figure
16, a) (SimulES=Y) shows the success rate of the

risk management question for the students who
played the game. The figure portraits that five of
the fourteen students achieved 100% of the
answer this represents 36% of this group, one
achieved 85% and this represents 7%, one
achieved 80% this represents 7%, two students
achieved 75% and this represents 14%, four
students achieved 60% and this represents 29%,
finally one student achieved 50% and this

a b

Fig. 16. Results related to Exam Applied after SimulES-W Activity (SimulES=Y)

 a b

Fig. 17. Result related to Exam Applied after SimulES-W Activity (SimulES=N)

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

Elizabeth Suescún Monsalve, Mauricio Toro, Raúl Mazo, David Velasquez, Paola Vallejo, et al.978

ISSN 2007-9737

represents 7%. So, the majority of students got at
least 60% of the questions.

Figure 17, part a (SimulES=N) shows the
success rate of the risk management question for
the students who did not play the game; of those
(23), thirteen achieved 100% of the question and
this represents 57% of them, alike two students
achieved 75% and 70% this represents 9%, four
students achieved 60% and this represented 17%,
one student achieved 40% and this represented
4%, finally three students failed to adequately
answer the question (13%).

Comparing the mean of the two groups we see
that students who played the game got a little
better degree than students who did not play the
game because none of them get lower than the
average (50%).

However, the mean number are very close
(7,893 and 7,435) although the standard deviation
has great differences from 1,873 to 3.703, showing
grades that were more consistent within the group
that played the game.

None of the students who played the game had
a performance below the average (5.0) in risk
management in software development. In contrast,

the other group had four students below the
average which represents 17% of the group. This
is an important observation since not only
SimulES-W did not negatively interfere on the
learning process, but, it also showed that the
players of the game had better grades overall.

If the whole exam is taken into account, Figure
16, part b (SimulES=Y) shows that most of the
students (64%) who played with SimulES-W got a
satisfactory score (Grade more than 7). However,
28% of them got a medium score (5.5 and 6) and
only one student who did not answer the question
of risk management in an adequate way (50%) got
a grade (4.5) representing 7% of the sample.

In the same way, the Figure 17, part b
(SimulES=N) shows that only 47% of the students
got satisfactory score (Grade more than 7), 9% of
the students got medium scores (6.9 and 6.8), 17%
students got grades in the limit of the average (5)
and 26% of the students fail the exam getting
scores lower than five.

Comparing the mean of the two groups we see
that students who played with SimulES-W got a
little better degree than students who did not
participate because the mean numbers for each

Fig. 18. Result related to Exam Applied after SimulES-W Activity

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

SimulES-W: A Collaborative Game to Improve Software Engineering Teaching 979

ISSN 2007-9737

group were 7,257 and 6,326 and the standard
deviation have great differences from 1,308 to
2,325. From this data, it is clear that there was no
disadvantage for the students who used the game.

In Figure 18 we present the results of a paired-
samples t-test with a Confidence Interval of 95%
(α=0.025). The t-test was conducted to compare
the hypothesis that the two means for the correct
answer of the Risk Management question and the

Exam results were different for the two groups
of students (students who played SimulES-W and
students who only attended to traditional classes).
The first result is that both groups can be
considered to have the same distributions scores
for the answer to the question about Management
Risk because the t-test in a confidence range of
95% proved the hypothesis that the two groups
have the same average and so there is no
difference between the values answer questions of
these two groups because the t-Ratio is equal
0,498 that should be less than 0,689. Otherwise
considering the Grades of the Exam t-test rejects
the hypothesis of having the same means for the
two groups, the t-ratio 1,558 is greater than 0,936.
So, this experiment evidences that students Exam
Grades that used the SimulES-W had greater
grades then the ones who did not use the game.

6 Conclusion

We presented in this paper a game-based
approach for teaching SE and an assessment of its
impact. In this game, the player explores different
roles such as software engineer, technical
coordinator and project manager and quality
controller. Players have to deal with budget,
software engineer employment, and construction
of different software artifacts into the different
scenarios named rounds. The elements are
presented in the form of five different cards
(artifacts, software engineers, project, concept and
problems) and are available on two kinds of
boards, the main board, which shows the project to
be developed in this game, and the players’ moves
and individual board that represents each player
team and products developed by the player.

This paper reports on how SimulES-W could be
used in a SE course as a tool to improve learning.
The results of the quasi-experiment carried out

with two groups of 14 students each show a
positive but statistically inconclusive improvement
of students’ grade performance, this experience
also confirmed what others have reported on how
games establish a motivating and enjoyable
environment for students. Literature also has
pointed out that games do generate knowledge as
well as problem solving abilities and create
strategies in a broader context. For example, if
students understand the need and importance of
software engineering in software projects they also
will appreciate and use this knowledge when they
face real projects. In addition, in this case with
SimulES-W, the results indicate the trend that
students could improve their grade if they are
motivated by the use of games.

So, we have shown that the use of SimulES-W
at least does not compromise the ability of students
acquiring knowledge and can be a further form of
learning in software development. In Education,
some tools can confuse students rather than help
them to improve their knowledge, so in this
experiment we had evidences that SimulES-W
improves general software engineering knowledge
of students.

According to the work of [14] and [24], there are
enough empirical evidence concerning the
effectiveness of games-based learning. We think
that SimulES-W is a case of that nature. Although,
the results shown in this paper confirm our
previous experiences [37], further evaluations and
experiments have to be performed. In terms of
future research directions, this study is still a small-
scale investigation but we expect to perform further
quantitative/qualitative evaluations with SimuleS-
W based on educational levels, and specific
subjects to produce further empirical evidence
associated with the game. We also hope to further
evaluate learning in different roles such as
software engineering, technical coordination,
project management and quality controlling.
Improvements on SimulES-W are underway as to
incorporate it in our undergraduate and
graduate classes.

References

1. Connolly, T. M., Boyle, E. A., MacArthur, E.,
Hainey, T., & Boyle, J. M. (2012). A systematic

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

Elizabeth Suescún Monsalve, Mauricio Toro, Raúl Mazo, David Velasquez, Paola Vallejo, et al.980

ISSN 2007-9737

literature review of empirical evidence on computer
games and serious games. Computers &
Education. Vol. 59, pp. 661–686. DOI: 10.1016/
j.compedu.2012.03.004.

2. Boehm, B. (2006). A View of 20th and 21st Century
Software Engineering. Proceedings of the 28th
International Conference on Software Engineering.

3. Lin, C. Y., Abdel-Hamid, T., & Sherif, J. S. (1997).

Software-Engineering Process Simulation model
(SEPS). Journal of Systems and Software, Vol. 38,
pp. 263–277, DOI: 10.1016/S0164-1212(96)
00156- 2.

4. Kellner, M. I., Madachy, R. J., & Raffo, D. M.
(1999). Software process simulation modeling:
Why? What? How?. Journal of Systems and
Software, Vol. 46, No. 2–3, pp. 91–105. DOI:

10.1016/S0164-1212(99)00003-5.

5. Stallinger, F. & Grünbacher, P. (2001). System

dynamics modelling and simulation of collaborative
requirements engineering. Journal of Systems and
Software, Vol. 59, pp. 311–321. DOI: 10.1016/

S0164-1212(01)00071-1.

6. Suescún–Monsalve, E., Vallejo, P., Mazo, R., &
Correa, D. (2007). Transparency as a learning

strategy to teach Software Engineering. 12th
Colombian Conference on Computing.

7. Pfahl, D., Klemm, M., & Ruhe, G. (2001). A CBT

module with integrated simulation component for
software project management education and
training. Journal of Systems and Software, Vol. 59,
No. 3, pp. 283–298. DOI: 10.1016/S0164-1212

(01)00069-3.

8. Chen, C. Y. & Chong, P. P. (2011). Software

engineering education: A study on conducting
collaborative senior project development. Journal of
Systems and Software, Vol. 84, No. 3, pp. 479–491.

DOI: 10.1016/j.jss.2010.10.042.

9. Von-Wangenheim, C. G., Savi, R., & Borgatto, A.
F. (2013). SCRUMIA—An educational game for

teaching SCRUM in computing courses. Journal of
Systems and Software, Vol. 86, No. 10, pp. 2675–

2687. DOI: 10.1016/j.jss.2013.05.030.

10. Qin, S. & Mooney, C. (2009). Using game-oriented

projects for teaching and learning software
engineering. 20th Annual Conference for the
Australasian Association for Engineering Education,
pp. 6–9.

11. De Oliveira-Barros, M. & De Araujo-Mendes, R.
(2008). Ensinando construção de software aplicada

a sistemas de informação do mundo real. Anais do
FEES08-Fórum de Educação em Engenharia de
Software.

12. Alvarez, C., Alarcon, R., & Nussbaum, M. (2011).

Implementing collaborative learning activities in the
classroom supported by one-to-one mobile
computing: A design-based process. Journal of
Systems and Software, Vol. 84, No. 11, pp. 1961–

1976. DOI: 10.1016/j.jss.2011.07.011.

13. Bollin, A., Hochmüller, E., & Mittermeir, R. T.
(2011). Teaching software project management

using simulations. 24th IEEE-CS Conference on
Software Engineering Education and Training
(CSEE T).

14. Ebner, M. & Holzinger, A. (2007). Successful

implementation of user-centered game based
learning in higher education: An example from civil
engineering. Computers & Education, Vol. 49, No.
3, pp. 873–890. DOI: 10.1016/j.compedu.2005.

11.026.

15. Roubidoux, M. A., Chapman C. M., & Piontek, M.
E. (2002). Development and Evaluation of an

Interactive Web-Based Breast Imaging Game for
Medical Students. Academic Radiology, Vol. 9,

No.10, pp. 1169–1178. DOI: 10.1016/S1076-

6332(03)80518-4.

16. Gomes, A. S., Castro-Filho, A. J., Gitirana, V.,
Spinillo, A., Alves, M., Melo, M., & Ximenes, J.
(2002). Avaliação de software educativo para o

ensino de matemática. Convergências
Tecnológicas--Redesenhando as Fronteiras da
Ciência e da Educação: Anais, SBC.

17. Cagiltay, N. E. (2007). Teaching software

engineering by means of computer-game
development: Challenges and opportunities. British
Journal of Educational Technology, Vol. 38, pp.

405–415. DOI: 10.1111/j.1467-8535.2007.00705.x.

18. Claypool, K. & Claypool, M. (2005). Teaching
Software Engineering Through. Game Design,
SIGCSE Bull, Vol. 37, pp. 123–127.

19. Drappa, A. & Ludewig, J. (1999). Quantitative

modeling for the interactive simulation of software
projects. Journal of Systems and Software, Vol. 46,
No. 2-3, pp. 113–122. DOI: 10.1016/S0164-1212

(99)00005-9.

20. Jain, A. & Boehm, B. (2006). SimVBSE:

Developing a Game for Value-Based Software
Engineering. 19th Conference on Software
Engineering Education Training (CSEET'06), pp.

19–21. DOI: 10.1109/CSEET.2006.31.

21. Birkhoelzer, T., Navarro, E., & van der Hoek, A.
(2005). Teaching by Modeling instead of by Models.
Proceedings of the 6th International Workshop on
Software Process Simulation and Modeling.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

SimulES-W: A Collaborative Game to Improve Software Engineering Teaching 981

ISSN 2007-9737

https://doi.org/10.1016/j.compedu.2012.03.004
https://doi.org/10.1016/S0164-1212(96)00156-2
https://doi.org/10.1016/S0164-1212(96)00156-2
https://doi.org/10.1016/S0164-1212(99)00003-5
https://doi.org/10.1016/S0164-1212(01)00071-1
https://doi.org/10.1016/S0164-1212(01)00069-3
https://doi.org/10.1016/S0164-1212(01)00069-3
https://doi.org/10.1016/j.jss.2010.10.042
https://doi.org/10.1016/j.jss.2013.05.030
https://doi.org/10.1016/j.jss.2011.07.011
https://doi.org/10.1016/j.compedu.2005.11.026
https://doi.org/10.1016/S1076-6332(03)80518-4
https://doi.org/10.1016/S1076-6332(03)80518-4
https://doi.org/10.1111/j.1467-8535.2007.00705.x
https://doi.org/10.1016/S0164-1212(99)00005-9
https://doi.org/10.1016/S0164-1212(99)00005-9
https://doi.org/10.1109/CSEET.2006.31

22. Hainey, T., Connolly, T. M., Stansfield, M., &
Boyle, E. A. (2011). Evaluation of a game to teach

requirements collection and analysis in software
engineering at tertiary education level. Computers &
Education, Vol. 56, No. 1, pp. 21–35. DOI:

10.1016/j.compedu.2010.09.008.

23. Paraskeva, F., Mysirlaki, S., & Papagianni, A.
(2010). Multiplayer Online Games as Educational

Tools: Facing New Challenges in Learning.
Comput. Educ., Vol. 54, No. 2, pp. 498–505. DOI:

10.1016/j.compedu.2009.09.001.

24. Boyle, E. A., Connolly, T. M., Hainey, T., & Boyle,
J. M. (2012). Engagement in digital entertainment
games: A systematic review. Computers in Human
Behavior, Vol. 28, No. 3, pp. 771–780. DOI:

10.1016/j.chb.2011.11.020.

25. Caulfield, C., Xia, J. C., Veal, D., & Maj, S. P.
(2011). A systematic survey of games used for

software engineering education. Modern Applied
Science, Vol. 5, pp. 28.

26. Liu, C. C, Cheng, Y. B., & Huang, C. W. (2011).

The effect of simulation games on the learning of
computational problem solving. Computers &
Education, Vol. 57, No. 3, pp. 1907–1918. DOI:

10.1016/j.compedu.2011.04.002.

27. Hanaki, N., Ishikawa, R., & Akiyama, E. (2009).
Learning games. Journal of Economic Dynamics
and Control, Vol. 33, pp. 1739–1756.

28. Drappa, A. & Ludewig, J. (2000). Simulation in
Software Engineering Training. Proceedings of the
22nd International Conference on Software
Engineering, pp. 199–208, DOI: 10.1145/337180.

337203.

29. Baker, A., Navarro, E. O., & van der Hoek, A.
(2003). Problems and Programmers: an educational

software engineering card game. 25th International
Conference on Software Engineering, pp. 614–619.

30. Figueiredo, E., Lobato, C., Dias, K., Leite, J., &
Lucena, C. (2007). Um Jogo para o Ensino de

Engenharia de Software centrado na Perspectiva
de Evolução. Workshop sobre Educação em
Computação.

31. Serrano, M., Serrano, M., Napolitano, F., &
Soares, B. (2007), Evolução do SimulES Versão

2.0 Monografia em Ciéncias da Computação,
Departamento de Informática. PUC-Rio.

32. Napolitano, F. M. P. (2009). Uma Estratégia

Baseada em Simulação para Validação de Modelos
em i.

33. Monsalve, E., Werneck, V., & Leite, J. C. S. P.
(2010). Evolución de un Juego Educacional de

Ingeniería de Software a través de Técnicas de

Elicitación de Requisitos. Proceedings of XIII
Workshop on Requirements Engineering
(WER’2010).

34. Serrano, M., Serrano, M., Napolitano, F., &
Soares, B. (2007). Evolução do SimulES Versão

2.0. Monografia em Ciências da Computação.
Departamento de Informática.

35. Do Prado-Leite, J. C. S., Hadad, G. D. S., Doorn,
J. H., Kaplan, G. N. (2000). A scenario construction

process. Requirements Engineering, Vol. 5, No. 1,
pp. 38–61. DOI: 10.1007/PL00010342.

36. Yu, E. S. K. (1996). Modelling Strategic
Relationships for Process Reengineering.

University of Toronto, Toronto, Ont., Canada.

37. Monsalve, E. S., Werneck, V. M. B., &. Leite, J. C
S. P. (2011). Teaching software engineering with
SimulES-W. Conference on Software Engineering
Education and Training (CSEE T). DOI: 10.1109/
CSEET.2011.5876102.

38. Monsalve, E. S. (2010). Construindo um jogo

educacional com modelagem intencional apoiado
em princípios de transparencia.

39. Monsalve, E., Werneck, V., & Leite, J. C. S. P.
(2010). Evolución de un Juego Educacional de

Ingeniería de Software a través de Técnicas de
Elicitación de Requisitos. Proceedings of XIII
Workshop on Requirements Engineering
(WER’2010).

40. Oliveira, A. P. A. (2008). Engenharia de Requisitos

Intencional: Um Método de Elicitação, Modelagem
e Análise de Requisitos.

41. Krasner, G. E. & Pope, S. T. (1988). A Cookbook

for Using the Model-view Controller User Interface
Paradigm in Smalltalk-80. J. Object Oriented
Program, pp. 26–49.

42. Sommerville, I. (2006). Software Engineering: 8th
International Computer Science). Boston, MA:
Addison-Wesley Longman Publishing Co., Inc

43. Sweedyk, E. & Keller, R. M. (2005). Fun and

Games: A New Software Engineering Course.
SIGCSE Bull., Vol. 37, No. 3, pp. 138–142. DOI:
10.1145/1067445.1067485.

44. Pressman, R. (2010). Software Engineering: A
Practitionerś Approach. 7 ed., New York, NY, USA:
McGraw-Hill.

45. Monsalve, E. S., Leite, D. P., & Sampaio, J. C.
(2013). Using for Transparent Pedagogy. IStar.

46. Leite, J. C. S. D. P. & Franco, A. P. M. (1993). A

strategy for conceptual model acquisition.
Proceedings of the IEEE International Symposium
on Requirements Engineering. DOI: 10.1109/ISRE.
1993.324851.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

Elizabeth Suescún Monsalve, Mauricio Toro, Raúl Mazo, David Velasquez, Paola Vallejo, et al.982

ISSN 2007-9737

https://doi.org/10.1016/j.compedu.2010.09.008
https://doi.org/10.1016/j.compedu.2009.09.001
https://doi.org/10.1016/j.chb.2011.11.020
https://doi.org/10.1016/j.compedu.2011.04.002
https://doi.org/10.1145/337180.337203
https://doi.org/10.1145/1067445.1067485
https://doi.org/10.1109/ISRE.1993.324851

47. Baker, A., Navarro, E. O., & van der Hoek, A.
(2005). An experimental card game for teaching

software engineering processes. Journal of
Systems and Software, Vol. 75, No. 1-2, pp. 3–16.
DOI: 10.1016/j.jss.2004.02.033.

48. Lin, C. Y., Abdel-Hamid, T., & Sherif, J. S. (1997).

Software-Engineering Process Simulation model
(SEPS). Journal of Systems and Software, Vol. 38,

No. 3, pp. 263–277. DOI: 10.1016/S0164-
1212(96)00156-2.

49. Serrano, M., Napolitano, F., & Soares, B. (2007).
Evolução do SimulES Versão 2.0. Monografia em

Ciências da Computação, Departamento de
Informática, PUC-Rio.

50. Lozano, S., Suescún-Monsalve, E., Vallejo, P.,
Mazo, R., & Correa, D. (2017). Comparando dos

Estrategias de Aprendizaje Activo para Enseñar
SCRUM en un Curso Introductorio de Ingeniería de
Software.

Article received on 03/05/2017; accepted on 08/11/2017.
Corresponding author is Elizabeth Suescún Monsalve.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 953–983
doi: 10.13053/CyS-22-3-2711

SimulES-W: A Collaborative Game to Improve Software Engineering Teaching 983

ISSN 2007-9737

https://doi.org/10.1016/j.jss.2004.02.033
https://doi.org/10.1016/S0164-1212(96)00156-2
https://doi.org/10.1016/S0164-1212(96)00156-2

