
Compact Union of Disjoint Boxes:
An Efficient Decomposition Model for Binary Volumes

Irving Cruz-Matı́as1, Dolors Ayala2

1 Universidad de Monterrey, San Pedro Garza Garcı́a,
Mexico

2 Universitat Politècnica de Catalunya, Barcelona,
Spain

irving.cruz@udem.edu, dolorsa@lsi.upc.edu

Abstract. This paper presents in detail the Compact
Union of Disjoint Boxes (CUDB), a decomposition model
for binary volumes that has been recently but briefly
introduced. This model is an improved version of a
previous model called Ordered Union of Disjoint Boxes
(OUDB). We show here, several desirable features that
this model has versus OUDB, such as less unitary basic
elements (boxes) and thus, a better efficiency in some
neighborhood operations. We present algorithms for
conversion to and from other models, and for basic
computations as area (2D) or volume (3D). We also
present an efficient algorithm for connected-component
labeling (CCL) that does not follow the classical two-pass
strategy. Finally we present an algorithm for collision (or
adjacency) detection in static environments. We test the
efficiency of CUDB versus existing models with several
datasets.

Keywords. Binary volumes, orthogonal polyhedra,
connected-component labeling, collision detection.

1 Introduction

The model used to represent digital binary volumes
(or 3D binary images) is one of the most important
research topic in computer graphics, looking for a
better compression for storage, analysis or visu-
alization purposes. Moreover, there are several
demanding neighborhood operations on binary
volumes such as connected-component-labeling
(CCL), connectivity, collision detection, between
others, where the performance variability of the
existing algorithms is mainly caused by the number

of basic geometric elements to analyze (voxels,
triangles, planes, vertices, etc.).

In most of the reported literature, the operations
to study binary volumes are performed directly
on the classical voxel model [31, 41]. However,
in the field of volume analysis and visualization,
several alternative models have been devised for
specific purposes. For instance, Hierarchical
structures such as octrees and kd-trees have
been used for Boolean operations [46], CCL [17],
and thinning [40, 58]. Octrees are used as a
means of compacting regions and getting rid of
the large amount of empty space in the extraction
of isosurfaces [57]. Kd-trees have been used to
extract two-manifold isosurfaces [24].

There are other models that store surface
voxels, thereby gaining storage and computational
efficiency. The semi-boundary representation
affords direct access to surface voxels and
performs fast visualization and manipulation
operations [25]. Certain methods of erosion,
dilation and CCL use this representation [20, 51].

On the other hand, a binary voxel model
represents an object as the union of its fore-
ground voxels and its continuous analog is
an orthogonal pseudo-polyhedra (OPP) [33].
OPP have been used in 2D to represent the
extracted polygons from numerical control data
[39]. Some 3D applications of OPP are:
general computer graphics applications such as
geometric transformations and Boolean operations
[10, 19], skeleton computation (instead of iterative

Computación y Sistemas, Vol. 21, No. 2, 2017, pp. 275–292
doi: 10.13053/CyS-21-2-2737

ISSN 2007-9737

peeling techniques) [18, 37], and orthogonal hull
computation [8, 9]. OPP have been also used in
theory of hybrid systems to model the solutions of
reachable states [10, 16].

The Extreme Vertices Model (EVM) and the
Ordered Union of Disjoint Boxes (OUDB) [1, 3]
represent OPP in a compact way. EVM stores
only a sorted subset of vertices of the OPP
boundary, whereas OUDB keeps a sorted list of
boxes that compose the whole object. EVM has
been used to prove the suitability of OPP as
geometric bounds in CSG [2, 1], and for many
other 3D applications such as: erosion and dilation
operations [42], skeleton computation [4], virtual
porosimetry without skeleton computation [44],
biomaterials structural parameters computation
[54] and model simplification [15]. OUDB has
been used to perform CCL [5, 42] and also
for biomaterials structural parameters computation
such as connectivity [7] and center of gravity [6].

In this paper we present in detail the Compact
Union of Disjoint Boxes (CUDB), a representation
model for OPP, and thus for binary volumes, that
has been recently introduced, but without going
into details of its implementation [14, 44]. CUDB is
a special kind of cell decomposition representation
which performs a spatial partition of the volume
in a non-hierarchical sweep-based way consisting
of a set of disjoint boxes. This model is an
improved version the OUDB. We test and report
the performance of CUDB and also present new
algorithms for CCL and collision detection.

The paper is arranged as follows. The
next section reviews related work. Section
3 introduces CUDB using the object-oriented
paradigm presenting algorithms for conversion to
and from other models, and for basic computations
as area and volume. Section 4 presents
a new CUDB-based algorithm for CCL based
on the detection of connected components in
graph theory. Section 5 presents a collision
detection algorithm for scenarios with multiple
CUDB-represented objects. Sections 6 shows
the performance of all the proposed algorithms by
discussing experimental results. Finally, Section 7
concludes the paper and outlines future work.

2 Background and Related Work

The classical voxel model is based on a regular
decomposition of the 3D space into a set of
identical cubic cells called voxels. In a voxel model,
voxels are all the same size and their edges are
parallel to the main axes. Formally, a voxel model
V of size nx × ny × nz is defined as:

V = {vi,j,k | 0 ≤ i ≤ nx, 0 ≤ j ≤ ny, 0 ≤ k ≤ nz},

where vi,j,k is a voxel in location (i, j, k).
From V , all geometric and topological informa-

tion can be obtained. On each voxel vi,j,k, there
is a set of associated values. For a binary voxel
model, the associated value of its voxels is limited
to vi,j,k ∈ {0, 1}, where 0 corresponds to the
background and 1 to the foreground.

Algorithms for the voxel model are straightfor-
ward to implement. However, just because of the
size of the source models, it has the drawbacks of
the loss of geometric information and high memory
and computational power requirements [32]. To
reduce the memory footprint and the computation
time of the algorithms, many alternative models
have been proposed such as hierarchical data
structures and boundary representations.

Hierarchical structures made recursive subdi-
visions of the volume. In bintrees [47] an
axis-aligned hyperplane intersects the interior of
the volume producing two equal parts. The Binary
Space Partition (BSP) trees [50] are similar to
bintrees except that the position and direction of
the subdivision hyperplanes are usually selected
following an optimization heuristic. Octrees [11],
like bintrees, begin with an initial volume, but
it create eight sub-volumes of equal size. And
kd-trees [24] are a special case of bintree, where
each level is asymmetrically divided in alternate
directions according to a discriminant (e.g., X,
Y or Z-coordinate). In this structures, volume
subdivision is repeated until a certain satisfactory
level of refinement or until achieving the maximum
level of recursion.

When working with binary volume datasets, it is
not necessary to keep the exact scanned density
values. Therefore, boundary models are also
adequate to represent these kind of datasets. The
basic model for representing the polygonal surface

Computación y Sistemas, Vol. 21, No. 2, 2017, pp. 275–292
doi: 10.13053/CyS-21-2-2737

Irving Cruz-Matías, Dolors Ayala276

ISSN 2007-9737

of an object is the Boundary Representation
(B-Rep) model [38] that keeps explicitly all of the
relationships between geometric elements such as
vertices, edges and faces. However, there are
many proposed models for representing the object
boundary in a more compact way.

Semi-boundary (SB) [52] is a data structure
which stores only the boundary voxels of the
volume keeping the information of the interior
voxels in an implicit way. Shell representation [53]
has the same indexing scheme used in the SB
representation, but the set of voxels, which belongs
to the list that contains all the boundary voxels of
the volume, was redefined in order to represent
objects with fuzzy boundaries. Cell-boundary [34]
is also a very similar representation to SB, which
consists of a set of boundary cells with their voxel
configurations, so, the points of the sample in SB
become vertices of the cells in the cell-boundary
representation.

2.1 EVM and OUDB models

The Extreme Vertices Model (EVM) [2, 3] is a very
concise representation scheme in which any OPP
can be described using a subset of its vertices:
the extreme vertices. EVM is actually a complete
solid model with very fast Boolean operations, it is
an implicit B-Rep model, i.e., all the geometry and
topological relations concerning faces, edges and
vertices of the represented OPP can be obtained
from the EVM [43] and therefore represents OPP
unambiguously [55].

Let Q be a finite set of points in R3, the
ABC-sorted set of Q is the set resulting from
sorting Q according to A-coordinate, then to
B-coordinate, and then to C-coordinate. Let P
be an OPP, a brink is the maximal uninterrupted
segment built out of a sequence of collinear and
contiguous two-manifold edges of P and its ending
vertices are called extreme vertices (EV). An OPP
can be represented in a concise way with the
ABC-sorted set of its EV and such representation
scheme is called EV.

The Ordered Union of Disjoint Boxes (OUDB)
[1, 42] is a special kind of spatial partitioning
representation derived from EVM, where an OPP
is decomposed in a list of disjoint boxes. EVM can

C
1
 C

2
 C

3

C

4
C

5

Z

Y

X

(a)

S
1
 S

2
 S

3

S

4

(b)

Fig. 1. (a) An orthogonal polyhedron with 5 cuts. (b) Its
sequence of 4 prisms with the representative sections (X
direction)

be obtained from the voxel model, in turn, OUDB
is obtained from EVM. The conversions algorithms
have been published [42]. To introduce later the
CUDB model, we first briefly introduce OUDB.

Let P be an OPP and Πc a plane whose normal
is parallel, without loss of generality, to the X axis,
intersecting it at x = c, where c ranges from −∞ to
+∞. Then, this plane sweeps the whole space as
c varies within its range, intersecting P at certain
intervals. Let us assume that this intersection
changes at c = C1, ...,Cn. More formally, P ∩
ΠCi−δ 6= P ∩ ΠCi+δ,∀i = 1, ...,n, where δ is an
arbitrarily small quantity. Then, Ci(P) = P ∩ Πci is
called a cut of P and Si(P) = P ∩ ΠCs , for any Cs
such that Ci < Cs < Ci+1, is called a section of P .

Fig. 1 shows an OP with its cuts and sections
perpendicular to the X axis. Since we work with
bounded regions, S0(P) = ∅ and Sn(P) = ∅,
where n is the total number of cuts along a given
coordinate axis.

Cuts and sections are orthogonal polygons
embedded in the 3D space. For each main
direction, sections can be computed from cuts
and cuts from sections by applying simple
XOR operations. These operations are actually
performed on the projections of cuts and sections
onto the main plane parallel to them. From now
on, we thus call the projection of the ith cut and ith
section onto the main plane parallel to them Ci and
Si respectively.

Computación y Sistemas, Vol. 21, No. 2, 2017, pp. 275–292
doi: 10.13053/CyS-21-2-2737

Compact Union of Disjoint Boxes An Efficient Decomposition Model for Binary Volumes 277

ISSN 2007-9737

The two following expressions relate cuts and
sections:

Si(P) = Si−1(P)⊗ Ci(P),∀i = 1 . . . n− 1, (1)

Ci(P) = Si−1(P)⊗ Si(P),∀i = 1 . . . n, (2)

where ⊗ denotes the regularized XOR operation.
An OP can be represented with a sequence of
orthogonal prisms represented by their section
(see Fig. 1(b)). Moreover, if we apply the same
reasoning to the representative section of each
prism, an OP can be represented as a sequence
of boxes.

The OUDB model represents an OPP with such
a sequence of boxes. OUDB is axis-aligned like
octrees and bintrees, but the partition is done
along the object geometry as in BSP. Depending
on the order of the axes along which we choose
to split the data, an OPP P can be decomposed
into six different ABC-OUDB, i.e., P is subdivided
by planes perpendicular to the A-axis first, and
then by planes perpendicular to the B-axis. Their
corresponding sets of disjoint boxes are generally
different. Fig. 2 shows the possible OUDB
decompositions for the OPP in Fig. 1(a).

2.2 Connected Component Labeling

Connected Component Labeling (CCL) is a very
important operation for managing volume datasets
where multiple disconnected components that
compose the volume need to be identified.
Traditional voxel-based methods have been widely
used [45].

The typical implementation of many approaches,
even of the recent ones [27, 28, 35] is based in
the classical two-pass strategy [45]: the labeling
pass and the renumbering pass. In short, in the
labeling pass all elements are scanned and labeled
according to their already labeled neighbors. Some
labeling ambiguities can be produced in this
step which are properly registered in a set of
equivalence classes. Then, the renumbering pass
solves these ambiguities and the elements are
relabeled.

There are other labeling algorithms for special
volume representations as hierarchical structures
or semi-boundary representations looking for a

(a) XYZ-OUDB (8 boxes) (b) XZY-OUDB (7 boxes)

(c) YXZ-OUDB (8 boxes) (d) YZX-OUDB (9 boxes)

(e) ZXY-OUDB (7 boxes) (f) ZYX-OUDB (7 boxes)

Fig. 2. The six possible OUDB decompositions for the
OPP in Figure 1(a)

better efficiency of CCL. In this sense, OUDB has
been proved to be efficient for CCL [42, 43]. With
regard to semi-boundary representations, it has
been concluded that CCL is better in OUDB than in
semi-boundary representations when the number
of boxes in the OUDB is less than the number of
boundary voxels, which generally occurs.

In the OUDB-CCL process, the traversal of
the boxes is performed orderly, so, checking
the neighborhood of the current box involves
those boxes in the immediate previous B-slice
and those boxes in the immediate previous
A-slice. An improvement of the OUDB-based
CCL has been already proposed [5], where the

Computación y Sistemas, Vol. 21, No. 2, 2017, pp. 275–292
doi: 10.13053/CyS-21-2-2737

Irving Cruz-Matías, Dolors Ayala278

ISSN 2007-9737

so-called OUDB-extended is computed, which
allows jumping directly to the required box that
needs to be tested, instead of querying and
skipping several intermediate boxes.

Because of its similarity to OUDB, the two-pass
strategy for CCL has been also applied in CUDB
[44]. As generally the CUDB-represented object
contains less boxes than its respective OUDB-
representation, this approach is faster. However,
the main drawback of all the aforementioned
approaches is the large size of the equivalence
table, because they need one entry per each new
detected label.

2.3 Collision Detection

Collision detection is an important characteristic in
computer graphics and simulation. Sometimes we
want to determine if two or more objects collide
or are adjacent. In collision detection [30] when
exact accuracy is not required, typical bounding
volumes like axis-aligned bounding boxes (AABB)
[59], spheres [22], oriented polytopes [13] or hybrid
bounding volumes are used [56].

However, when accuracy is important, a
thorough analysis of the contact between the
involved objects needs to be done. In complex
scenes there might be several objects interacting.
In such cases, an early detection phase can be
applied to discard collisions between objects which
are not close enough. As bounding volumes
present simpler features, they are used as a
preliminary test for collisions. The absence
of bounding volume collisions guarantees the
absence of collision between some objects and
thus it significantly reduces the number of objects
to be checked. Sweep and prune algorithms
[12, 23] sort the objects according to the lower and
upper bounds of their bounding volumes, and when
a pair of objects are very close, it can be tested to
exact collision.

3 Compact Union of Disjoint Boxes

Like OUDB, CUDB is also a union of disjoint boxes
but a more compact one as several contiguous
boxes are merged into one in several parts of
the model. Let P be an OPP, to obtain the

(a)

(b)

Fig. 3. (a) An OPP. (b) YZX-OUDB with 16 boxes labeled
according to their YZX-coordinates

ABC-OUDB model, P is subdivided by planes
perpendicular to the A-axis first, and then by planes
perpendicular to the B-axis, at each cut Ci of
P . Thus, every Ci splits all the geometry of P
along the corresponding plane, and therefore some
local regions of P , with which Ci actually has
no relationship, are further unnecessarily divided.
Fig. 3 shows this situation for the YZX-OUDB of
an OPP P , where some cuts force unnecessary
divisions. For OUDB this constraint is mandatory to
keep sorted the resulting boxes. However, in order
to subdivide just the pieces of P related with the
cut which induces the splitting, this constraint can
be relaxed.

Formally, let P be an OPP. The
CUDB(P) can be obtained by merging
boxes in several parts of the corresponding
OUDB(P). Then, this model is the set of boxes
obtained according to the next properties:

1. Let β1 and β2 be two adjacent boxes of
OUDB(P) in B-direction, and let β1

B
and β2

B

be their projections respectively onto the plane

Computación y Sistemas, Vol. 21, No. 2, 2017, pp. 275–292
doi: 10.13053/CyS-21-2-2737

Compact Union of Disjoint Boxes An Efficient Decomposition Model for Binary Volumes 279

ISSN 2007-9737

(a)

(b)

Fig. 4. (a) Result after first merging in Z-direction. (b)
Resulting YZX-CUDB with 7 boxes after merging in Y-
direction

perpendicular to the B-axis, then β1 and β2

can be merged as a single box if β1
B

= β2
B

.

2. Let β1 and β2 be two adjacent boxes of
OUDB(P) in A-direction, and let β1

A
and β2

A

be their projections respectively onto the plane
perpendicular to the A-axis, then β1 and β2

can be merged as a single box if β1
A

=

β2
A

. Note that A-direction in this property is
different of B-direction of the first property.

The first property merges all unnecessary subdi-
visions along B-axis. Following with the previous
example, Fig. 4(a) shows that the pairs of boxes
(2, 4), (7, 8), (9, 12), (11, 13) and (15, 16) depicted
in Fig. 3(b) can be merged applying this property
for the Z-axis.

The second property merges the remaining
unnecessary subdivisions along A-axis. Following
with the same example, the resulting model
depicted in Fig. 4(b) shows that applying this
second property for the Y-axis, not only the pairs

of boxes (5, 8), but also the set of boxes (2, 6, 9,
10) depicted in Fig. 4(a) can be merged.

Then, the CUDB-representation of an OPP P ,
is the set of disjoint boxes of the corresponding
OUDB, conveniently reduced by applying the two
previous merging properties. Let βi be a box in
CUDB(P):

P =

nb⋃
i=1

βi(P) (3)

where nb is the number of boxes, which is less or
equal than the number of boxes in OUDB(P).

Like OUDB, there are six different ABC-CUDB
models for a given OPP and the number of
obtained boxes depends on the order of the axes
along which we choose to split the data, but we
cannot know it a priori. Boxes in CUDB are sorted
according to its coordinate A, then to coordinate B,
and finally to coordinate C of its lower bound.

Although the implicit order among boxes in
OUDB that defines their adjacency is lost,
preserving the adjacency information in the CUDB
model is easy with a tiny storage effort. Each
box has neighboring boxes in only two orthogonal
directions: A and B-direction, and for each one
there are two opposite senses, so, four arrays of
pointers to the neighboring boxes (two for each
direction) are enough to preserve the adjacency
information that is required for future operations.
We define these arrays as A-backward neighbors
(ABN), A-forward neighbors (AFN), B-backward
neighbors (BBN) and B-forward neighbors (BFN).

CUDB has been implemented as an object with
a set of properties and methods. Next, we describe
the CUDB object and the algorithms for conversion
to and from EVM.

3.1 CUDB Structure

Let β and Q be a box and a CUDB object
respectively:

Box properties:

— point3D V0, V1: point3D objects representing
the two diagonally opposed vertices of β,
the ones with lowest and highest coordinate
values.

Computación y Sistemas, Vol. 21, No. 2, 2017, pp. 275–292
doi: 10.13053/CyS-21-2-2737

Irving Cruz-Matías, Dolors Ayala280

ISSN 2007-9737

— array ABN ,AFN ,BBN ,BFN : Arrays of
pointers to the neighbors of β.

— integer label: The label of β.

Box methods:

— Box(point3D V0, point3D V1): Constructor
for a new box β with vertices V0 and V1.
label is set to 0 (undefined) and arrays
ABN ,AFN ,BBN and BFN to {∅}.

— getLabel(): Returns the label of β.

— setLabel(integer label): Sets the label of β as
label.

CUDB properties:

— boolean nonManifolds: Flag to indicate
if the boxes adjacency allows non-manifold
configurations.

— array boxes: Vector containing the sorted
boxes of Q.

— dimType dim: Dimension of Q. dimType={0D,
1D, 2D, 3D}

— integer nBoxes: Number of boxes in Q.

— sortingType sort: Sorting of Q. sorting-
Type={XYZ, XZY, YXZ, YZX, ZXY, ZYX}

CUDB methods:

— CUDB(dimType dim, sortingType sort,
boolean non m): Constructor for a CUDB
object Q of dimension dim and sorting sort,
and flag nonManifolds set as non m.

— getBox(integer id): Returns the box at position
id in the array boxes.

— getDimension(): Returns the dimension of Q.

— getNBoxes(): Returns the number of boxes of
Q.

— getNextBox(Box β): Returns the next box to
β in the array boxes.

— getSorting(): Returns the sorting of Q.

— insertBox(Box β): Inserts the box β into Q, at
the end of the array boxes.

3.2 CUDB Computation

In order to obtain the CUDB-representation it is not
necessary to have or compute the OUDB model.
CUDB can be computed directly from the EVM,
and the merging of boxes is performed on the fly.
The strategy is similar to the process to compute
OUDB [42]. Cuts of the EVM-represented OPP are
obtained sequentially, and sections are computed
from them. When this process is performed in 2D,
the corresponding sections result in the boxes of
the OUDB model.

For the EVM to CUDB conversion method, the
same set of boxes is computed on the fly and a box
is stored in the CUDB model if it is not possible to
merge it with previously computed boxes applying
the aforementioned Properties 1 and 2.

For a given box, the set of previous boxes that
have to be considered for merging with it are those
boxes belonging to the previous A-slice, which
can be adjacent in A-direction, and those boxes
belonging to the previous B-slice, which can be
adjacent in B-direction. To facilitate this process,
temporary arrays of box pointers of the current and
previous slices are maintained. The corresponding
algorithm is detailed next.

As most of the algorithms dealing with EVM,
the corresponding conversion algorithm is also
recursive over the dimension. The main
function EVMtoCUDB() (Algorithm 1) receives
an EVM-represented OPP P and a flag to
indicate if the adjacency relationship among
boxes allows non-manifold configurations, and
returns the CUDB-represented OPP Q containing
the neighborhood information. This function
initializes the temporary arrays of box pointers
prevBBoxes, currentBBoxes, prevABoxes and
currentABoxes, which are defined as global vari-
ables throughout the whole conversion process,
and starts the recursion by calling the function
doConversion() (Algorithm 2) with the original
EVM-represented object P .

In function doConversion(), when dimension
is 3D, the object is split at each cut in
A-direction obtaining a set of 3D A-slices, ΥA =
{Υ1

A, Υ2
A, . . . , Υn

A}, where n is the number of
A-slices. Then the algorithm applies recursively
to the 2D section representing each slice, which is

Computación y Sistemas, Vol. 21, No. 2, 2017, pp. 275–292
doi: 10.13053/CyS-21-2-2737

Compact Union of Disjoint Boxes An Efficient Decomposition Model for Binary Volumes 281

ISSN 2007-9737

split at every internal cut in B-direction obtaining a
set of 2D B-slices, ΥB = {Υ1

B , Υ2
B , . . . , Υm

B }, where
m is the number of B-slices represented by their 1D
sections, which are composed by a set of collinear
brinks in C-direction. Each of these brinks defines
a box. Then, each 2D slice Υi

B defines one o more
boxes, and each 3D slice Υj

A contains all the boxes
defined in its 2D slices.

Algorithm 1: EVMtoCUDB(Input P :EVM, In-
put nonManifolds:boolean, Output Q:CUDB)
dim← P .getDimension();
Q =
CUDB(dim,P .getSorting(),nonManifolds);
prevBBoxes← {∅}; currentBBoxes← {∅};
prevABoxes← {∅}; currentABoxes← {∅};
doConversion(P ,Q, dim, ∅, ∅); // First call

In the base case, when dimension is 1D, each
brink in the current slice Υi

B results in a box,
which is inserted into currentBboxes. Boxes in
a 2D slice Υi

B can be merged with boxes in
the previous slice Υi−1

B , then, in the backtracking
step of the recursion when dimension is 2D,
function mergeB() (Algorithm 3) is called, which
compares all boxes β1 in currentBboxes with
all boxes β2 in Υi−1

B (stored in prevBBoxes) for
merging. In this process, when merging property
1 is accomplished, β2 = β2 ∪ β1, and it is inserted
into a array called activeBoxes. Otherwise, β1
is inserted into currentABoxes and activeBoxes.
When the process finishes, the array activeBoxes
becomes prevBBoxes in order to be compared
with boxes in Υi+1

B in the next call.
Similar to the merging case in B-direction, boxes

in a 3D slice Υj
A can be merged with boxes in

the previous slice Υj−1
A . Once all the boxes of

the current slice Υj
A have been computed and

conveniently merged in B-direction, they are in
currentAboxes. Then, in the backtracking step
of the recursion when dimension is 3D, function
mergeA() (Algorithm 4) is called, which compares
all boxes β1 in currentAboxes with all boxes β2
in Υj−1

A (stored in prevAboxes) for merging. The
steps in this function are quite similar to those in
function mergeB(), but in this case, the merged
boxes are finally inserted into the CUDB model Q.

Algorithm 2: doConversion(Input P :EVM,
Input/Output Q:CUDB, Input dim:dimType,
Input V0, V1:point3D)
if dim =1D then

foreach brink br ∈ P do
V0.C,V1.C ← br.readBrink();
β = Box(V0,V1);
Add β to currentBBoxes;

end
else // dim =2D or 3D

Sec← ∅;
Cut, coordIni← P .getNextCut();
Sec← Sec⊗ Cut;
Cut, coordF in← P .getNextCut();

while Cut 6= ∅ do
if dim =3D then

V0.A← V1.A; V1.A← coordF in;
else // dim =2D

V0.B ← V1.B; V1.B ← coordF in
end
doConversion(Sec,Q, dim− 1,V0,V1);
if dim =3D then

mergeA();
else // dim =2D

mergeB();
end
Sec← Sec⊗ Cut;
Cut, coordF in← P .getNextCut();

end
end

Note that, the adjacency information of boxes
(ABN , AFN , BBN , BFN) is computed on the fly
when tests for merging are performed.

3.3 CUDB to EVM Conversion

As in OUDB, all of the boxes in CUDB are disjoint,
and according to the following EVM property:

— Let P and Q be two OPP such that P ∩∗
Q = ∅, having EVM(P) and EVM(Q) as
their respective models, then EVM(P ∪∗Q) =
EVM(P)⊗∗ EVM(Q).

Computación y Sistemas, Vol. 21, No. 2, 2017, pp. 275–292
doi: 10.13053/CyS-21-2-2737

Irving Cruz-Matías, Dolors Ayala282

ISSN 2007-9737

Fig. 5. 2D example of CUDB-CCL

Algorithm 3: mergeB()
activeBoxes← {∅};
foreach β1 ∈ currentBBoxes do

foreach β2 ∈ prevBBoxes do
if β1

B
= β2

B
then // Merging

property 1

β2 ← β1 ∪ β2;
Add β2 to activeBoxes;
break;

else if β1
B ∩ β2

B 6= ∅ then
Add β2 to β1.BBN ;

end
end
if β1 was not merged then

Add β1 to currentABoxes;
Add β1 to activeBoxes;
Add β1 in BFN of each box in β1.BBN;

end
end
prevBBoxes← activeBoxes;
currentBBoxes← {∅};

Therefore, a simple XOR operation of all the
EVM-represented boxes is necessary to get the
EVM-represented object. That is, let βi be a box

Algorithm 4: mergeA()
activeBoxes← {∅};
foreach β1 ∈ currentABoxes do

foreach β2 ∈ prevABoxes do
if β1

A
= β2

A
then // Merging

property 2
β2.BBN = β2.BBN ∪ β1.BBN ;
β2.BFN = β2.BFN ∪ β1.BFN ;
β2.ABN = β2.ABN ∪ β1.ABN ;
β2.AFN = β2.AFN ∪ β1.AFN ;
β2 ← β1 ∪ β2;
Add β2 to activeBoxes;
break;

else if β1
A ∩ β2

A 6= ∅ then
Add β2 to β1.ABN ;

end
end
if β1 was not merged then

Q.insertBox(β1);
Add β1 to activeBoxes;
Add β1 in AFN of each box in β1.ABN;

end
end
prevABoxes← activeBoxes;
currentABoxes← {∅};

Computación y Sistemas, Vol. 21, No. 2, 2017, pp. 275–292
doi: 10.13053/CyS-21-2-2737

Compact Union of Disjoint Boxes An Efficient Decomposition Model for Binary Volumes 283

ISSN 2007-9737

in the CUDB-represented OPP P

EVM(P) =

nb⊗
i=1

EVM(βi), (4)

where EVM(βi) is the EVM-representation of βi
and nb is the number of boxes in CUDB.

3.4 Area and Volume Computation

Computing the volume (3D) or area (2D) is
straightforward by doing a traversal of the boxes,
and making a summation of each volume or area
depending on the dimension:

V olume(P) =

nb∑
i=1

V olume(βi). (5)

4 CUDB-based Connected Component
Labeling

Since a CUDB-represented object contains the
boxes neighborhood information, it can bee seen
as an undirected graph. Thus, we proporse a
new CUDB-CCL process based on the detection
of connected components in graph theory.

Let G = (V ,E) be an undirected graph without
self loops, with V being a set of vertices (the
CUDB boxes) and E a set of edges defined by the
neighborhood information (ABN, AFN, BBN and
BFN). A connected component in G is a maximal
subgraph g = (V g,Eg) in which for any two
vertices v,u ∈ V g there exists an undirected path
in G with v as start and u as end vertex [48]. A
maximal subgraph means that for any additional
vertex w ∈ (V \V g) there is no path from any
v ∈ V g to w.

Thus, the CUDB-CCL process has linear
complexity, in terms of the sum of the numbers
of vertices and edges of the graph, using either
depth-first search or breadth-first search [29]. In
either case, a search that begins at some box β,
will find the entire connected component containing
β. To detect all the connected components, a
traversal of the boxes is performed, starting a new
breadth-first search or depth-first search whenever
a box that has not been already labeled is detected.

Algorithm 5: CCL(Input/Output Q:CUDB,
Output cc:Integer)
cc← 0 ; // Number of connected

components

Φ = {∅} ; // Queue of box pointers

currentLabel← 1;
foreach β ∈ Q do

if β.getLabel() = ∅ then
β.setLabel(currentLabel) ;
Add β to Φ;
while Φ 6= ∅ do

β1 = Φ.pop();
foreach β2 ∈ (β1.ABN ∪ β1.AFN ∪
β1.BBN ∪ β1.BFN) do

if β2.getLabel() = ∅ then
β2.setLabel(currentLabel);
Φ.push(β2);

end
end

end
currentLabel + +;

end
end
cc← currentLabel − 1;

Algorithm 5 details the steps for the CUDB-CCL
process using a breadth-first search strategy.
Fig. 5 depicts the CUDB-CCL process for a 2D
example, where the evolution of the boxes queue
used by the algorithm is shown.

5 CUDB-based Exact Collision
Detection

In this section, we present a CUDB-based collision
detection algorithm. Given an environment
composed of n objects, we assume that each
object is its CUDB-representation and have the
same ABC-ordering; otherwise, a preprocesing
must be performed first in order to set the same
ordering.

Due to the nature of the CUDB model,
the proposed algorithm works only in static
environments. The goal of this method is to check
which objects overlap or are adjacent.

Computación y Sistemas, Vol. 21, No. 2, 2017, pp. 275–292
doi: 10.13053/CyS-21-2-2737

Irving Cruz-Matías, Dolors Ayala284

ISSN 2007-9737

Since the CUDB-representation contains fewer
elements than other representations, a straightfor-
ward solution could be to iteratively compare each
of the boxes in an object with all of the boxes
in the other objects (brute force). Nevertheless,
taking advantage of the implicit order of the boxes
in the CUDB model, unnecessary analysis can be
avoided.

In the presented method, a discarding of those
objects whose AABB do not collide is performed
first. Then, as boxes in CUDB are ABC-sorted, all
the remaining potentially colliding objects can be
tested jointly, instead of testing them in pairs.

Let Θ = {θ1, θ2, . . . , θn} be a finite sequence of
n CUDB-represented potentially colliding objects,
and let Φ = {β1,β1, . . . ,βn} be a set of box
pointers, where each βi points to a box in the object
θi. Initially each βi points to the first box of the
corresponding object.

A collision detection between all of the boxes in Φ
is performed first, followed by an iterative process.
This process obtains the box βmin in Φ (βi with
the minimum ABC-position of its vertex V0) and
updates it with the next box in the corresponding
object θmin. If there are no more boxes in θmin,
this object is marked as not active.

Otherwise, βmin is compared for collision with
all boxes βi ∈ Φ,∀i 6= min and with the
subsequent neighboring boxes of each βi, say
βt, until βt.V0 has an A-coordinate greater than
βmin.V1. Note that we do not need to compare
B and C-coordinate. The main iterative process
finishes when βmin cannot be defined, which
means that all θi have been marked as not active.
At the end, a set ∆, with object pairs (θi, θj) that
collide or are adjacent has been defined.

Algorithms 6 and 7 detail the steps of this
process. Function getIndexMinBox() returns the
index min of the box in Φ with the minimum
ABC-position of its vertex V0, such that θmin is
marked as active. If all θi are marked as not
active, this function returns ∅. The worst case
time-complexity of the CUDB-based exact collision
detection is O(n·m·T), where n is the number of
objects,m the number of boxes of the object having
the maximum number of boxes, and T the total
number of boxes in the n objects. In any case it
holds that n ≤ m ≤ T .

Algorithm 6: detectCollision(Input Θ:array or
CUDB, Output ∆:array of CUDB pairs)
∆ = {∅} ; // Set of colliding object

pairs

A← {∅} ; // Vector of boolean for

active θi
Φ← {∅} ; // Vector of Box pointers

foreach θ ∈ Θ do
β ← θ.getBox(0) ;
Add β to Φ ;
Add true to A ; // Mark all as active

end
foreach βi ∈ Φ do // First collision test

testCollision(Φ,βi, ∆)
end
min← getIndexMinBox(Φ,Act);
while min 6= ∅ do

βmin ← Θ[min].getNextBox();
if βmin 6= ∅ then

Φ[min] = βmin;
testCollision(Φ,βmin,S);

else
A[min] =false ; // Mark as not

active

end
min← getIndexMinBox(Φ,Act);

end

Algorithm 7: testCollision(Input Φ: Vector of
Box pointers, Input βi: Box, Input / Output ∆:
array of CUDB pairs)
foreach βj 6= βi ∈ Φ do

βt ← βj ;
while βt 6= ∅ do

if βt.V 0.A > βi.V 1.A then break; end;
if βi ∩ βt 6= ∅ then

Add pair (θi, θj) to ∆; break;
end
βt ← θj .getNextBox(βt);

end
end

Figure 6 depicts the process for a 2D example
with three objects. It shows the evolution of the
variables used by the algorithm.

Computación y Sistemas, Vol. 21, No. 2, 2017, pp. 275–292
doi: 10.13053/CyS-21-2-2737

Compact Union of Disjoint Boxes An Efficient Decomposition Model for Binary Volumes 285

ISSN 2007-9737

Fig. 6. 2D example of collision

6 CUDB Performance

CUDB has been compared with OUDB in number
of elements and computation time for conversion
to and from EVM and CCL (using OUDB-extended
version [5]). The test datasets consists of 12
objects (see Fig. 7). All datasets come from
public volume repositories, where from (g) to (l)
are real volume models coming from CT or MRI
scanners. The corresponding programs have been
written in C++ and tested on a PC Intel R©Core
i7-4600M CPU@2.90GHz with 7.6 GB RAM and
running Linux.

Table 1 shows the attributes of test datasets. For
each dataset it shows size in voxels, number of
foreground voxels (|Fvoxels|), number of triangles
of a triangular surface mesh obtained via marching
cubes [36], number of extreme vertices (|EV |),
number of boxes in its XYZ-OUDB (|OUDB|)
and XYZ-CUDB (|CUDB|) representation, ratio
between |OUDB| and |CUDB|, and number
of connected components (|CC|) allowing non-
manifold configurations.

Note in this table that, although the number of
boxes depends on the ABC-sorting of the original
EVM, CUDB produces less elements than the
other representations in all cases, regarding OUDB
in some of the dataset less than 10% of elements.
For instance, the XYZ-CUDB representation of

the Lines dataset has only 3.8% of boxes of
the corresponding XYZ-OUDB representation (see
Fig. 8).

Table 2 shows the performance of CUDB
regarding OUDB. For each dataset it shows the
time for: EVM to OUDB (E → O) conversion,
OUDB-CCL (OCCL), EVM to CUDB (E → C)
conversion and CUDB-CCL (CCCL). The last
columns mean tO = E → O + OCCL, tC = E →
C + CCCL, and the ratio between tO and tC .

Note that, although the conversion from EVM
to CUDB is slightly slower than EVM to OUDB
due to the extra effort to merge the boxes, the
CUDB-based CCL process is much faster due to
the less number of elements and that we avoid
the use of a equivalence table, in all datasets
more than an order of magnitude, even the temple
dataset more than two orders of magnitude faster.
In any case, when computing the number of
connected components starting from the EVM
model, CUDB is more efficient than OUDB..

In order to show the performance of the
CUDB-based exact collision detection, three
scenes are presented. The first one consists of
seven datasets (see Fig. 9), where the size of
each is around 2563. The second scene consists
of 250 spheres and 250 objects of the Star dataset
randomly placed in a volume of 10003 voxels (see
Fig. 10). The third scene consists of 2 objects of

Computación y Sistemas, Vol. 21, No. 2, 2017, pp. 275–292
doi: 10.13053/CyS-21-2-2737

Irving Cruz-Matías, Dolors Ayala286

ISSN 2007-9737

Table 1. Attributes of the test datasets

Dataset size |Fvoxels| |triangles| |EV | |OUDB| |CUDB| % |CUDB|
|OUDB| |CC|

(a) Cart 585×979×1000 4453852 4605468 502986 256370 100358 39.1 16
(b) Lines 500×500×500 11179011 6579736 4356 24851 954 3.8 1
(c) Cup 401×401×512 18027587 2628720 215050 236642 60429 25.5 1
(d) FanDisk 470×512×261 18706826 1336956 59290 49761 16733 33.6 1
(e) Robot 372×943×1000 29150579 4234084 126806 163281 34515 21.1 48
(f) Temple 925×1000×472 141371526 7467204 73902 260279 21084 8.1 99
(g) Aneurysm 213×215×240 69743 175064 50318 12825 10705 83.5 406
(h) Lobster 244×239×49 233509 311880 74724 27307 19322 70.8 53
(i) Engine 139×197×108 901818 663900 101114 47143 25524 54.1 9
(j) Beetle 411×371×247 1737343 567972 132184 47410 36052 76.0 17
(k) Colon 512×492×426 3995607 7772360 2142304 653717 473649 72.5 54829
(l) Mineral 376×375×206 7363953 6121828 833002 489585 232008 47.4 724

Table 2. OUDB and CUDB run time comparison in milliseconds

D. OUDB CUDB
tO tC % tC

tOE→O OCCL E→C CCCL

(a) 406 422 467 16 828 483 58
(b) 26 15 37 0.3 41 37 90
(c) 324 366 360 7 690 367 53
(d) 76 31 78 1 107 79 74
(e) 204 251 253 4 455 257 56
(f) 263 503 299 2 766 301 39
(g) 45 10 53 1 55 54 98
(h) 95 31 100 2 126 102 81
(i) 66 66 96 2 132 98 74
(j) 88 33 114 3 121 117 97
(k) 1335 1162 1716 65 2497 1781 71
(l) 611 926 769 33 1537 802 52

the Cart dataset that have interlaced parts but do
not collide (see Fig. 11).

Statistics of the collision detection test are shown
in Table 3. For each scene: number of objects (n),
number of boxes of the object having the maximum
number of boxes (m), total number of boxes in
the scene (T), number of detected collisions (i.e.,
number of object pairs |pairs|) and time to detect
the collisions in milliseconds.

Note that, although scene 3 has less boxes than
scene 2, the required time for collision detection is
bigger. This is because there is any collision, which
implies that there is not any early discarding and all
boxes must be evaluated.

Table 3. Statistics of the collision scenes

Scene n m T |pairs| Time
Scene 1 6 23410 84714 4 92
Scene 2 500 1280 546750 91 67
Scene 3 2 101743 202101 0 566

7 Conclusion and Future Work

We have presented in detail, a new decomposition
model for OPP, CUDB, which is an improved
version of the OUDB model. Algorithms for
conversion to and from EVM, for CCL and exact
collision detection have also been presented.

Experimental results show that CUDB is smaller
in number of elements, and so in storage size.

Computación y Sistemas, Vol. 21, No. 2, 2017, pp. 275–292
doi: 10.13053/CyS-21-2-2737

Compact Union of Disjoint Boxes An Efficient Decomposition Model for Binary Volumes 287

ISSN 2007-9737

(a) Cart (b) Lines (c) Cup

(d) Fan Disk (e) Robot (f) Temple

(g) Aneurysm (h) Lobster (i) Engine

(j) Beetle (k) Colon (l) Mineral

Fig. 7. Rendered images of the test datasets

It can be observed that computation of CCL is
notably faster in CUDB than the improved version,
OUDB-extended. Regarding the presented exact
collision detection algorithm, although this is
CPU-based, it is efficient when exact collision
detection is required directly on CUDB models.

Table 4 resumes the pros and cons of CUDB
with respect B-Rep and the hierarchical structures
(HS) on the basis of some properties of solid
representation schemes, and the CCL and collision
detection performance.

The performance variability of the presented
algorithms is caused by the dataset size but above
all to their surface intricacy. Our method depends
on the number of boxes, tightly related to the
model’s tortuosity (a property that represents the

(a) 24851 boxes (b) 954 boxes

Fig. 8. Zoom in of Lines dataset. (a) XYZ-OUDB. (b)
XYZ-CUDB

Fig. 9. Collision scene 1. Six datasets: Armadillo (18338
boxes), Bunny (23410 b.), Cup (15002 b.), Dragon
(19413 b.), FanDisk (4719 b.), Robot (3832 b.). In red
the objects that collide: Bunny with Cup and Armadillo,
and the latter with Robot

twist of a curve, i.e. the degree of turns or detours
a model has [26], like the previous developed
methods based on OPP.

Characteristics of CUDB model have been
exploited in some applications as in a CUDB-
based virtual porosimeter [44], which simulate
mercury intrusion at increasing pressures, like
the porosimeter lab. Also in a method to
compute the Euler characteristic and the genus
of binary volumes [14]. And a 2D version of the
collision detection algorithm has been applied in a
lossless simplification method to get a better shape
preservation [15].

As future work, we are devising methods
to compute the B-Rep model from the

Computación y Sistemas, Vol. 21, No. 2, 2017, pp. 275–292
doi: 10.13053/CyS-21-2-2737

Irving Cruz-Matías, Dolors Ayala288

ISSN 2007-9737

Fig. 10. Collision scene 2. 250 spheres (voxel
size 50×50×50) and 250 objects of the Star dataset
(70×95×70). Each sphere has 907 boxes and each
Star 1280 boxes in their corresponding XYZ-CUDB
representation. In red the objects that collide

Fig. 11. Collision scene 3. 2 objects of the Cart dataset.
The original Cart has 100358 boxes, the rotated one
101743 boxes. Both in its XYZ-CUDB. The objects
actually do not collide

CUDB-representation and to obtain the
CUDB-represented complement. Another future
work is a complete analysis of whether any of the
six ABC-sortings in CUDB produces an optimal
number of disjoint boxes that cover the OPP,
otherwise, one could think of allowing overlapping
boxes in order to further reduce this number.

Table 4. Comparative of CUDB vs. other representation
models

CUDB B-Rep & HS
Accuracy Exact representa-

tion for OPP.
Approximate rep-
resentation [21].

Domain Represents any
solid.

B-Rep represents
a very wide
classes of
objects, HS
any solid [21].

Uniqueness Six
representations
depending on the
ordering.

Only octrees
guarantees the
uniqueness [21].

Storage
(# of
elements)

In general, OUDB has proven to be
more compact than other models [42,
43], and here we have proven that
CUDB is more compact than OUDB.

CCL In general, OUDB has proven to be
faster than other models [42, 43], and
here we have proven that CUDB is
faster than OUDB.

Exact colli-
sion detec-
tion

Only for static
scenes

Applications in
dynamic scenes
and deformable
objects [49].

Boolean
Operations

Not yet devised
methods, but can
be performed via
EVM.

Known operations
[21].

Finally, we think that CUDB model can be used
to compute structural parameters of biomaterials
as those reported in [6] and [54] and new ones
emerging in the bioengineering field.

References

1. Aguilera, A. (1998). Orthogonal Polyhedra: Study
and Application. Ph.D. thesis, LSI-Universitat
Politècnica de Catalunya.

2. Aguilera, A. A. & Ayala, D. (1997). Orthogonal
Polyhedra as Geometric Bounds in Constructive
Solid Geometry. Fourth ACM Symposium on Solid
Modeling and Applications, ACM, pp. 56–67.

3. Aguilera, A. A. & Ayala, D. (2001). Geometric
Modeling, volume 14 of Computing Supplement,
chapter Converting Orthogonal Polyhedra from

Computación y Sistemas, Vol. 21, No. 2, 2017, pp. 275–292
doi: 10.13053/CyS-21-2-2737

Compact Union of Disjoint Boxes An Efficient Decomposition Model for Binary Volumes 289

ISSN 2007-9737

Extreme Vertices Model to B-Rep and to Alternating
Sum of Volumes. Springer-Verlag, pp. 1–28.

4. Ayala, D., Vergara, E., & Vergés, E. (2007).
Improved skeleton computation of an encoded
volume. Proc. of Eurographics, volume 2007,
pp. 33–36.

5. Ayala, D. & Vergés, E. (2008). Improved virtual
porosimeter. CASEIB’08.

6. Ayala, D. & Vergés, E. (2009). Structural param-
eters computation of a volume using alternative
representations. Proceedings of IV Iberoamerican
Symposium in Computer Graphics, DJ Editores,
C.A., pp. 73–80.

7. Ayala, D., Vergés, E., & Cruz, I. (2012). A
polyhedral approach to compute the genus of a
volume dataset. Proc. of the Int. Conf. GRAPP 2012,
SciTePress, pp. 38–47.

8. Biedl, T. & Genç, B. (2011). Reconstructing
orthogonal polyhedra from putative vertex sets.
Computational Geometry, Vol. 44, No. 8, pp. 409–
417.

9. Biswas, A., Bhowmick, P., Sarkar, M., & Bhat-
tacharya, B. B. (2012). A linear-time combinatorial
algorithm to find the orthogonal hull of an object
on the digital plane. Information Sciences, Vol. 216,
pp. 176–195.

10. Bournez, O., Maler, O., & Pnueli, A. (1999).
Orthogonal polyhedra: Representation and compu-
tation. Hybrid Systems: Computation and Control,
pp. 46–60. LNCS 1569, Springer.

11. Brunet, P., Juan, R., & Navazo, M. I. (1992).
Octree representations in solid modeling. Progress
in Computer Graphics, Vol. 1, pp. 164–215.

12. Cohen, J. D., Lin, M. C., Manocha, D., &
Ponamgi, M. (1995). I-collide: an interactive and
exact collision detection system for large-scale
environments. Proc. of the 1995 Sym. on Interactive
3D graphics, ACM, pp. 189–ff.

13. Coming, D. S. & Staadt, O. G. (2008). Velocity-
aligned discrete oriented polytopes for dynamic col-
lision detection. IEEE Transactions on Visualization
and Computer Graphics, Vol. 14, pp. 1–12.

14. Cruz-Matı́as, I. & Ayala, D. (2013). An efficient
alternative to compute the genus of binary volume
models. Proc. of the Int. Conf. GRAPP 2013,
SciTePress, pp. 18–26.

15. Cruz-Matı́as, I. & Ayala, D. (2014). A new lossless
orthogonal simplification method for 3D objects

based on bounding structures. Graphical Models,
Vol. 76, No. 4, pp. 181–201.

16. Dang, T. & Maler, O. (1998). Reachability analysis
via face lifting. In Hybrid Systems: Computation and
Control. Springer, pp. 96–109.

17. Dillencourt, M., Samet, H., & Tamminen,
M. (1992). A general approach to connected-
component labeling for arbitrary image represen-
tations. Journal of the ACM, Vol. 39, No. 2,
pp. 253–280.

18. Eppstein, D. & Mumford, E. (2010). Steinitz
theorems for orthogonal polyhedra. Proceedings
of the 2010 annual symposium on Computational
geometry, ACM, pp. 429–438.

19. Esperança, C. & Samet, H. (1998). Vertex
representations and their applications in computer
graphics. The Visual Computer, Vol. 14, pp. 240–
256.

20. Flores, J. A. M. (1999). Analysis and Visualization
of Complex 3D Structures: a discrete boundary-
based approach. Ph.D. thesis, Ecole Nationale
Supérieure des Télécommunications.

21. Foley, J., Damm, A. V., Feiner, S., & Hughes, J.
(1997). Computer graphics: principles and practice.
Pearson Education.

22. Gagvani, N. & Silver, D. (2000). Shape-based vol-
umetric collision detection. Proc. of the 2000 IEEE
Sym. on Volume visualization, ACM, pp. 57–61.

23. Geleri, F., Tosun, O., & Topcuoglu, H. (2013).
Parallelizing broad phase collision detection algo-
rithms for sampling based path planners. Proc. of
the 21st Euromicro Int. Conference on Parallel,
Distributed, and Network-Based Processing, IEEE,
pp. 384–391.

24. Greß, A. & Klein, R. (2004). Efficient representation
and extraction of 2-manifold isosurfaces using kd-
trees. Graphical Models, Vol. 66, pp. 370–397.

25. Grevera, G. J., Udupa, J. K., & Odhner, D. (2000).
An Order of Magnitude Faster Isosurface Rendering
in Software on a PC than Using Dedicated, General
Purpose Rendering Hardware. IEEE Transactions
Visualization and Computer Graphics, Vol. 6, No. 4,
pp. 335–345.

26. Grisan, E., Foracchia, M., & Ruggeri, A. (2003). A
novel method for the automatic evaluation of retinal
vessel tortuosity. Proc. of the 25th Annual Int. Conf.
of the IEEE EMBS, volume 1, pp. 866–869.

Computación y Sistemas, Vol. 21, No. 2, 2017, pp. 275–292
doi: 10.13053/CyS-21-2-2737

Irving Cruz-Matías, Dolors Ayala290

ISSN 2007-9737

27. Gupta, S., Palsetia, D., Patwary, A., Mostofa,
M., Agrawal, A., & Choudhary, A. (2014). A
new parallel algorithm for two-pass connected
component labeling. IEEE International Parallel
& Distributed Processing Symposium Workshops
(IPDPSW), IEEE, pp. 1355–1362.

28. He, L.-F., Chao, Y.-Y., & Suzuki, K. (2013). An
algorithm for connected-component labeling, hole
labeling and euler number computing. Journal of
Computer Science and Technology, Vol. 28, No. 3,
pp. 468–478.

29. Hopcroft, J. & Tarjan, R. (1973). Algorithm
447: efficient algorithms for graph manipulation.
Communications of the ACM, Vol. 16, No. 6,
pp. 372–378.

30. Jiménez, P., Thomas, F., & Torras, C. (2000).
3D collision detection: A survey. Computers &
Graphics, Vol. 25, No. 2, pp. 269–285.

31. Kaufman, A. (1990). Volume Visualization. IEEE
Computer Society Press.

32. Kaufman, A., Cohen, D., & Yagel, R. (1993).
Volume graphics. Computer, pp. 51–64.

33. Lachaud, J. & Montanvert, A. (2000). Continuous
analogs of digital boundaries: A topological
approach to iso-surfaces. Graphical Models, Vol. 62,
pp. 129–164.

34. Lee, E., Choi, Y., & Park, K. (1994). A method
of 3D object reconstruction from a series of
cross-sectional images. IEICE trans. inf and syst,
Vol. E77-D, No. 9.

35. Lifeng, H., Xiao, Z., Bin, Y., Yun, Y., & Yuyan, C.
(2014). An efficient two-scan labeling algorithm for
binary hexagonal images. IEICE TRANSACTIONS
on Information and Systems, Vol. 97, No. 12,
pp. 3244–3247.

36. Lorensen, W. & Cline, H. (1987). Marching cubes:
A high resolution 3D surface construction algorithm.
ACM Computer Graphics, Vol. 21, No. 4, pp. 163–
169.

37. Martı́nez, J., Pla, N., & Vigo, M. (2013). Skeletal
representations of orthogonal shapes. Graphical
Models, Vol. 75, pp. 189–207.

38. Muuss, M. J. & Butler, L. A. (1991). State of the Art
in Computer Graphics: Visualization and Modeling.
Springer-Verlag.

39. Park, S. C. & Choi, B. K. (2001). Boundary
extraction algorithm for cutting area detection.
Computer-Aided Design, Vol. 33, No. 8, pp. 571–
579.

40. Quadros, W. R., Shimada, K., & Owen, S. J.
(2004). 3D discrete skeleton generation by wave
propagation on PR-octree for finite element mesh
sizing. Proceedings of ACM Symposium on Solid
Modeling and Applications, pp. 327–332.

41. Requicha, A. (1980). Representations for rigid
solids: Theory, methods and systems. ACM
Computing Surveys, Vol. 12, No. 4, pp. 73–82.

42. Rodrı́guez, J. & Ayala, D. (2003). Fast neighbor-
hood operations for images and volume data sets.
Computers & Graphics, Vol. 27, pp. 931–942.

43. Rodrı́guez, J., Ayala, D., & Aguilera, A. (2004).
Geometric Modeling for Scientific Visualization,
chapter EVM: A Complete Solid Model for Surface
Rendering. Springer-Verlag, pp. 259–274.

44. Rodrı́guez, J., Cruz, I., Vergés, E., & Ayala,
D. (2011). A connected-component-labeling-based
approach to virtual porosimetry. Graphical Models,
Vol. 73, pp. 296–310.

45. Rosenfeld, A. & Pfaltz, J. (1966). Sequential
operations in digital picture processing. Journal of
the ACM, Vol. 13, No. 4, pp. 471–494.

46. Samet, H. (1990). Applications of spatial data
structures: Computer graphics, image processing,
and GIS. Addison-Wesley Longman Publishing.

47. Samet, H. & Tamminen, M. (1985). Bintrees, CSG
trees, and time. Proceedings of the 12th annual
conference on Computer graphics and interactive
techniques, SIGGRAPH ’85, ACM, pp. 121–130.

48. Seidl, T., Boden, B., & Fries, S. (2012).
Cc-mr–finding connected components in huge
graphs with mapreduce. In Machine Learning
and Knowledge Discovery in Databases. Springer,
pp. 458–473.

49. Teschner, M., Kimmerle, S., Heidelberger, B.,
Zachmann, G., Raghupathi, L., Fuhrmann, A.,
Cani, M.-P., Faure, F., Magnenat-Thalmann, N.,
Strasser, W., et al. (2005). Collision detection
for deformable objects. Computer graphics forum,
volume 24, Wiley Online Library, pp. 61–81.

50. Thibault, W. & Naylor, B. (1987). Set operations
on polyhedra using binary space partitioning trees.
SIGGRAPH Comput. Graph., Vol. 21, No. 4,
pp. 153–162.

51. Thurfjell, L., Bengtsson, E., & Nordin, B. (1995).
A boundary approach to fast neighborhood oper-
ations on three-dimensional binary data. CVGIP:
Graphical Models and Image Processing, Vol. 57,
No. 1, pp. 13–19.

Computación y Sistemas, Vol. 21, No. 2, 2017, pp. 275–292
doi: 10.13053/CyS-21-2-2737

Compact Union of Disjoint Boxes An Efficient Decomposition Model for Binary Volumes 291

ISSN 2007-9737

52. Udupa, J. K. & Odhner, D. (1991). Fast
visualization, manipulation, and analysis of binary
volumetric objects. IEEE Computer Graphics &
Applications, pp. 53–62.

53. Udupa, J. K. & Odhner, D. (1993). Shell rendering.
IEEE Computer Graphics & Applications, pp. 58–67.

54. Vergés, E. (2011). Modeling, Analysis and Vi-
sualization of Porous Biomaterials. Ph.D. thesis,
LSI-Universitat Politècnica de Catalunya.

55. Vigo, M., Pla, N., Ayala, D., & Martı́nez, J. (2012).
Efficient algorithms for boundary extraction of 2D
and 3D orthogonal pseudomanifolds. Graphical
Models, Vol. 74, pp. 61–74.

56. Vogiannou, A., Moustakas, K., Tzovaras, D.,
& Strintzis, M. G. (2010). Enhancing bounding
volumes using support plane mappings for collision

detection. Computer Graphics Forum, Vol. 29, No. 5,
pp. 1595–1604.

57. Wilhems, J. & Gelder, A. V. (1992). Octrees for
faster isosurface generation. ACM Transactions on
Graphics, Vol. 11, No. 3, pp. 201–227.

58. Wong, W., Shih, F. Y., & Su, T. (2006).
Thinning algorithms based on quadtree and octree
representations. Information Sciences, Vol. 176,
pp. 1379–1394.

59. Zachmann, G. (2002). Minimal hierarchical collision
detection. Proc. of the ACM Sym. on Virtual reality
software and technology, VRST ’02, ACM, pp. 121–
128.

Article received on 07/03/2016; accepted on 07/02/2017.
Corresponding author is Irving Cruz-Matı́as.

Computación y Sistemas, Vol. 21, No. 2, 2017, pp. 275–292
doi: 10.13053/CyS-21-2-2737

Irving Cruz-Matías, Dolors Ayala292

ISSN 2007-9737

