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Abstract. The calculus for a power of a number could be 

a time and computational cost-consuming task. A 
method for reducing this issue is welcome in all mayor 
computational areas as cryptography, numerical series 
and elliptic curves calculus,  just to mention a few. This 
paper details the development of a minimum length 
addition chains generator based on an Evolutionary 
Strategy, which makes fewer calls to the objective 
function with respect to other proposals that also use bio-
inspirated algorithms as Particle Swarm Optimization or 
a Genetic Algorithm. By using fewer calls to the objective 
function, the number of calculations is lower and 
consequently decreases the generation time providing 
an improvement in computational cost but obtaining 
competitive results.  

Keywords. Minimum length, addition chains, 

evolutionary strategy, computational cost reduction. 

1 Introduction 

In modern cryptography calculating numbers with 
exponents is widely used as part of the steps of 
encryption and decryption, as in the case of 
asymmetric cryptography algorithms such as RSA, 
El Gamal or DSA. In the case of RSA, keys of 512, 
1024, 2048 or 4096 bits in length are used, 
although it is currently recommended to use 2048 
or 4096 bits. If RSA is used and a key length of 
1024 bits is chosen, two random numbers of 512 

bits must be chosen which will be named p and q. 
Multiplying these numbers yields a = p.q.  

The encryption key is also a randomly chosen 
number such that (p-1) (q-1) and e are relative 
prime numbers. In this way the decryption key d 
will be obtained from e, p and q as follows: 

d = e-1 mod ((p-1)(q-1)). (1) 

The d and e numbers are used to build up the 
private key. To encrypt a message M, it must be 
divided into smaller parts than a; each block of 
cipher text will be obtained by:  

Ci = Mi
e mod a. (2) 

To decrypt it must be used each block of text 
coded Ci with: 

Mi = Ci
d mod a. (3) 

Efficient and fast approximations are needed 
for the calculation of large exponent numbers. If, 
for example, we want to obtain an exponent of xn, 
the simplest method is to use n-1 multiplications of 
x such that we have xn = x * x * x * x * ... * x.  

If it is considered that for a symmetric key 
encryption-decryption process one can have a 
1024-bit e or d for each data block, then a number 
of 1.79 x 10308 is available. 
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Considering the above, we can have up to 308 
consecutive multiplications per block of data to be 
encrypted. While some approaches focus on the 
creation of hardware that solves multiplications 
more efficiently, other approaches are focused on 
reducing the number of them. A method that 
reduces the number of operations necessary for 
the calculation of numbers with large powers is 
welcome in this field, but not only here, it is also 
applicable to the elliptic curves [1] as well as to the 
calculation of the numerical successions of Lucas 
and Fibonacci [2] and many other groups that use 
element calculations in cyclic groups. Some 
approximations for the reduction of multiplications 
in order to obtain xn are: the binary method [3], the 
m-ary method [3] or the window-based method [4]. 

Although these methods significantly reduce 
the number of multiplications required to obtain a 
power, it is possible to further reduce the number 
of such multiplications by using exponential 
methods based on series of additions, in which 
positive integers starting at 1 and end in the 
exponent n to generate it as the last member of the 
series: 

β = αe mod n. (4) 

The set of multiplications thus obtained is called 
the Addition Chain, where e is the length of the 
chain, meaning e as the number of multiplications 
necessary to obtain x and y defining the length of 
the chain as l(e). Therefore, a small number will 
reflect a smaller number of multiplications 
necessary to obtain x and y as e is reduced, in the 
same proportion the number of multiplications 
necessary to obtain this power is reduced. 

The paper is organized as follows: section II is 
formally defined the problem. Section III 
evolutionary strategies and their implementation 
are described for generating addition chains; The 
experiments and results are presented in Section 
IV, finally in section V we included the conclusions 
and future works. 

1.1 Approach to the Problem  

Cruz-Cortés et al. [4] indicate that "formally an 
addition chain e of length l is a sequence u of 
positive integers" such that: 

u0= 1, u1..., ul=e  

Such that for each i > 1,  

ui = uj + uk, 

for some j and k that satisfy 0 ≤ j ≤ k <i. 

Considering the above, if u is an addition chain, 

which calculates e, then for each α ∈ [1, n-1] it is 

possible to find β = αe mod n by successively 
calculating α, αu1, ..., αu1-1, αe. 

If l(e) is defined as the smallest valid length for 
an addition chain for a positive integer e, then the 
theoretical minimum number of multiplications 
required to compute the modular exponentiation, is 
precisely l (e), see equation 4. The problem is to 
construct an addition chain for l (e) of minimum 
length given an integer e. If there is more than one 
sequence with the same length, then either is 
acceptable. For example, <1,2,3,5> and <1,2,4,5>, 
both are valid solutions when the addition chain for 
the integer 5 is requested. 

The optimal algorithm for the calculation of 
addition chains requires less multiplication than a 
binary power calculation for large exponents. The 
first example where this is evident is in the 
calculation of x15, where the binary method 
requires 6 multiplications but an optimal addition 
chain needs only 5 multiplications [4]. However, 
the calculation of an addition chain is more 
complex. There is not currently known method for 
finding arbitrary exponents, and the problem of 
finding an optimal sequence for an addition chain 
has been shown to be a complete NP problem [5].  

The problem of generating an optimal addition 
chain has not been solved, with dynamic 
programming since it is not enough to decompose 
the power into smaller powers, each optimally 
calculated. Since the addition chains for smaller 
powers may be related each. However a proposed 
solution to this problem is the use of bio-inspired 
programming. This article presents the calculation 
of Addition Chains using Evolutionary Strategies 
(ES) due to the fast convergence of these, which 
results in competitive results with a lower cost of 
computation time compared to other bio-inspired 
heuristics. 

Computational algorithms have already been 
developed to find short addition chains in both the 
deterministic and stochastic parts. For the 
deterministic part we can highlight: method of 
factor [6], binary method [7], window method and 
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sliding window [8]. Among the stochastic or non-
deterministic methods can be mentioned: Genetic 
Algorithm (GA) [4, 9], Particle Swarm Optimization 
(PSO) [10], Ant Colony Optimization (AC) [11], 
Artificial Immune System (AIS) [12] and Genetic 
Programming (GP) [13]. The aforementioned 
methods have found smaller addiction chains than 
deterministic methods such as the factor method 
or the binary method; however, most of the above 
work is focused on the processing of numbers with 
small exponents. When using an ES it is proposed 
to improve the time performance of a stochastic 
method with respect to the aforementioned ones, 
which allows obtaining chains of short addition in a 
time smaller than the one used by other stochastic 
bio-inspired methods. 

2 Materials and Methods 

ES were originally developed by a group of 
students at the Technical University of Berlin 
Germany starting in the 1970s, particularly by I. 
Rechenberg and H. P. Schwefel [14, 15]. Currently 
there are a lot of variants for the original ES [16, 
17, 18]; Beyer and Schwefel make an in-depth 
review of the most relevant [19]. The basic 
algorithm of ES consists of 5 steps, see Algorithm 
1 [14]: 

1. Generation of the initial population. 

2. Marriage. 

3. Recombination. 

4. Mutation. 

5. Selection. 

The following are the decisions made for the 
design of the algorithm of an ES for the calculation 
of addition chains. 

a) Representation: In order to encode the data 
of each individual, whole numbers were used 
in the variables x of the ES in such a way as to 
have a phenotypic and genotypic 
representation of the problem. With this, each 
variable x represents a possible value for the 
calculation of the addition chain, so that each 
variable x is a possible solution to an addition 
chain for the next value, much like encodings 
in an integer array for a GA (Genetic 

Algorithm). For Sigma, equal values are 
initially used (in a range of 0 to 1.77754). 

b) Initial population: The variables initial values 
are set by assigning a value of one to the first 
element and two to the second element and 
generating viable (valid) elements for the 
algorithm by selecting a random value 
between the previous values and double the 
previous value for the next element. This 
allows to generating valid (but not optimal) 
addition chains for all the individuals of the 
initial population.  

c) Objective Function: The objective value (the 
power to be calculated) to be generated is the 
initial goal of the calculation. The objective 
function has to determine this value; it must 
also meet the conditions necessary for the 
chain generated to be viable: 

1. u0 = 1  

2. u1 = e  

3. u0 < u1 < u2 < ... < ul-1 < ul  

4. For each k ( 1 < k < m ) there exist two 

integers i y j (not necessarily different) with 

intervals 0 < i, j < k – 1 with  uk = ui + uj  

Conditions 1 to 4 define the addition chain; these 
conditions are coded in C language, within a loop 
that reviews all the genome variables of all 
individuals, such that they are two nested cycles, 
one to review each individual in each generation 
and the revision of each individual genome within. 

d) Crossover operator: The used crossover 
operator consists in the selection of two 
parents (P1 and P2) randomly chosen from the 
population. These two parents are used to 
generate two children (H1 and H2). Generated 
children will compete directly between them to 
find the best children. A random number is 
chosen for parent P1 and then another random 
number for parent P2; being careful that it is 
not the same random number for both parents. 
The crossover operator is different from that 
established for canonical ES because of the 
unique characteristics of the problem. The 
main difference is that when an element is 
copied, the sequence of the addition chain is 
broken. So for the crossover it was chosen to 
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use the Algorithm proposed by Cruz-Cortés 
[4], in which the elements of an individual are 
not taken for the creation of the child. Instead 
they take the rules of the creation of the father 
for the termination of the child from a point of 
Crossing. The crossover point is selected 
randomly. In the next step the first 
chromosome of Parent 1 is copied from the 
beginning to the crossing point. Subsequently, 
the rules (not the information) of the addition 
chain of the parent P2 are copied from a 
position after the crossing point to the total 
length of the parent P2. The components a and 
b of the kth element of the addition chain of the 
parent P2 are obtained and used to generate 
the element k of the addition chain of the child 
H1, always verifying that the value of the 
generated number does not exceed the 
Objective number of the addition chain. This 
validation is performed in order to generate 
viable addition chains. Finally, the same steps 
are taken for the creation of the H2 child but 
exchanging the places of the parents. 

e) Mutation operator: A canonical mutation 
model is used based on the change in the 
sigma value of each chromosome per 
individual and then uses the updated sigma to 
calculate the new value of X for each gene of 
the individual. Mutation is performed on all 
variables (genome) of all individuals in a 
population. The mutation in the ES has two 
parts: the calculation of the sigma variable and 
the mutation of the corresponding X variable. 
The order of execution is: first the calculation 
of the new sigma and then the one of X, if done 
otherwise the mutation scheme does not work. 

The updated sigma mutation (σ') is made from 

the previous sigma (σ): 

' =   × e((τ' • N(0,1))+ (τ •Ni(0,1))), (4) 

where: 

'' corresponds to the updated sigma, 

 corresponds to the previous sigma. 

The exponent is calculated using the product of 
a random value (Ni) with a range between zero and 
one multiplied by τ (tau) added to the product of 

another random number (N) by τ ' (tau prime) as 
exponent of e. 

Once calculated σ' we proceed to compute x' 

from the current x of the genome of the individual, 
where x represents a position of the vector 
containing the elements forming the addition chain. 
The probability of mutation of x is determined by 
the initial probability of mutation (MUT_PROB) and 
a random value between 0 and 100 (Mutate) that 
is calculated for each x, following equation 1. The 
x' value will be the element of the addition chain of 
the child H1 from which the chain begins to mutate. 
Due to the particular characteristics of the 
generation of the addition chains it is not possible 
to use a standard mutation for an ES, whereby the 
calculation of the modified chain is made from the 
mutated element and the later ones are calculated 
based on this element. Initially a random type 
variable (with a value between 0 and 7000) is 
calculated. Next, the type value is used to 
determine the type of addition chain to be 
proposed for the CM element (Mutated Chain), 
with three possible cases: 

1. Generate CM with H1k-1 + H1k-1, 

2. Generate CM with H1k-1 + H1k-2, 

3. Generate CM with H1k-1 + H1rand, 

where: 

CM is the current element to be calculated from 
the chain: 

H1k-1 is the previous element of the son's 
chain1, 

H1rand is any element less than k in the chain of 
the child H1. 

The intervals of type privilege the first case over 
the others and privileges the second over the third, 
since a random value between 0 and 7000 for type 
are calculated as follows: 

1. if 0       < type < 5000 then CM = H1k-1 + H1k-1, 

2. if 5001 < type < 6500 then CM = H1k-1 + H1k-2, 

3. if 6501 < type < 7000 then CM = H1k-1 + H1rand. 

Once having the mutated element, (CM) of the 
current chain, is checked to see if the calculated 
value is greater than the target value, if so there is 
calculated again the CM element to be minor  than 
or equal to the target value.  
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When the mutated element (CM) is verified to 
be minor than or equal to the target value, CM is 
integrated into the child's addition chain as the H1ik 
element. Subsequently CM is compared with the 
target value if CM is equal to the target value then 

previous sigma (') is updated with the new sigma 

value (''), otherwise it will continue with the 

previous value, and the calculation is completed for 
the mutation of the addition chain. 

f) Selection by aptitude: The selection is 
through a comparison, so that the best 
individuals compare parents against parents 
and children against children and the best of 
each group are those who survive to the next 
generation. The selection method is a bubble 
method in which the best abilities rise in the list 
and of the total of individuals only half survives, 
in the case that the initial population is 100 
individuals, after the crossing stage have 200 
individuals between parents and children. 
Later in the selection and generation of the 
new population survives only half (top 100 

individuals) which is the number of individuals 
of the initial population again. 

3 Results 

To test the performance of the developed 
algorithm, three experiments were proposed. The 
first experiment consists of generating the 
consecutive addition chains for the intervals (1-
512), (1-1000), (1-1024), (1-2048), (1-4096) and 
verify the accumulated value of each sequence 
and compare it with similar algorithms in terms of 
total length, and the standard deviation for thirty 
runs in each range. Second and third experiments 
were composed of thirteen target numbers for 
which it is known that it is difficult to calculate their 
corresponding addition chain.  

For experiments 1 and 2, a population size of 
one hundred individuals, one thousand 
generations, thirty executions for each chain, an 
initial sigma of 1.7754, a mutation probability of 
fifteen percent, and a cross-probability of eighty 
percent. 

Table 1. Statistical results for the first experiment of the ES. Calculation of addition chains for the accumulated intervals 

e   Є Best Avg Media Worst Stand. Dev. 

(1-512) 4924 4925.56 4925 4928 1.1043 

(1-1000) 10815 10820.00 10819.5 10827 2.7038 

(1-1024) 11121 11127.36 11127.5 11135 3.4087 

(1-2000) 24105 24118.93 24117.0 24128 7.5198 

(1-2048) 24779 24790.3 24791.0 24805 6.7831 

(1-4096) 54625 54653.13 54656.5 54666 12.6102 

Table 2. Comparative for the accumulated results of the addition chains. The algorithms compared where AIS, GA, 

PSO and GP 

e   Є Optimal AIS GA PSO GP ES 

(1-512) 4924 4924 4924 --- 4924 4924 

(1-1000) 10808 10813 10809 --- 10808 10815 

(1-1024) 11115 11120 --- 11120 11115 11121 

(1-2000) 24063 24108 24076 --- 24070 24105 

(1-2048) 24731 24778 24748 --- 24737 24779 

(1-4096) 54425 54617 54487 --- 54454 54625 
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First Experiment. 

This experiment consists of generating the 
corresponding addition chains in the range of 1 to 
Maximum Range and adding the total lengths of all 

the obtained chains. The value obtained is the 
accumulated value of all the addition chains 
obtained for the defined interval. The ranges to be 
calculated are: (1-512), (1-1000), (1-1024), (1-
2000), (1-2024) and (1-4096). The result is 

Table 3. Result of ES for calculation of addition chains of difficult numbers with a thousand generations 

Objective number 
Length r 

Best Avg Media Worst Stand. Dev. 

11,231 18 18 18.0 18 0.0 

18,287 19 19 19.0 19 0.2537 

34,303 20 20 20.0 20 0.0 

65,131 21 21 21.0 21 0.3051 

110,591 22 22 22.0 22 0.4901 

196,591 23 23 23.0 23 0.1826 

357,887 24 25 24.2 25 0.5040 

685,951 25 25 25.0 25 0.3457 

1,176,431 26 27 26.7 27 0.4138 

2,211,837 27 29 27.9 28 0.7915 

4,169,527 28 29 28.8 28 0.6065 

7,624,319 29 31 29.9 30 0.4842 

14,143,037 30 31 30.8 31 0.5833 

Table 4. ES result for hard numbers addition chains calculation using five hundred generations 

Objective Length r 

 Best Worst Avg Media Stand. Dev. 

11,231 18 18 18.00 18 0.0 

18,287 19 20 19.16 19 0.3790 

34,303 20 21 20.06 20 0.2537 

65,131 21 22 21.06 21 0.2537 

110,591 22 23 22.50 22.5 0.5085 

196,591 23 23 23.00 23 0.0 

357,887 24 25 24.60 25 0.4795 

685,951 25 26 25.23 25 0.4302 

1,176,431 26 28 27.03 27 0.4138 

2,211,837 27 29 28.20 28 0.7144 

4,169,527 28 30 28.46 28 0.5713 

7,624,319 29 32 30.50 31 0.7311 

14,143,037 30 32 31.46 31 0.5561 
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compared with other heuristic algorithms for 
calculation of addition chains, see table 1 and 
table 2. 

In the results of the experiments we present the 
target value, the best length reached, the worst, 
and the average of the 30 executions, see table 3. 

Second Experiment 

This experiment objective is to find the minimum 
addition chains for thirteen numbers, which are 
known to be difficult to calculate their 
corresponding chain. In this experiment the ES is 
used with a stop condition of a thousand 
generations to have a reference to experiment one. 
The objective of this second experiment is to 
compare the result of the ES with respect to other 
bioinspired algorithms in the calculation of 
minimum addition chains. Using difficult-to-
calculate numbers that have been used elsewhere, 
see Table 3. 

Third Experiment 

This experiment uses the same ES parameters of 
the other two experiments. Its objective is to 
calculate the minimum addition chains for difficult 
numbers. However, the number of generations 
from one thousand was reduced to five hundred in 
order to observe the behavior of the algorithm with 
a stop condition of greater exigency. 

The same set of thirteen hard to calculate 
numbers is used for which it is known that it is 
difficult to calculate its corresponding addition 
chain. The results of the experiments show the 
target value, the best length achieved, the worst, 
and the average of the 30 executions, see table 4. 

4 Discussion 

In the first set of experiments it can be observed 
that the ES algorithm obtains the addition chains 
for all proposed numbers, and the lengths of the 
chains found correspond to the best current values 
[20, 21, 22]. Experiments can be compared with 
the results obtained by other bio-inspired heuristics 
as reported in their respective investigations. In the 
case of Genetic Algorithm (GA), the data reported 
by Cruz-Cortés et al.  

In [4] and for a Particle Swarm Optimization 
(PSO) algorithm, the data reported by Léon-Javier 

et al. in [10]. In the result of the comparison it can 
be seen that the minimum lengths reached by the 
ES are equal to those obtained with PSO and in 
some cases better than those obtained with an GA, 
see Table V. 

When comparing other bio-inspired algorithms 
that calculate addition chains, it can be observed 
that the proposed algorithm (ES) reaches the same 
results, however there are some differences in the 
number of evaluations that are performed to obtain 
the addition chain.  

Considering that the three algorithms for 
generating addition chains are very similar in their 
theory and implementation can be considered that 
the generation of a valid addition chain has the 
same computational cost per individual. 

Table 5. Comparison of three algorithms for calculating 

addition chains. Final length of each addition chain for 
each problem is shown 

Objective 
number 

Length r 

ES GA PSO 

11,231 18 18 18 

18,287 19 19 19 

34,303 20 20 20 

65,131 21 21 21 

110,591 22 22 22 

196,591 23 23 23 

357,887 24 25 24 

685,951 25 25 25 

1,176,431 26 27 26 

2,211,837 27 28 27 

4,169,527 28 29 28 

7,624,319 29 30 29 

14,143,037 30 31 30 

Table 6. Comparison of three algorithms for calculating 

chains. Total calls to the target function are shown 

Algorithm 
Individuals/ 

particles 
Generations Total 

PSO 30 10000 300,000 

GA 100 1000 100,000 

ES 100 500 50,000 
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If we take as a measure the number of 
individuals multiplied by the number of iterations / 
generations we have a measure of comparison. 
The results can be seen in Table 6 where it is 
observed that ES occupies a smaller number of 
calculations than those using an Genetic Algorithm 
(GA) or a Particle Swarm Optimization (PSO) 
algorithm, see Table VI. 

Finally, it should be noted that the addition 
chains generated are different from those obtained 
by other algorithms and yet they also have 
minimum lengths compared to those currently 
found, see Table 7. 

5 Conclusions 

The algorithm of Evolutionary Strategies for the 
creation of minimum length addition chains has a 
competitive performance with respect to the length 
reached by other heuristic proposals. 

Nevertheless, the present development it 
obtains in a number of operations smaller than any 
of the previous proposals. It is clear that using an 
ES can have an optimization in time with respect 
to the other algorithms. This is due to the fast 
convergence which characterizes the ES.  

Table 7. Result of chains obtained for difficult exponents and their associated lengths 

Exponent 

e = c(r) 
Addition chain Length 

11231 
1- 2- 3- 4- 7- 14- 28- 56- 84- 168- 252- 504- 588- 1176- 2352- 3528- 
7056- 10584- 11172  

18 

18287 
1- 2- 4- 8- 9- 18- 19- 38- 76- 152- 304- 608- 912- 1824- 3648- 7296- 
10944- 18240- 18278- 18287 

19 

34303 
1- 2- 3- 6- 8- 14- 28- 56- 112- 168- 336- 504- 1008- 2016- 4032- 8064- 
16128- 32256- 34272- 34300- 34303 

20 

65131 
1- 2- 3- 6- 8- 14- 28- 56- 112- 224- 448- 896- 1792- 3584- 3612- 7224- 
14448- 21672- 43344- 65016- 65128- 65131 

21 

110591 
1- 2- 3- 4- 8- 11- 19- 38- 76- 152- 228- 380- 760- 1140- 2280- 4560- 
9120- 18240- 36480- 54720- 109440- 110580- 110591 

22 

196591 
1- 2- 3- 6- 7- 14- 28- 56- 84- 168- 336- 504- 1008- 1512- 3024- 6048- 
12096- 24192- 48384- 96768- 193536- 196560- 196588- 196591 

23 

357887 
1- 2- 3- 5- 10- 15- 30- 45- 90- 180- 360- 720- 1440- 2880- 5760- 11520- 
23040- 46080- 69120- 115200- 230400- 345600- 357120- 357840- 
357885- 357887 

24 

685951 
1- 2- 3- 5- 7- 14- 28- 42- 84- 126- 252- 504- 1008- 2016- 4032- 8064- 
12096- 20160- 40320- 80640- 161280- 322560- 645120- 685440- 
685944- 685951 

25 

1176431 
1- 2- 3- 6- 9- 18- 27- 54- 108- 216- 432- 864- 865- 919- 1838- 3676- 
7352- 14704- 29408- 58816- 117632- 235264- 470528- 705792- 
1176320- 1176428- 1176431 

26 

2211837 
1- 2- 4- 5- 9- 18- 36- 54- 59- 118- 127- 254- 508- 1016- 2032- 4064- 
8128- 16256- 32512- 65024- 130048- 260096- 520192- 1040384- 
2080768- 2210816- 2211832- 2211837 

27 

4169527 
1- 2- 4- 6- 12- 24- 48- 96- 144- 240- 241- 385- 625- 1010- 2020- 4040- 
8080- 16160- 32320- 64640- 129280- 258560- 517120- 1034240- 
2068480- 4136960- 4169280- 4169521- 4169527 

28 

7624319 
1- 2- 4- 5- 9- 18- 36- 41- 82- 164- 246- 492- 984- 1968- 3936- 7872- 
15744- 15785- 31570- 47355- 94710- 189420- 378840- 568260- 947100- 
1894200- 3788400- 7576800- 7624155- 7624319 

29 

14143037 
1- 2- 3- 6- 12- 18- 30- 31- 62- 124- 248- 496- 992- 1023- 2046- 4092- 
8184- 12276- 24552- 36828- 73656- 147312- 220968- 441936- 883872- 
1767744- 3535488- 7070976- 14141952- 14142975- 14143037 

30 
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However this reduces the scanning ability of the 
algorithm which affects the quality of the proposed 
solutions. The above motivates to propose 
improvements to the algorithm developed. On the 
one hand a proposal can be mentioned in the 
aspect of the mutation used and change to another 
scheme that provides greater diversity. On the 
other hand, considering the exploration capacity, it 
is possible to propose another algorithm that 
maintains a fast convergence without losing this 
premise, like the Differential Evolution algorithm 
that has proven to be successful in this type of 
problems.   
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