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Abstract. In this paper, we proposed a new crossover 
operator and a population initialization method for 
solving multiple traveling salesmen (MTSP) problem in 
genetic algorithm (GA) framework. The group theory 
based technique of intital population generation ensures 
the uniqueness of members in population, hence no 
redundancy in the search space and also remove the 
random initialization effect. The new crossover is based 
on the intuitive idea that the city in sub optimal / optimal 
tours occurs at same position. In this crossover the 
Hamming distance is preserved and there is very less 
chance to generate child same as members in the 
population, so diversity of the population is not much 
affected. For efficient representation of search space, 
we exploited the multi-chromosome representation 
technique to encode the search space of MTSP. We 
evaluate and compare the proposed technique with the 
methods using crossover TCX, ORX +A, CYX +A and 
PMX +A reported in [35] for two standard objective 
functions of the MTSP, namely, minimising total travel 
cost of m tours of the m salesman and minimising the 
longest tour cast travel by any one salesman. 
Experimental results show that the GA with proposed 
population initialization and crossover gives better result 
compared to all four methods for second objective, 
however, in very few cases slightly degraded result for 
first objective.     
 

Keywords. Genetic algorithm, multiple traveling 
salesman problem, group theory, crossover operator, 2-
opt mutation. 

1 Introduction 

The MTSP is an extension of classical traveling 
salesmen problem (TSP) [1]. In classical TSP, a 
salesman visits every city exactly only once in fully 
connected networks of city and return back to start 
city such that tour cast is minimum.  In MTSP, m 
(>1), salesman travels the fully connected network 
of cities such that at a time a group of  city is visited 
exactly once by only one salesman out of m 
salesman and salesman return to start city i.e. 
tours of each salesman have distinct city. Each 
salesman must have starting and ending position 
is same. Given a collection of n cities and the 
distance (cost), of travel between every pair of city 
must be partitioned into m tours for m>1 salesmen 
to serve a set of n>m cities. The objectives of 
MTSP are: 

i. Sum of the cost of m tours of the m salesman 
is minimum. 

ii. Maximum tour cost travel by any one 
salesman is minimized. 

We have also considered two additional 
constraints on the solution, similar to Crater et al. 
[6]: start and end city is the same for all salesmen 
and this city is called as home city, every salesmen 
visit at least one city other than home city.  
The second objective is related to the balancing of 
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workload among the salesman. Clearly, MTSP is 
NP-Hard as classical TSP (m = 1), which is well 
known NP-Hard. 

A number of real life problem are modeled 
using MTSP, which is useful for many applications 
business, industry and engineering. The most 
common application of MTSP are  in the area of 
scheduling and routing e.g. print press scheduling 
[14], interview scheduling [12], crew scheduling[2], 
hot rolling scheduling[34], workload balancing [25], 
design of global navigation satellite system 
surveying networks [30], school bus routing [2], 
and vehicle scheduling problem [23, 27]. 

In recent years, many heuristic or meta-
heuristic algorithms have been developed for 
solving the NP-hard optimization problems, such 
as Simulated Annealing [7, 18], Genetic Algorithms 
[1, 22], Ant Colony Optimization [36] and Particle 
Swarm Optimization [24]. These methods are also 
exploited to solve MTSP [4, 5, 6, 21, 32, 33, 
35, 36].  

Finding global solution for NP-Hard problems 
within affordable time and computing resources is 
intractable. Instead of global optimal solution, a 
suboptimal solution with reasonable computational 
load is obtained and it will further pruned for better 
solution using some heuristic about the solution. 
During recent years, researcher has shown great 
interest in finding effective algorithms in heuristic 
framework to solve MTSP and TSP. A 
comprehensive survey on heuristic methods is 

available in [19], and references there in. In this 
paper we focused on the development of algorithm 
for MTSP in   Genetic Algorithm (GA), framework. 
GA is an iterative, population based, heuristic 
search technique. Several GA based methods are 
proposed depending on the different way of 
representing chromosome and genetic operations.   

Tang et al. [34] proposed a GA with one 
chromosome representation for MTSP to solve the 
hot rolling production scheduling problem. 
Malmborg et al. [23] and Park et al [27] used a two 
chromosome representation in their genetic 
algorithm based approaches for MTSP and applied 
it for vehicle scheduling. Carter et al. [6] developed 
a genetic algorithm for MTSP with his proposed 
two- part chromosome representation and 
corresponding genetic operators. Brown et al. [5] 
proposed a grouping GA that uses a chromosome 
presentation. Singh et al. [31] proposed a grouping 

GA, in this they represented chromosome as set of 
m tours and their   proposed crossover and 
mutation operator. Chromosome representation of 
Singh et al. [31] is similar to multi chromosome 
representation, except that tours are not assigned 
to specific salesmen. Yuan et al. [37] proposed 
genetic algorithm for MTSP with two-part 
chromosome and a new crossover, he named it as 
two-part crossover (TCX).  

Novelty of all the aforementioned method is use 
of new chromosome representation and modified 
form of genetic operator (crossover, mutation), 
which was used in classical TSP [37]. But, these 
chromosome representations have many 
redundant solutions, i.e., many chromosome 
seems to be different but they represent the same 
MTSP solution.  The set of all possible 
chromosomes (representation space / search 
space), is much larger than the set of all possible 
solution to the problem (problem space). However, 
GA is searching based method and it works on 
representation space, therefore it has to explore 
the larger space, and hence, the performance of 
the GA degraded severely. The detail pros and 
cons of chromosome representations used in 
these methods are discussed in Section 2. 

In this paper, we proposed the genetic 
algorithm for the MTSP. Our proposed genetic 
algorithm uses group theory to generate initial 
population and a proposed new crossover 
operator. We use muti-chromosome 
representation scheme for encoding the 
representation space [1]. In multi-chromosome 
representation, the size of the search space is 
same as the size of two-part chromosome 
representation. However, multi-chromosome 
encoding is much similar to the characteristics of 
MTSP, salesmen are separated from each other 
“physically”, i.e., each salesman visit different city 
except start and end city. This representation more 
easily interpretable to the MTSP solution space. 
Upon use of group theory method for chromosome 
initialization, the multi chromosomes 
representation has no redundancy (duplicate 
solutions) in search space.  

We have compared the results our proposed 
method  with the result reported in Yuan et al. [38] 
using two part chromosome crossover (TCX), 
ordered crossover operator with an asexual 
crossover (ORX +A), cycle crossover operator  
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with an asexual crossover (CYX +A), and the 
partially-matched crossover operator with an 
asexual crossover (PMX +A). 

The rest of the paper is organized as follows: 
Section 2 presents the mathematical formulation of 
the MTSP. Section 3 reviews the different 
chromosome representations techniques reported 
so far the MTSP problem along with their pros and 
cons. Section 4 presents the framework of genetic 
algorithm with proposed group theory for 
population initialization and crossover. Section 5 
presents the experimental results. Finally, Section 
6 provides concluding remark of the study.  

2 Formulations of Multiple Traveling 
Salesman Problem (MTSP) 

In the MTSP, given a set of n nodes (cities) and m 
salesmen located at a single start (source), node. 
In this process the MTSP consists of finding tours 
for all m salesmen, who all start and end at the 
same source node, such that each city must be 
visited exactly once by only one salesman and the 
objective is to minimize the total cost of visiting all 
the nodes. This type of problem is modeled in 
graph theory as a weighted graph G = (V, E, w), 
where V is the set of vertices representing cities, E 
is the set of edges representing roads and w is 
weight (cost), between each pair of vertices.  

A closed tour in which all the vertices are 
distinct which is known as Hamiltonian cycle. 
Finding set of m Hamiltonian cycles with minimum 
travel cost in the weighted graph gives the desired 
solution. i. e. total cost of visiting all nodes is 
minimized. The cost between cities is represented 
by matrix, known as cost matrix C = (cij), i, j = 1, 2, 
· · ·, n.  

In cost matrix C the (i, j)th entry cij, represents 
the cost of travel from ith to jth city. The matrix C is 
said to be symmetric when cij=cji, ∀ (i, j) ∈E and 
asymmetric otherwise. In Integer Linear 
Programming framework the MTSP is formulated 
as follows [1]: 

Let us define following decision variable

{0,1}k

ijx ∈  as a binary variable whose value 

indicates whether a salesman visits next city or not. 

The value of variable 1k

ijx = , if th
k salesman selects 

an edge from city i to city j on the tour for travel, 

and 0k

ijx =
 
if th

k salesmen does not selects an 

edge between city i and city j on the tour for travel. 
Mathematically it can be expressed as follows: 

th
 1,  if salesman travels from city  to city ,

0,  otherwise.
k

k i j

ijx




=  (1) 

Consider k
T denote the tour traveled by kth  

salesman. The cost of the tour  
k

T travel by kth 
salesman is given as follows:   

1 1

( )
n n

k

k ij ij

i j

C T c x
= =

=∑∑ . (2) 

The MTSP problem can be mathematically 
formulated as constraint optimization problem as 
follows: 

1

minimize   ( ),
m

k

k

C T
=

∑  (3) 

( )( )minimize  kmax C T , for any k, (4) 

subject to 

1

1 2

,
m n

k

i

k i

x m
= =

=∑∑
 

(5)

 

1

1 2

,
m n

k

j

k j

x m
= =

=∑∑
 

(6)

 

1

1, 1, 2,..., ; ;  1, 2 , ,
n

k

ij

i

x j n i j k m
=

= = ≠ =∑ ⋯

 
(7)

 

1

1, 1,2,..., ; ; 1,2, , ,
n

k

ij

j

x i n i j k m
=

= = ≠ =∑ ⋯

 
(8)

 

subtour elimination constraints.+

 

(9)

 
Equation (3, 4) corresponds to the objective 

criterion i, ii of MTSP, as discussed in Section 1. 
The constraint given by Equation (7, 8) are usual 
city assignment constraint: at a time, a group of 
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cities is assigned to exactly one salesman out of m 
salesmen. The constraint (5, 6), ensure that 
exactly m salesmen depart from and return back to 
home city (here it is represented by index 1). 
Constraint represented by Equation (9), is used to 
prevent sub-tours, which are degenerate tours that 
are formed between intermediate nodes and not 
connected to the home.  

3 Chromosome Representations for the 
MTSP 

The convergence and quality of solution obtained 
from GA is depends on the diversity in the search 
space. Thus, using an efficient encoding scheme 
for search space is necessary for success of GA. 
In general, in search space the solution / 
chromosomes are represented such that there is 
least chance to have multiple copy of the same 
solution i.e., search space have less redundancy 
and high diversity in the population.  Here we 
present a brief review of different techniques for 
chromosome representation, which are commonly 
employed for solving MTSP, with their advantages 
and disadvantages. In proposed method, we used 
multi-chromosome representation technique, 
which is similar to the characteristic of the problem. 

3.1 One Chromosome Technique 

This method represents a solution for the MTSP 
using a single chromosome of length n + m− 1, 
where n represents a permutation (tour) of n cities 
with integer value ranging from 1 to n and m 
represents number of salesman. The solution 
chromosome is divided into m sub-tours by 
inserting m−1 dummy negative integers that 
represents the change from one salesman to 
another.  

For example, in Fig.1 (where n = 10 and m = 3), 
the first salesman will visit cities 1, 3, and 6, the 
second salesman will visit cities 10, 5 and 9, and 
third salesman will visit 7, 4, 8 and 2. All visit in the 
order that the city appears.  The number of 
possible solutions is (n + m - 1)!. However, many 
of the possible chromosomes are redundant. The 

detail of this technique is available in [5, 10, 31].   

3.2 Two Chromosome Technique  

This method represents a solution for the MTSP 
using a two chromosome of length n. one-
chromosome represents a permutation (tour) of n 
cities with integer value ranging from integer 1 to n 
and the other chromosome represents city 
assigned to a salesman, and value ranging from 
integer 1 to m. For example, in Fig. 2, for n = 10 
and m =3, the first salesman will visit cities 3, 10 
and 2, the second salesman will visit cities 6, 5, 7 
and 8, and third salesman will visit 1, 9 and 4. The 
visit is taken place in the same order as the cities 
appear in the permutation.  

In this method, there are ! nn m  possible 
solutions to the problem [6]. However, many of the 
possible solutions are redundant. For example, in 
Fig. 2, the first two genes in each of the 
chromosomes can be interchanged to create 
different chromosomes that result in an identical 
(or redundant) solution. For detail of two-
chromosome technique one can refer [5, 6, 10, 31]. 

3.3 Two-Part Chromosome Technique 

In this method, MTSP solution represented by two 
part of a chromosome of length n+m, where n is 
the number of city and m is the number of 
salesman used in MTSP. The first part of the 
chromosome of length n represents a permutation 
(tour), of n cities, in which each gene takes integer 
value ranging from 1 to n. Second part of 

 

Fig. 1. One chromosome technique for a 10 city MTSP 
with three salesmen 

 
Fig. 2. Two chromosome technique for a 10 city MTSP 
with three salesmen 
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chromosome of length m gives the number of cities 
assigned to each salesman.  

The values assigned to the genes of the second 
part of the chromosome are constrained to be m 
positive integers, such that their sum is equal to the 
total number of cities to be visited. For example in 
Fig.3, the first salesman will visit cities 1, 5, 9 and 
7, second salesman will visit cities 4, 8 and 6, and 
third salesman will visit 10, 3 and 2.  

In the two-part chromosome technique for the 
MTSP, there are n! possible permutations for the 
first part of the chromosome. The second part of 
the chromosome represents a positive vector of 
integers

1 2
( , , .. ., )

m
k k k , such that sum of their 

components must be equal to n.  

There are
1

1

n

m

− 
 

− 
distinct positive integer valued 

m-vectors that satisfy afore mentioned 
requirements [1]. Thus, the size of the solution 
space for the two-part chromosome representation 

is 
1

!
1

n
n

m

− 
 

−   This is much lesser than the solution 

space size of the one chromosome, (n + m - 1)!, 

and two chromosome ! nn m . The two-part 

chromosome technique reduces redundant 
solutions. The detail discussion about two part 
chromosome technique is given in [1, 5, 6]. 

3.4 Multi-Chromosome Technique 

This method uses as many chromosomes as 
number of salesman [1]. The length of 
chromosome is variable and depends on the 
number of cities assigned to the particular 
salesman. Let the length of first chromosome is k1, 
the length of second chromosome is k2, and so on. 
Therefore, total number of cities in multi-
chromosome representation equals to

1

m

ii
k n

=
=∑ . The assignment of the cities to the 

salesmen is random and in exclusive manner [1]. 
For example, in Fig. 4 (number of city n = 10 and 
number of salesman m = 3), the first salesman will 
visit cities 2, 5, 10 and 7, the second salesman will 
visit cities 9, 1 and 8, and third salesman will visit 
6, 4, and 3.  

Determining number ways the cities assigned 
to the first chromosome is equal to the problem of 
obtaining an ordered subset of k1 elements from a 
set of n elements. There are 

1
! ( ) !n n k−  distinct 

assignments. Since assignment is an exclusive, 
therefore for the second chromosome k2

 
assignment is made out of 

1
n k−  cities.  

Therefore, we have ( )1 1 2
( ) ! !n k n k k− − −  

distinct assignment for second chromosome. 
Similarly, we can find the assignment of cities to 
other chromosomes. Therefore, total search space 
of the multi-chromosome techniques can be 
formulated as follows: 

( )1

!

!

n

n k−

1( )!
*

n k−

( )1 2 !n k k− −

1 1( ... )!
*...*

mn k k
−

− − −

( ) ( )1

!
!

... ! !m

n
n

n k k n n
= =

− − − −

 
(10) 

         

The length of the each chromosome 
represents a positive vector of integers 

1 2
( , , .. ., )

m
k k k  that must sum to n.  

There are 
1

1

n

m

− 
 

−  distinct positive integer-valued 

m-vectors that satisfy this requirement [37].  
Thus, size of the solution space for the multi-

chromosome representation is 
1

! .
1

n
n

m

− 
 

−  it is equal 

 

Fig. 3. Two parts chromosome technique for a 10 city 
MTSP with three salesmen 

 

Fig. 4. Multi-chromosome technique for a 10 city 
MTSP  with  three salesmen 
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to the two part chromosome representation, less 
than one chromosome and two chromosome 
representation technique. However, multi-
chromosome representation is much similar to the 
characteristics of MTSP, salesmen are separated 
from each other “physically”, i.e., each salesmen 
visit different city except start and end city. This 
representation is more easily interpretable to the 
MTSP solution space. 

Here we use multi chromosome representation 
[38] for encoding the solution / search space for the 
MTSP. The multi chromosomes representation has 
lesser number of duplicate solutions in search 
space, i.e., less redundancy, in comparison to 
other three chromosomes representation 
discussed so far [1, 5, 6, 10, 31]. 

4 The Genetic Algorithm for MTSP 

We have developed a Genetic Algorithm for MTSP 
using a proposed group theory based method for 
tour construction and a new crossover operator. 
The proposed new crossover operator is inspired 
by the distance preserving crossover [11]. 

4.1 Group Theory for Tour Construction 

There are various possible methods for generating 
the initial population [6, 23, 31, 34, 39, 40]. One of 
them is random generation of the initial population 
[6, 23, 31, 34], while another approach is to apply 
greedy constructive heuristic [39, 40] with Karp’s 
patching [20] to construct a feasible tour. Simplest 
and most straight forward method for generating 
the initial population is nearest neighbor tour 
construction heuristic [28].  

But all aforesaid initialization methods suffer 
from inherent redundancy due to random 
initialization of the population. Singh et al. [31] try 
to overcome problem of redundancy, but it requires 
additional checking for uniqueness of newly 
generated chromosome against population 
members generated so far. 

In this study, we generate the initial population 
using following iterative procedure.   We assign 
label to the vertices of the weighted graph using 
the element of group of integers, Zn, with integer 
modulo n. 

( )       mod  ,ni j i j n+ = +  (11) 

where the addition on the right-hand side of 
equation is the ordinary addition of integers, the 
operation “+n" is called addition modulo n. By using 
this function, we generate group table. In group 
table no two rows or columns are identical, it 
follows that every row of the composition table is 
obtained by a permutation of Zn and that each row 
/ columns is a distinct permutation of n symbols 

[29]. The function P, which generates initial 
population, is defined as follows: 

( ) ( )  1,nP i i j= + +  (12) 

where i=1 to population size, and j=1 to n. In the 
group tour construction method, each individual in 
the initial population are unique that gives a wide 
diversity of genetic materials by exploring the 
whole search space. This due to initial 
heterogeneous population created using group 
theory that control diversity in generations and 
promote the exploration. Moreover, this method 
does not require any additional checking 
procedure for uniqueness of the population 
member.  

4.2 Fitness 

Our fitness function is same as the objective 
function. There are mainly two different objectives 
for the MTSP as discussed in introduction section 
and mathematically given by Equation (3) and (4),  
therefore, we have two different fitness functions. 
The objectives of MTSP are:  

(i)  Sum of the cost of m tours of the m salesman is 
minimum. 

(ii) Maximum tour cost travel by any one salesman 
is minimized. 

 In both cases, we have to minimize the value 
of the fitness function. 

4.3 Proposed Crossover Operator 

The crossover operator is a method for sharing 
information between chromosomes. It combines 
the features of two parent chromosomes to form 
two offspring with the possibility that good 
chromosomes may generate better ones. 
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Goldberg [13], described several order-based 
operators, such as the Partially Matched 
Crossover (PMX). The order crossover (OX) was 
suggested by Davis [9]. The position-based 
crossover (PBX) was introduced by Syswerda [33]. 
The cycle crossover (CX) was suggested by Oliver 
et al. [26]. Freisleben et al. [11]  introduced a 
distance preserving crossover (DPX).Yuan et al. 
proposed a two-part chromosome crossover 
(TCX)  [37]. 

In this paper, we propose a new crossover 
inspired by DPX crossover. In proposed crossover, 
the first city of chromosome s1 is copied to the last 
position on child c2 and last city of chromosome s1 

is copied to the first position on child c2. Similarly, 
the first city of chromosome s2 is copied to the last 
position on child c1 and last city of chromosome s2 
is copied to the first position on child c1.  

The remaining cities changed as given 
algorithm in Fig. 6. For example, in Fig. 5, the first 

position of parents s1, s2 are copied to the last 
position in child c2 and c1 respectively and the last 
position of parent s1, s2 are copied to the first 
position in child c2 and c1 respectively, remaining 
positions 2, 3, 4, 5, 6, 7, and 8 cities are swapped 
as procedure given in Fig. 6. 

The rationale behind this crossover is based on 
the intuitive idea that the city in sub optimal / 
optimal tours occurs at same position. In this 
crossover the Hamming distance is preserved. 
Upon use of this crossover there is very less 
chance to have duplicate members in the 
population.  

4.4 2-Opt Optimal Mutation 

Croes, G. A. [8] proposed 2-opt optimal mutation, 
and in literature it mostly named as 2-opt mutation.  
The 2-opt mutation replaces two edge from a tour 
by two new edges that are not in tour such that the 
cost of new tour is less than the original tour. This 
replacement process is continued till no further 
improvement in the cost of the new tour is possible, 
this is often referred to as 2-opt optimal.  Here 
important to note that 2-opt mutation keeps the 
feasible tour corresponding to a reversal of a 
subsequence of the cities. 

The method proceeds  by replacing  two  non-
adjacent  edges 

1
( , )

i i
x x

+
 by two new edges 

( , )
i j

x x and 
1 1

( , ) ,
i j

x x
+ +

which  are the only other  

two edges  that can  create a tour when the first 
two are deleted. In order to maintain a consistent 
orientation of the path by the predecessor-
successor relationship, one of the two sub paths 
remaining after dropping the first two edges must 
be reversed [15].  

For example, inverting the sub tour 

1( , ..., )i jx x
+   in tour 1 1( , , .. . , , )i i j jx x x x

+ + using 2-

opt mutation, we get the tour 1 1( , , ..., , ).i j i jx x x x
+ +

 

Table 1.  Experimental constraints 

Number 
of cities(n) 

Number of 
salesmen (m) 

GA 
generations 

51 3, 5 and10 50000 

100 3, 5, 10 and 20 100000 

150 
3, 5, 10, 20 and 

30 
200000 

 

Parent
1

:s 2 1 3 8 7 6 5 4 9  

Parent
2

:s 4 3 2 8 7 9 5 6 1  

  Child
1

:c 1 4  

  Child 
2

:c 9 2  

  Child
1

:c 1 3 2 8 7 9 5 6 4  

  Child 
2

:c 9 1 3 8 7 6 5 4 2  

Fig. 5.  Proposed Crossover 

 

c1=zeros(1,n); 
c2=zeros(1,n); 
c1(1)=s2(1,n); 
c2(1)=s1(1,n); 
c1(n)=s2(1,1); 
c2(n)=s1(1,1); 
for  i = 1 :  n 
  for j = 2 : n-1 

  if(s2(i) == s1(j)) 
   c1(j) = s2(j); 
  end 
 if(s1(i) == s2(j)) 
    c2(j) = s1(j); 
 end 

   end 
end 

Fig. 6.  Algorithm for proposed crossover 
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Finally, the change in the cost of the tour 

1 1( , , ..., , )i i j jx x x x
+ + and 1 1( , , ..., , )i j i jx x x x

+ + is 

calculated as: 

  
1 1 1 1

( , ) ( , ) ( , ) ( , ).
ij i j i j i i j j

c x x c x x c x x c x x
+ + + +

∆ = + − −       (1) 

The change in cost, ∆, gives the clue of the 
improvement of the tour. This process is repeated 

till ∆  is negative. The generalized form of 2-opt 
process known as k-opt mutation is reported [16].  

The 2-opt optimal mutation, which is sequential 
move and have chance of producing less diversify 
population for next generation i.e. increase in 
redundant solution in search space. The group 
theory tour construction algorithm for initial 
population generation has inherent capability of 
eliminating the redundant solutions.    

Combination of 2-opt optimal mutation and 
Group theory tour construction algorithm, the 
exploration space for optimal tour gets reduced 
and hence the search time as well. Therefore, the 
combination of Group theory tour construction 
algorithm and 2-opt optimal mutation refines the 
tour for global optimality and decreases the time to 
get the optimal solution.  We found that the 

proposed method gives better result in comparison 
to other heuristic methods reported in [37]. 

4.5 Proposed Algorithm 

The first step of algorithm is population generation 
i.e. set of tour initialized using tour construction 
method described in Section 4.1. For multi-
chromosome representation we randomly 
generate population of break-points of the tours for 
assigning the number of cities to each salesman 
for each tour. In the second step of algorithm, the 
fitness value is obtained for each tour in the 
population. 

In the third step, randomly select ten tours and 
its corresponding break-points from the population. 
After then replace first tour and its corresponding 
break-points with minimum cost among selected 
ten tours and its break- points for crossover.  

In the fourth step, apply proposed crossover 
operator on the first two tours from the ten tours 
obtained in step 4, with crossover probability rate 
(pc).  After the crossover, the break points for both 
children are generated randomly.   

Table 2.Experimental Results for Minimisation of  Total Travel Distance 

Instance 
Crossov

er 

m=3 m=5 m=10 m=20 m=30 

Mean SD Best Mean SD Best Mean SD Best Mean SD Best Mean SD Best 

MTSP- 

51 

Propose

d 
466 6 460 515 10 499 693 20 669       

TCX 510 24 466 536 26 499 636 17 602 - - - - - - 

ORX+A 584 29 517 621 39 551 709 33 648 - - - - - - 

CYX+A 591 43 511 622 44 530 710 42 633 - - - - - - 

PMX+A 601 38 513 606 40 537 705 34 625 - - - - - - 

MTSP-100 

Propose

d 
24071 690 22959 26220 755 24559 35943 1221 33136 67623 2038 62963 - - - 

TCX 32708 2267 28943 34179 2006 30941 36921 1964 32802 46976 1773 44112 - - - 

ORX+A 41516 3356 36713 42716 2806 36196 44631 2997 38717 54265 3059 47971 - - - 

CYX+A 41911 3195 35791 43634 2804 35421 45150 3241 40894 52916 2884 46466 - - - 

PMX+A 41441 3423 33802 42063 3931 33908 44786 3467 39785 52142 2588 46212 - - - 

MTSP-150 

Propose

d 
40697 826 39504 42639 1825 39862 55895 1765 50892 79734 1138 77668 

10507

2 
922 102880 

TCX 55851 2588 51126 61596 4759 51627 61360 3888 54473 69701 4340 62456 84008 5285 76481 

ORX+A 67037 3745 60090 68018 3377 62539 72113 3637 63899 81696 5372 71933 96122 4562 88515 

CYX+A 67463 4454 55335 69860 4342 61521 71584 4845 63126 83471 4197 75146 97106 3911 89008 

PMX+A 68152 5140 58303 69112 4011 60761 72620 
4334 

64975 81178 4920 73281 95752 4923 87402 
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In the last step, apply 2-opt optimal mutation 
operator on the tour having minimum cost among 
selected first two parents used for crossover in 
step four or new individuals that generated after 
crossover. After then update the population and its 
corresponding break-points. These processes 
repeated until specified generation is reached.  

5 Experimental Results 

5.1 Experimental Setup 

For evaluating the performance of experimental 
results, Intel (R) Core (i5) 3.20 GHz processor, 
2GB RAM on MATLAB is used. In this experiment, 
test problems are selected benchmark instances 
taken from the TSPLIB and reported in [6, 31, 37]. 
These test problems are Euclidean two-
dimensional symmetric problem with 51, 100, and 
150 cities. Here these problems are denoted as 
MTSP-51, MTSP-100, and MTSP-150. Number 
followed by MTSP indicates the number of city in 
the instance.  

In Table 1, the experimental conditions of 12 
different problem of sizes (n) and salesmen (m) 
combinations along with the number of generation 
used for each type of problem. The termination 
criterion is the number of generations. The value of 
parameters used in experiment are: population 
size (P) =100, tournament selection (k) =10, and 
crossover probability rate =0.85. The performance 
of methods compared based on best tour cost 
(Best), average tour cost (Mean), and standard-
deviation (SD). Total 30 trails are made in order to 
collect the statistics of the result.  A better method 
is considered to be those having lower value of 
Mean and Best than the other method. 

5.2 Experimental Results and Analysis 

To evaluate the benefits of the proposed crossover 
operator and initial population generation 
technique, computational experiments were 
conducted and results are compared with the four 
crossover namely TCX, ORX +A, CYX +A and 
PMX +A reported in [35] on a set of MTSP 
problems. We conducted experiments considering 
both objective functions of MTSP.  

Table 3. Experimental Results for Minimizing the Longest Tour 

Instance Crossover 

m=3 m=5 m=10 m=20 m=30 

Mean SD Best Mean SD Best Mean SD Best Mean SD Best Mean SD Best 

MTSP- 
51 

Propose 188 4 184 139 3 129 112 0 112 - - - - - - 

TCX 207 13 182 153 10 135 113 2 112 - - - - - - 

ORX+A 216 12 191 165 11 139 128 13 112 - - - - - - 

CYX+A 222 16 188 161 12 138 131 16 112 - - - - - - 

PMX+A 218 11 191 161 10 141 130 12 112 - - - - - - 

MTSP- 
100 

Propose 10384 194 10031 7907 137 7728 6688 65 6581 6404 43 6363 - - - 

TCX 14365 1013 12645 10086 674 8730 7768 492 6796 6768 433 6358 - - - 

ORX+A 15137 1462 12997 11459 1053 9415 9286 1385 7373 8123 881 6666 - - - 

CYX+A 15759 1242 13467 11333 1278 9507 9151 1364 7111 8109 936 6516 - - - 

PMX+A 15238 1371 12249 11233 1177 9267 6890 1482 7187 8265 8608 6570 - - - 

MTSP- 
150 

Propose 15389 334 14804 13077 2539 10106 6884 99 6684 5546 36 5483 5251 5 5248 

TCX 22523 1226 20556 16054 1227 14096 10722 927 8475 9640 789 8423 8759 806 7169 

ORX+A 24766 1689 22015 17646 1519 15266 15150 2006 11788 13669 1816 10274 12204 1376 9182 

CYX+A 23906 1941 20915 17608 1563 14029 14738 1750 10779 14111 1872 8365 13091 1295 10694 

PMX+A 24216 1802 20347 17741 1235 15418 14489 2139 10738 13810 1315 11722 12608 1667 10080 
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The experimental result for first objective 
criterion – minimize the total travel distance of all 
the salesmen given by Equation (3) – is presented 
in Table 2 and graphically in Figure 7, Figure 8, and 

Figure 9. The cases where our proposed method 
obtains better result i.e. lower value of Mean and 
Best, than the all other method is shown in bold, 
while dash (-) values are not reported.  

 

 

 

Fig. 7. Mean solution for the dataset MTSP-51 for 
different methods 

 Fig. 8. Mean solution for the dataset MTSP-100 for 
different methods 

 

 

 

Fig. 9. Mean solution for the dataset MTSP-150 for 
different methods 

 Fig. 10. Maximum solution for the dataset MTSP-51 
for different methods 

 

 

 

Fig. 11. Maximum solution for the dataset MTSP-100 
for different methods 

 Fig. 12. Maximum solution for the dataset MTSP-150 
for different methods 
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For all instance our proposed method gives 
better performance, with respect to all performance 
parameter for cases m = 3, 5. For m =10 our 
method gives slightly inferior solution in terms of 
Best for instance MTSP-51 and MTSP -100 of 
TCX, but it gives better average solution almost in 
all cases except TCX of MTSP -51. For m = 20, 
performance of proposed method degraded in 
terms of Best, but gives better Mean for instance 
MTSP-150 except the case TCX. For m = 30, the 
performance degraded with respect to all 
parameter. 

The results for second objective criterion –
minimizing the longest individual tour, which is also 
called make-span [37], given by Equation (4) – is 
presented in Table 3, and graphically in Figure 10-
Figure 12. Clearly, proposed method outperforms 
all others method with respect to all parameters for 
all cases except TCX of MTSP- 100 for Best 
parameter.  

We observe that, as number of salesman (m) 
increases the performance of the proposed 
method with respect to first objective degraded. 
This is due to minimizing the longest tour balances 
the cities (or workload), among the salesmen and 
also minimizes the distance travelled by the 
salesmen. Minimization of the longest tour affects 
the fitness value as it gets decreased with the 
increasing number of salesmen.  

6 Conclusion 

In this paper, we developed a new crossover and 
initial population generation using group theoretic 
concept for solving multiple traveling salesperson 
problem (MTSP), using genetic algorithm (GA). 
Proposed method of initial population generation, 
gives the wide diversity in the population by 
ensuring uniqueness of the members in the 
population and thus redundancy due to random 
initialization is removed. Moreover, use of 
proposed crossover over this population has very 
less chance of producing redundant member in 
search space. We have compared the 
performance of the GA using proposed crossover 
and population initialization with the method using 
crossover TCX, ORX +A, CYX +A and PMX + A. 
Computational results reveals that the proposed 
technique outperform over all other method for 

second objective criterion, however, slightly inferior 
result for first objective in few cases (m =30 and 
m=20). 
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