

Toward a Unique Representation for AVL and Red-Black Trees

Lynda Bounif, Djamel Eddine Zegour

Ecole Nationale Supérieure d’Informatique,
Laboratoire de la Communication dans les Systèmes Informatiques,

Algeria

{l_bounif, d_zegour}@esi.dz

Abstract. We propose a unique representation of both

AVL and Red-Black trees with the same time and space
complexity. We describe all the maintenance operations
and also the insertion and deletion algorithms. We give
the implementation of the proposed tree and the results.
We then make a comparison of the three structures. The
simulation results confirm the performance of the new
representation relatively to AVL and Red-Black trees.

Keywords. Balanced binary trees, red-black trees, AVL

trees, binary search tree, partitioning, data structures.

1 Introduction

Binary search trees are an efficient data structure
for loads applications in computer science but have
a poor worst case performance [1]. The good
remedy for that is the perfect balanced tree with a
height at most log(n) [2]. But unfortunately keeping
a perfect balance of a tree is rude and so
expensive in practice. One of the reason to
introduce balanced trees is because of the costs
are guaranteed to be logarithmic while ensuring
that the tree remains almost balanced.

Balanced trees assure a random search,
insertion and deletion operations in time
proportional to log(n). The first type of these trees
is the AVL tree [2]; it is simple and deals well in
lookup operations. After that many alternatives of
generalization, simplification or complement
studies of this first balanced tree have been
proposed [3, 4, 5, 6, 7].

A novel kind of generalization of the AVL tree is
the Red-Black tree. It is one of the most important
and used self-balancing data structures. It behaves
well in update-intensive applications, since it
performs log(n) operations in the insertion process
and at most two restructurings in the deletion one.

The Red-Black tree was originally obtained from
the 2-3 trees as an amelioration of AVL trees [8].
The first version was designed in 1972 by Rudolf
Bayer [6] under the name: "Symmetric Binary B-
trees", where the author compares the structure
with the class of B-trees. A few years later
Leonidas J. Guibas and Robert Sedgewick [9]
proposed a new form of the original structure
where the tree balance is expressed using Red
and Black colors.

Because of the difficulty to implement the Red-
Black tree in practice, especially in the deletion
process, some works were proposed to simplify the
corresponding algorithms. AA tree is a powerful
simplification of Red-Black trees with the same
performance and much more approach and coding
simplicity [10]. Moreover, several simple
implementations of Red-Black trees can be found
in [11, 12]. Recently, the majority of works in terms
of AVL and Red-Black trees aim basically to
simplify rather than get a good performance. In the
AVL tree case, [13] introduces a new simpler
insertion and deletion algorithms for AVL trees by
using virtual nodes. A brief study of AVL trees
using this concept is presented in [14]. In the same
spirit, work [15] gives a new algorithm and explains
how to easily maintain the balance factor after an
updating operation. When it comes to Red-Black
trees, a revisited version has been proposed [16]
where the code is considerably reduced compared
to the implementation proposed in [17].

The design of a balanced tree is still a rich area,
and not yet fully explored. A recent proposition with
improvements for binary search trees are
proposed in 2015 [18].

The main idea is to assign a non-negative
integer rank to each node and impose eight rank

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 435–450
doi: 10.13053/CyS-23-2-2840

ISSN 2007-9737

rules to give the AVL tree, a new kind of balanced
tree and different kinds of Red-Black trees: the
standard version [9] equivalent to the symmetric
binary B-trees [6], the binary B-tree [5], the left
leaning trees [16]. Their rank-based framework
generalizes the dichotomies framework of Guibas
and Sedgewick [9]. It is a very interesting work
since it provides not only a new framework for
defining height-based balance but also a new sort
of balanced binary tree: the weak AVL tree.
However, in addition to the obligation of satisfying
loads of inequalities corresponding to the number
of inserted and deleted cases, the framework gives
separate rules to define common balanced trees
rather than a unique hybridization of the most
important and useful ones.

Our main purpose in this work is to represent at
the same time the most used balanced binary
trees: AVL and Red-Black trees. In other words, we
propose common algorithms for the two data
structures. Only one parameter suffices to switch
between the two structures. The new
representation is a binary search tree partitioned
either in one class or in classes of heights 0 and 1.
Each class holds an AVL tree. When only one
class exists, it generates predictably an AVL tree.
Otherwise, the new structure is equivalent to a
Red-Black tree with totally different and simple
algorithms. One extra byte of storage allows
representing both the kind and the height of
a node.

The rest of the paper is structured as follows:
section 2 introduces the tree terminology. Section
3 describes our contribution. Section 4 presents
the maintenance operations while section 5 gives
insertion and deletion algorithms of the proposed
balanced tree. In the section 6 we give the
implementation of the structure, the results of
implementations and the discussion. Section 7
shows the applications of the new structure. Finally
section 8 makes a conclusion and looks forward to
the future research.

2 Tree Terminology

We present here after some basic definitions used
across the paper.

These definitions are related mainly to the
binary search tree and the partitioning problem
on graphs.

2.1 Binary Search Tree

It is an organized tree in a binary representation
where each node contains a key, a data, the left
child and the right child which can be
missing nodes.

Consider x a node in a binary search tree. If y
is a node in the left sub-tree of x, then y.key ≤
x.key. If y is a node in the right sub-tree of x, then
y.key ≥ x.key. It is called the binary-search-tree
property which allows us to print out all the keys in
a binary search tree in sorted order by the simple
recursive algorithm: the in-order tree walk. [19].

In what follows we define some concepts of the
binary search tree:

– A leaf or an external node is a node with no
children, while a unary (respectively a binary)
node is a node with one child (respectively two
children). They denote the internal nodes.

– The height of a node x: h(x) is the max of the
height of its left and right children plus one in
the case x is not a missing node, otherwise,
h(x) equals -1.

– The size of a node: s(x) is the number of its
descendants including itself.

– The search process starts with the root. First
we compare the searched key with the root’s
key. Next we go to the left (respectively right)
sub-tree if the searched key is less
(respectively greater) than the root’s key. We
reach the end of the search when we find the
desired key or we reach a missing node.

– Update operations concern the insertion and
deletion. They are both preceded by a search
process. For the insertion, when a missing
node is reached, it is replaced by a new node
with the key to insert. As for the deletion, the
process is more complicated since after the
search, multiple scenarios may arise. If the
node is a leaf we replace it by a missing node,
and if it is a unary node we replace it by its
child. However if this node is an internal node,
we find its in-order predecessor node or its in-
order successor node and then we switch

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 435–450
doi: 10.13053/CyS-23-2-2840

Lynda Bounif, Djamel Eddine Zegour436

ISSN 2007-9737

between the node we found and the item we
want to delete.

– The restructuring operations allow us to
maintain the binary tree balanced. We
generally use single or double rotations after
an update operation. See figure 1.

2.2 The Partitioning Problem

The tree partitioning problem arises when
information must be allocated to blocks of memory,
whose capacity is limited.

Assume a tree T = (V, E). A partition of T is
defined as a collection of k clusters of nodes Ci
witch we name class, while i varies between 1 and

K, such that: ⋃ 𝐶𝑖𝑘
𝑖=1 = 𝑉Ci ∩ Cj = ∅

As a result, the union of the sub-trees gives the
whole tree and the intersection of two given sub-
trees is null.

An edge (i, j) of T is said to be cut by a partition
of T if nodes i and j are in different clusters.

An optimal partition of T: Pt(𝑜𝑝𝑡) = {C1, C2,

C3,… Ck}
Is one in which each cluster Ci satisfies the

weight constraint:

∑ 𝑊𝑗 ≤= 𝑊

𝑗∈𝐶𝑗

2.3 Basic Operations

Here after are some basic operations used in the
representation of our proposed tree:

– Lc(P): Left child of node P

– Rc(P): Right child of node P

– Ass_Rc(P, Q): Make Q a right child of node P

– Ass_Lc(P, Q): Make Q a left child of node P

– Kind(P): Kind of node P

– Ass_Kind (P, A_Kind): Make A_kind the new
kind of node P

– Height(P): Height of simple node P inside the
class it belongs

– Height2(P): Height of class node P
– Ass_height (P, H): Make H the new height of

node P

– Rotation(P, Dir): makes a left rotation around
node P if Dir=1 and a right rotation if Dir=0. It
returns the node that replaces P

– KindSwap(P, F): swaps kinds of nodes P and
F

– KindFlip(P, F, Dir): is invoked after F=
Rotation(P, Dir). It transforms new children of
F into class nodes and attributes to F the initial
kind of P.

3 The Partitioned Binary Tree

3.1 The Basic Idea

The notion of partitioning a graph in a form of a tree
is studied earlier by [20]. The application of the
algorithm can be: in the allocation of computer
information to physical storage space or in finding
a suboptimal partition of any connected graph.

The proposed work is a binary search tree
partitioned in classes. Each class is in fact a sub
tree holding an AVL tree of height H or H-1. The
root node of this sub-tree is a class node; the other
nodes are simple. Furthermore, the new structure
is perfectly balanced considering only class nodes.

Beside the data field, a node contains a byte
called a code to designate both its kind and its
height. The height of a node is in fact the depth of
the sub-tree rooted at this node inside the class it
belongs. The storage of a byte in a node delivers a
range of benefits:

– To minimize the number of the requirements
for a unique framework

– To detect easily the type of the balanced
tree used

– To trigger the restructuring operations after
an update

Fig. 1. The right rotation of the node G

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 435–450
doi: 10.13053/CyS-23-2-2840

Toward a Unique Representation for AVL and Red-Black Trees 437

ISSN 2007-9737

– To control and detect the type of a node at any
time in the tree for the operations inside and
outside a class.

3.2 The Rules

In this section we give formally the requirements
that a binary tree must have in order to be
considered as a partitioned tree, we emphasis on
the fact that these requirements must be satisfied
for AVL and Red-Black tree case on the globalism,
not a separate rule for each type like the case of
[18]. In consequence we have the same
representation of both AVL and Red-Black tree.

Formally, the new structure should respect
these four rules:

– Rule 1: Every node can be either a simple or a
class node.

We describe two categories of nodes: simple
and class nodes. The class node encloses a sub-
tree of simple nodes of height one or infinity
of nodes.

– Rule 2: Every class must have a height equals
to H - 1 or H - 2.

A variable H is considered as an integer
initialized at the beginning, and the variation of this
integer can give different kinds of balanced trees.
In this work we focus on the main ones. When H =
2 the tree is considered as a Red-Black tree, and
when the limit of H tends to the infinity the tree will
be an AVL. Indeed, there is only one class node
which is the root of the class. All the others are
simple nodes. Consequently, in the definition
above, by replacing simple nodes by red nodes
and class nodes by black ones, we obtain exactly
the definition of a Red-Black tree.

When the height of a class is equal to 0, this
means the black node has not a red child. When
the height of a class is equal to 1, this means that
the black node has one or two red children. All the
simple nodes have 0 as height. Classes define
mathematically a partition on the tree. In other
words, the intersection of any two classes is empty
and the union of all the classes gives the
whole tree.

In order to simplify the presentation of the trees
in the figures below, class nodes are represented
inside blue squares and simple nodes inside
circles. Furthermore, classes are surrounded.

Figure 3(a) shows the new structure as a
structure equivalent to an AVL tree. There is only
one class containing an AVL tree. Values under the
nodes designate the height of the nodes.

– Rule 3: Every simple node must have a height
equals to 0 or H - 2.

– Rule 4: Every direct path from any node to a
leaf must contain the same number of
class nodes.

This rule corresponds to having the same black
node in a Red-Black tree. We can notice that when
the tree has only class nodes it is a perfect
balanced tree since any path from the root to a leaf
has the same number of class nodes.

Figure 2 shows an example of our
representation when H = 3, we can see that the
height of every class is 2 or 1. Moreover every
direct path from the root to a leaf has exactly
two classes.

a) AVL Tree Case

It is straightforward to observe that for H = ∞ the
new structure generates an AVL Tree.

Fig. 2. The representation of the new structure H = 3

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 435–450
doi: 10.13053/CyS-23-2-2840

Lynda Bounif, Djamel Eddine Zegour438

ISSN 2007-9737

Indeed, there is only one class node which is
the root of the class. All the others are simple
nodes. In practice, there is no limit for the height
of the unique class and each path from any node
to a leaf contains the same number of class nodes
(0 or 1).

The minimum number of nodes in an AVL tree
of code C with height k satisfies the recurrence:

n0 = 1, n2 = 2, n3 = 4, nk = 1+ nk-1 + nk-2 for any k ≥
 2. This requrence corresponds to Fibonachi trees,
nk = Fk+3 – 1. We have Fk+2 > Øk where Ø is the

golden ratio [21].

Fk+3 = 1+ Fk-2 + Fk-1  Fk+3 – 1= Fk-2 + Fk-1.

Fk+2 > Øk  Fk+3 – 1 > Øk  k < logØ n 
k < 1.4404 log n

b) Red-Black Case

It is also pretty straightforward to notice that for H
= 2 the tree generates a data structure equivalent
to a Red-Black tree.

The subtree rooted at any node n has at least
2bh(n) - 1 internal nodes.

If N is nil, then its height is 0. For the inductive
step, we consider an internal node x with two
children having black-height of bh(n) or bh(n) – 1
depending on its color. Considering ch(n) the child,
applying the hypothesis, it has at least 2bh(n) – 1 - 1
internal nodes. Thus the subtree rooted by n
contains at least: 2bh(n) - 1 - 1 + 2bh(n) - 1 - 1 + 1 = 2bh(n)
– 1 internal nodes [19].

We know also that at least half the nodes on
any simple path from the root to a leaf, not
including the root, must be black. Consequently,
the black-height of the root must be at least H/2;
thus, n > 2h/2 – 1  H < 2.log (n + 1)

Lemma 3.1: The maximum height of the
partitioned tree is 2 Log n

Proof: The minimum number of any node in PBT
tree of height H satisfies the recurrence: n0 = 1, n2
= 2, n3 = 4, nk = 2* nk-2 + 1 for any k ≥ 2.

By induction nk ≥ 2H/2 which gives: h ≤ 2 log nk.

4 Maintenance Operations

We can classify maintenance operations into two
categories: those that are applied inside a class
and those outside classes. Restructuring,
AVL_tree_insert and AVL_tree_delete are
operations of the first category. Operations of the
second category are: Partitioning, Departitioning,
Restructuring-Partitioning and Transforming.

4.1 Operations inside a Class

We give here after the various basic maintenance
operations used to perform insertion and deletion
algorithms on the new structure in terms of
operations defined above.

a) Restructuring

Restructuring consists simply in rebalancing the
tree after a tree property violation. It uses
Restructure operation which performs a rotation
and updates heights of the turned nodes.

A KindSwap operation can also be performed in
Restructure operation. Furthermore, Restructure

Fig. 3. The new structure as an AVL tree

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 435–450
doi: 10.13053/CyS-23-2-2840

Toward a Unique Representation for AVL and Red-Black Trees 439

ISSN 2007-9737

can be preceded by a Reverse_balance operation
which consists in reversing the balance of a
given: node.

Function Restructuring (PBT P, int Dir): PBT

Variables
S: PBT

Begin
If(Dir = 0)

 If(Height(Rc(Rc(P)))–Height(Lc(Rc(P)))=1)

 Ass_Rc(P,Reverse_Balance(Rc (P),1))

 S  Restructure (P, 0)

 Else If(Dir = 1)

 If(Height (Rc(Lc(P)))–Height(Lc(Lc(P)))= 1)

 Ass_Lc (P,Reverse_Balance (Lc (P), 0))

 S  Restructure(P, 1)

Return S

End
Function Restructure (PBT P, int Dir): PBT

Variables
F: PBT

Max1, Max2: INT

Begin
 F  Rotation (P, Dir)

 Max1 = Max(Height(Lc(P)), Height(Rc(P)))
 Ass_Height(P, Max1 + 1)

 Max2 = Max(Height(Lc(F), Height(Rc(F)))

 Ass_Height(F, Max2 + 1)

 If (REDBLACK Or (Kind (P) = Class))
 KindSwap(P, F)

 Return F

END

Function Reverse_Balance (PBT P, int Dir): PBT

Variables
F: PBT

Begin
 F  Rotation (P, Dir)
 Max1 = Max(Height (Lc(P)),Height(Rc(P)))

 Ass_Height(P,Max1 + 1)

 Max2 = Max(Height (Lc(F), Height(Rc(F)))

 Ass_Height(F, Max2+ 1)
 Return F

End

Fig. 4. The new structure as a Red-Black tree

Fig. 5. The Partitioning operation

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 435–450
doi: 10.13053/CyS-23-2-2840

Lynda Bounif, Djamel Eddine Zegour440

ISSN 2007-9737

b) AVL Tree Insert

AVL tree insert algorithm uses the Restructuring
operation defined above to rebalance the tree each
time the tree becomes unbalanced in the sense of
AVL trees. In our purpose, the algorithm is
expressed with the height instead of balance in
each tree node.

This algorithm is applied when an item is
inserted into the tree. Stack Branch holds the path
traversed by search process from the tree root
toward the parent of the new inserted node. Nodes
are popped in order to update their height fields. If
the balance of a node becomes (in absolute value)
greater than 1, the tree is restructured and the
process is stopped. The algorithm is the following:

Function Avl_insert (PBT Root)

Begin

 Avl_Insert  Root

 Continue  True

 Repeat

 Pop(Branch, P)

 Kind_P  Kind (P)

 Update P’s height

 If (|Height (Lc (P)) - Height (Rc (P)) | > 1)

 If (Height (Lc (P)) > Height (Rc (P)))

 Q  Restructuring (P, 1)

 Else Q  Restructuring (P, 0)

 If (Kind_P = Simple)

 Pop (Branch, Parent)

 Modify node Parent to point Q

 Else Avl_Insert  Q

 Continue  False

 Else Continue  (Kind_P = Class)

 Until (Not Continue)

End

c) AVL_tree_delete

AVL_tree_delete algorithm also uses
Restructuring operation. The algorithm below is
applied when an item is deleted from a leaf class
rooted at Root. Stack Branch holds the path
traversed by the search process from the root of
the entire tree toward the parent of the deleted
node. Nodes are popped in order to update their
height fields. If the balance of a node becomes (in
absolute value) greater than 1, the tree is

restructured. The process can continue upward
the tree.

Function Avl_Delete (PBT Root)

Begin

Avl_Delete  Root

Continue  True

Repeat

 Pop (Branch, P)

 Kind_P  Kind_ (P)

 Save_height  Height (P)

 Update P’s height

 If (|Height (Lc(P)) - Height (Rc) | > 1)

 If (Height (Lc (P)) > Height (Rc (P)))

 Q  Restructuring (P, 1)

 Else Q  Restructuring (P, 0)

 If (Kind_P = Simple)

 Parent  Top (Branch)

 Modify node Parent to point now Q

 Else Avl_Delete  Q

 P  Q

Until (Not Save_height – Height(P) = 0) Or
(Kind_P = Class))

End

4.2 Operations Outside a Class

Naturally, operations between classes concern
only the structure equivalent to a Red-Black tree.

During the process of insertion, an item is
always inserted into a leaf class. The class can
overflow, i.e. its height reaches 2. A Restructuring
is performed if the class has only one child.
Otherwise, a Partitioning operation is performed.

During the process of deletion, an item is
always removed from a leaf class. The leaf class
can underflow, i.e. its height reaches -1. Several
cases occur:

– The underflow class has not a direct sister
class (or its sibling node is a simple node). A
Transforming operation is performed.

– The underflow class has a direct sister class
(or its sibling node is a class node) with no
child. A Departitioning operation is performed.

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 435–450
doi: 10.13053/CyS-23-2-2840

Toward a Unique Representation for AVL and Red-Black Trees 441

ISSN 2007-9737

Fig. 6. The Departitioning operation

Fig. 7. The Restructuring-Partitioning operation

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 435–450
doi: 10.13053/CyS-23-2-2840

Lynda Bounif, Djamel Eddine Zegour442

ISSN 2007-9737

– The underflow class has a direct sister class
(or its sibling node is a class node) with one or
two children. A Restructuring-Partitioning
operation is performed.

We describe henceforth, all the operations
mentioned.

a) Partitioning

It consists in transforming one class into two
classes. In Figure 5(a1), after an insertion
operation in class Z, this is partitioned since its
height reaches 2. Dashed lines correspond to the
four possible cases. Node Z becomes a simple
node and its two children X and Y become class
nodes (Figure 5(a2)). Node Z becomes thus a new
leaf in the mother class.

This operation corresponds simply to the
modification of three nodes’ kinds. Partitioning
does not require rotations and is done in O(1).

b) Departitioning

In Figures 6(a1) and 6(b1), after a delete operation,
the height of class Y becomes -1 while its direct
sister class has a height equal to 0. A
Departitioning operation holds. Node Z is deleted
from the mother class as depicted in Figures 6(a2)
and 6(b2). Figure 6(b2) shows a situation where
the conflict is not yet resolved. This means that the
process continues since the mother class has no
child. Two nodes’ kinds will be modified: the parent
node and its child. The parent node becomes a
class node while its child becomes a simple node.

As Partitioning, Departitioning does not require
rotations and works in O(1) time.

c) Restructuring-Partitioning

Restructuring-Partitioning is undertaken when a
class underflows, its direct sister class exists and
has one or two children. Such situations are
depicted in figures 7(a1), 7(b1) and 7(c1) where
the underflow class is to the right of node P. As
node P can be a simple or class node, it is
represented inside a triangle. The conflict is first
solved by possibly applying a Reverse_Balance
operation on the sister class (a simple rotation).
Second, a Restructure_Partition operation is
performed. It performs a rotation, a KindFlip
operation and updates heights of the concerned
nodes. Figures 7(a2) and 7(b2) are new situations
of Figures 7(a1) and 7(b1). Nodes C and P become
class nodes and the kind of node X after the
rotation is the one of P before the rotation. As node
X had already a left child, a Reverse_Balance
operation is not necessary. For Figure 7(c1), a
reversing of balance of class X is first performed.
As a consequence, the result is depicted in
Figure 7(c2).

d) Transforming

Recall that Transforming occurs when a class
underflows while it does not have a direct sister
class (the sibling node is simple).

It is the case of Figure 8(a1) where the
underflow class is Y and its direct sister class is A.
P is their parent node.

Fig. 8. The Transforming operation

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 435–450
doi: 10.13053/CyS-23-2-2840

Toward a Unique Representation for AVL and Red-Black Trees 443

ISSN 2007-9737

If node A is a left child, then the right child of
node A must be a class node with a height 0 or 1.
A first single right rotation of node P is performed
in order to find a direct sister class of the underflow
class. Figure 8 (a2) is the result of the
Transforming process. Now, the underflow class
has a direct sister class and the process continues
either with a Departitioning or a
Restructuring- Partitioning.

5 Insertion and Deletion Algorithms

Once the maintenance operations are presented,
we can now give the algorithms of insertion and
deletion of the new structure.

5.1 Inserting a New Element

In the insertion process an element is always
added into a leaf class. In AVL tree case
(Parameter REDBLACK = False), the process
terminates. In Red-Black tree case (Parameter
REDBLACK = True), if the height of this class
becomes 2, the algorithm described below is
applied. It uses a stack containing all the nodes
traversed from the root (Tree) of the entire tree until
the parent of the newly inserted node. The
algorithm goes upward the tree from the inserted
node towards the root of the tree by making either
Restructuring or Partitioning. When Restructuring

is performed, the process terminates. On the other
hand, Partitioning can be in cascade.

The insertion algorithm begins with the root of
the overflow class (Root) and its parent node
(Parent). The parent is used to update links when
a restructuring is performed. Top operation gives
the root of the mother class and its parent node
without popping elements from stack Branch.
Recall that function AVL_INSERT(Root) adjusts
the balance of the class rooted at Root and returns
the new root of the class.

Repeat

Save_Root  Root

Root’  AVL_INSERT (Root)

If (Root’ <> Save_Root)

If (Parent <> Null)

 Modify node Parent to point now Root’

Else Tree  Root’

Continue  False

ElseIf (Height2 (Root’) = 2 and REDBLACK)

PARTITIONING (Root’)

Top (Branch, Root, Parent)

Until (Empty (Branch)) or (Not continue)

Comment and Analysis

The element is first inserted inside a class using
the AVL_INSERT method.

Fig. 9. A step by step insertion algorithm

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 435–450
doi: 10.13053/CyS-23-2-2840

Lynda Bounif, Djamel Eddine Zegour444

ISSN 2007-9737

a) AVL Tree Case: If the root of the class is
modified by the AVL_INSERT function, a
restructuring is done (in AVL_INSERT) and
then test (Root’ <> Save_Root) holds. Flag
Continue is set to False. As a consequence,
only one iteration of the Repeat loop is
performed. If the root of the class is not
modified, test "Height2(Root’) = 2 and
REDBLACK" fails since REDBLACK is false.
Furthermore, the stack is empty as there is no
Restructuring in AVL_INSERT.

b) Red-Black Tree Case: Function AVL_INSERT
is called at each new iteration. It inserts the root
of the partitioned class. Recall that
AVL_INSERT performs at most one
Restructuring. On the other hand, several
Partitioning operations can be done. Indeed,
each time a Partitioning is made, the root of the
partitioned class migrates to mother class
which can be again partitioned if its height
reaches 2.

Scenario Example: Figure 7 shows step by step
the construction mechanism through an example
when parameter REDBLACK is true, i.e. H = 2.

1. Insert (70): a class is created with one element.

2. Insert (20): 20 is inserted into class 70.

3. Insert (16): 16 is inserted into class 70 and
causes a restructuring (right rotation of node
70). 20 becomes the root of the class. Indeed,
class 70 overflows while it has one child.

4. Insert (30): 30 is inserted into class 20 and
causes a Partitioning since class 20 overflows
while it has two children.

5. Insert (27): 27 is inserted to the left of node 30
and this causes a restructuring (right rotation of
node 70).

6. Insert (35): 35 augments the height of class 30
and this is balanced in the sense of an AVL tree.
As this class overflows, it is partitioned to
generate two other classes: 27 and 70. 30 is
transformed into a simple node and belongs
now to the mother class 20.

7. Insert (85): 85 is inserted into class 70 as a right
child.

8. Insert (75): This case is represented by two
trees (75a and 75b). a) 75 is inserted into class
70 and augments its height. Class 70 is
balanced in the sense of an AVL tree but it

overflows. It is then partitioned to generate two
other classes: 35 and 85. b) Node 70 becomes
a new leaf of class 20 and then overflows (class
surrounded in red lines). As class 20 has one
child, it is structured (left rotation of node 20).
30 becomes the new root.

9. Insert (24, 13): 24 is inserted in class 27 and 13
in class 16.

5.2 Deleting an Existing Element

An element is always removed from a leaf class.
For the AVL tree case (Parameter RED_BLACK is
False), the process terminates. However, for the
Red-Black tree case (Parameter RED_BLACK is
True), if the height of this class became equal to -
1, i.e. it underflows, the algorithm described below
is applied. This consists in going upward the tree
from the removed node towards the root of the tree
(Tree), by making one or several operations
among the following:

– Departitioning

– Transforming

– Restructuring-Partitioning

When a Restructuring-Partitioning is
performed, the process stops. On the other hand,
Departitioning can be in cascade. Transforming is
performed only one time but the
process continues.

The algorithm uses a stack containing all the
nodes traversed from the root until the parent of the
newly removed node.

It has as input the root of the underflow class
(Root), its parent node (Parent) and its
grandparent node (Grandparent). Parent is used to
update links when a restructuring is performed.
Grandparent is used when a maintenance
operation is performed. Top operation gives the
root of the mother class, its parent node and its
grandparent node without popping elements from
stack Branch.

Recall that function AVL_DELETE(Root)
adjusts the balance of the class rooted at Root and
returns the new root of this class.

Repeat

Save_Root  Root

Root’  AVL_DELETE(Root)

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 435–450
doi: 10.13053/CyS-23-2-2840

Toward a Unique Representation for AVL and Red-Black Trees 445

ISSN 2007-9737

If (Root’ <> Save_Root) And (Root’ <> Null)

 If (Parent <> Null)

 Modify node Parent to point now Root’

 Else Tree  Root’

 Continue  false

 Else If ((Height2(Root’)= -1) And REDBLACK)

 If (Lc(Parent)= Root’)

 SisterRc(Parent)

 Dir  0;

 Else

 Sister  Lc (Parent)

 Dir  1

 If (Kind (Sister) = Simple)

 Parent2  Sister

 If (Dir = 1) New_Sister  Rc (Sister)

 Else New_Sister  Lc(Sister)

 Q  TRANSFORMING (Parent, Dir)

 If (Grandparent <> Null)

Fig. 10. A step by step deletion algorithm

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 435–450
doi: 10.13053/CyS-23-2-2840

Lynda Bounif, Djamel Eddine Zegour446

ISSN 2007-9737

 Modify node Grandparent to point Q

 Else Tree  Q;

 Pop(Branch, X); Push(Branch, Q);

 Push(Branch, X; Grandparent Parent2

 If (|(Height2(Root’) – Height2 (New_Sister)|
> 1)

Q  RESTRUCTURING_
PARTITIONING (Parent, Dir)

 If (Parent == Tree) Tree  Q

 Else If (Grandparent <> Null)

 Modify node Grandparent to point Q

 Else Tree  Q

 Continue = False

 Else
 Kind_Parent Kind (Parent)

 DEPARTITIONING (Parent, Dir)

 Top(Branch, Root, Parent, Grandparent)

 If (Kind_Parent = Simple) Pop (Branch)

 Else Continue  False

Until (Not Continue)

Comment and Analysis

The element is first removed from a class using the
AVL_DELETE function.

a) AVL Tree Case

If the root of the class is modified by the
AVL_DELETE function, one or two restructurings
are done and then test "(Root’ <> Save_Root) And
(Root’ <> Null)" holds. Flag Continue is set to
False. As a consequence, only one iteration of the
Repeat loop is performed. If the root of the class is
not modified, test "Height2 (Root’) = -1 and
REDBLACK" fails since RED_BLACK is false.
Furthermore, the stack is empty as there is no
restructuring in AVL_DELETE.

b) Red-Black tree case

Function AVL_DELETE is called at each new
iteration. It always deletes a leaf inside a class.
This leaf becomes the root of departitioned
classes. Recall that AVL_DELETE performs at
most two restructurings.

On the other hand, several Departitioning
operations can be done. Indeed, each time a
Departitioning is made, the root of the

departitioned classes is removed from the mother
class which can be again departitioned if its height
reaches -1.

It is straightforward to observe that the deletion
algorithm works as follows:

If the underflow class has not a direct sister
class (test "Kind(Sister) = Simple"), a Transforming
is first done to find its direct sister class. If the
difference in heights between the underflow class
and its direct sister class exceeds one in absolute
value, a Restructuring-Partitioning is performed.
Otherwise a Departitioning is performed.

Scenario Example: Figure 8 shows step by step
the deletion mechanism through an example when
parameter REDBLACK is true.

1. Delete (70): 70 is replaced by 75 (its in-order
successor) and then this latter is removed
from class 84.

2. Delete (20): Again, 20 is replaced by 24(its in-
order successor) which is removed from
class 25.

3. Delete (16): 16 is removed from class 15.

4. Delete (30): 30 is replaced by 40(its in-order
successor). Class 40 underflows and has a
direct sister class 84 with no children. They
are then departitioned into the new class 75.

5. Delete (25): 25 is removed and causes an
underflow of class 25. Class 25 has a direct
sister class with one child. A Restructuring-
Partitioning is performed (Right rotation of
node 24 followed by a KindFlip)

6. Delete (40): 40 is replaced by 75(its in-order
successor). 75 is removed from class 80. 80
becomes the new root.

7. Delete (80): 80 is removed and causes an
underflow of class 80. Class 80 does not have
a direct sister class. A Transforming is
completed by a right rotation of node 75. Now,
node 75 has at its left class 24 and at its right
class 80. A Departitioning of node 75 is
then performed.

8. Delete (75): 75 is removed from class 75. 24
becomes the new root.

9. Delete (24): class 24 underflows. Classes 24
and 1 are then departitioned in order to
generate the new class 15.

10. Delete (15): 15 is removed from class 15. 1
becomes the new root.

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 435–450
doi: 10.13053/CyS-23-2-2840

Toward a Unique Representation for AVL and Red-Black Trees 447

ISSN 2007-9737

6 Implementation

6.1 Description

The new balanced tree has one Boolean
parameter: RED_BLACK. If this parameter is true,
we are in the case of a Red-Black tree structure.
Else, it is about an AVL tree. This parameter is
used in both insertion and deletion algorithms, as
well as in maintenance operations.

The new structure uses one additional byte in
every node. Bit 1 is set to 1 if the node is a class
node. Otherwise this bit is set to 0. Bits 2 to 8 hold
node height. In this way, Height(Code) is simply
Code Mod 128. Moreover, if Code ≥ 128 then it is
a class node. Otherwise, it is a simple node.

6.2 Data Structure for the Proposed Tree

We give hence the pseudo code of the
proposed tree.

Type TypeNode = (Simple, Class)
Type Ptr_node = * T_node
T_node  record

Begin
 Data: Anykind
 Code: Byte
 Lc, Rc: Ptr_node

End

Function Kind (A: Ptr_node): Typenode

Begin
 If (A.Code >= 128)
 Kind  Class
 Else Kind  Simple

End

Procedure Ass_kind(A:Ptr_node, A_kind:
Typenode)

Begin
 If (A_kind = Simple)
 A.Code A.Code Mod 128
 Else A.Code = 128 + A.Code Mod 128;

End

Function Height2 (A: Ptr_node): integer;

Begin
 If (A = nil) Height2  -1
 Else Height2  A.Code Mod 128

End

Function Height (A: Ptr_node): integer;
Begin
 If (A=nil) Height  -1
 Else If (A.Code >= 128) // Class node
 Height  -1
 Else Height  A.Code Mod 128
End

Procedure Ass_Height (P: Ptr_node; H: integer);
Begin
 If (P.Code < 128) P.Code  H
 Else P.Code  128 + H

End

6.3 Experimental Tests

We considered the following experiment:
1. Build a Red-Black tree (RB), an AVL tree (AVL)
and the two new binary search trees generated by
the new structure (Z_AVL and Z_RB) with a same
sequence (S1) of N random integer values.
2. Build a random sequence (S2) of about N
insertion and removal operations.
3. (A) - Run sequence S2 separately on each data
structure.
(B) - Compute:

– The total number of rotations.
– The execution time made by both the insertion

and removal algorithms in each kind of trees.

4. Repeat 1 – 3 three times for N = 100 000 to 500
000 by step of 100 000 nodes.

6.4 Results

We have not shown the numbers of rotations
performed by each data structure. These have
been computed only to verify correctness. As
expected, we obtained the same number of
rotations in AVL and Z_AVL as well as in RB and
Z_RB. We focused then our attention only on the
execution time.

Table 1 shows in columns "AVL","RB", "Z_AVL"
and "Z_RB" the execution times in milliseconds
taken by each data structure. Column N denotes
the size of trees initially generated as well as the
number of inserted/ deleted operations. Values
denote the average values of three tests.

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 435–450
doi: 10.13053/CyS-23-2-2840

Lynda Bounif, Djamel Eddine Zegour448

ISSN 2007-9737

First, simulation results confirm the superiority of
Red-Black trees (Column RB) compared to AVL
trees (Column AVL) in applications where
insertions and deletions are very common. As an
example to insert / delete 100 000 elements in a
tree containing previously 500 000, AVL consumed
920 ms, while RB consumed 702 ms.

It is clear from the table above that the
performance of the Red-Black tree generated by
the new structure (Z_RB) gives the same results
as the standard Red-Black tree (Column RB).

It is surprising that the performance of the AVL
tree generated by the new structure (Column
Z_AVL) is better than that of AVL trees (AVL). This
could be explained by the fact that the new
structure uses the height in nodes while the
standard AVL uses the balance (0, +1 or -1).

Let us notice that the performance of the Red-
Black tree generated by the new structure (Z_RB)
is comparable to the performance of the AVL tree
generated by the new structure (Z_AVL) because
we used the same code.

7 Applications

This new structure can be applied in all
applications where AVL and Red-Black trees are
used since it is equivalent to both structures and
gives very good execution times. However it can
be a very efficient structure for real time systems.
In this context [22] demonstrates the usefulness of
using both AVL and Red-Black tree in the priority
queue in Dynamic Data-Driven Application
Systems: when the system anticipates intensive
search operations, the system will convert the tree
to AVL, while when the system anticipates
intensive updates operations, it convert the tree to
Red-Black. This transformation can be done easily
since we have the same code.

8 Conclusion and Future Work

In the current work we have described the
possibility to connect the two most useful and
intriguing balanced search trees, AVL and Red-
Black trees in a simple way. This is accomplished
through a binary search tree partitioned into
classes that are in fact AVL sub-trees. The

implementation of the algorithms gives satisfying
results comparing to the previous propositions.
Several applications of these combining algorithms
are suggested like the real time systems,
especially trees in the priority queue for Dynamic
Data-Driven Application Systems: when the
system anticipates intensive search operations the
system will convert the tree to AVL. On the other
side, when the system anticipates intensive update
operations it convert the tree to Red-Black.

Our work gives simple insertion and deletion
algorithms but its implementation requires a
storage of 8 bits in order to take in consideration
both the height and the type of the node in one
way, and do not guarantee switching from one
structure to another in real time systems. A
possible amelioration of this proposition is to define
a method in order to allow the structure switching
from one structure to another in a dynamic
environment.

References

1. Sedgewick, R. & Addison, W. (2002). Algorithms
in Java, Parts 1-4. Professional, pp. 768.

2. Adelson-Velskii, M. & Landis, E.M. (1963). An
algorithm for the organization of information. Dokl.
Akad. Nauk SSSR 146, Vol. 3, pp. 1259–1262.

3. Foster, C.C. (1965). Information retrieval:

information storage and retrieval using AVL trees.
Proceedings 20th national conference (ACM), pp.
192–205. DOI: 10.1145/800197.806043.

4. Foster, C.C. (1973). A generalization of AVL trees.
Communications of the ACM, Vol. 16, No. 8, pp.
513–517. DOI: 10.1145/355609.362340.

5. Bayer, R. (1971). Binary B-trees for virtual memory.
Proc ACM SIGFIDET Workshop, pp. 219–235.
DOI:10.1145/1734714.1734731.

Table 1. Results of the simulation tests

N AVL RB Z_AVL Z_RB

100,000 187 140 140 141

200,000 405 281 281 281

300,000 578 437 421 437

400,000 734 546 546 562

500,000 920 702 702 717

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 435–450
doi: 10.13053/CyS-23-2-2840

Toward a Unique Representation for AVL and Red-Black Trees 449

ISSN 2007-9737

6. Bayer, R. (1972). Symmetric Binary B-Trees: Data
structure and maintenance algorithms. Acta
Informatica, Vol. 1, No. 4. pp. 290–306. DOI:
10.1007/BF00289509.

7. Brown, M. (1978). A storage scheme for height-
balanced trees. Inf. Process, pp. 231–232.

8. Sedgewick, R. & Wayne, K. (2011). Algorithms 4
edition. Princeton University.

9. Guibas, L.J. & Sedgewick, R. (1978). A
dichromatic framework for balanced trees. In 19th
Annual Symposium on Foundations of Computer
Science IEEE. DOI: 10.1109/SFCS.1978.3.

10. Andersson, A. (1993). Balanced search trees
made simple. Algorithms and Data Structures.
Springer Berlin Heidelberg, pp. 60–71. DOI:
10.1007/3-540-57155-8_236.

11. Okasaki, C. (1999). Purely functional data
structures. Cambridge University Press, pp. 1–203.

12. Kahrs, S. (2011). Red-black trees with types.
Journal of functional programming, Vol. 11, No. 4,
pp. 425–432. DOI: 10.1017/S0956796801004026.

13. Rajeev, T. & Kumar, R. (2010). Balancing of AVL
tree using virtual node. RN 10 20. DOI:
10.5120/1331-1695.

14. Chauhan, S., Thakur, S., & Rana, S. (2014). A brief
study of balancing of AVL tree. International Journal
of Research 1, Vol. 11, pp. 406–408.

15. Mondal, G. (2014). A New Way of Inserting and

Deleting the Node To and From the AVL search

tree. International Journal of Advance Research in
Computer Science and Management Studies, pp.
191–194.

16. Sedgewick, R. (2008). Left-leaning red-black trees.
Dagstuhl Workshop on Data Structures, pp. 4–10.

17. Wiener, R. (2005). Generic Red-Black Tree and its
C# Implementation. Journal of Object Technology,
Vol. 4, No. 2, pp. 59–80.

18. Haeupler, B., Siddhartha, S., & Tarjan, R.E.
(2015). Rank-balanced trees. ACM Transactions on

Algorithms (TALG), Vol. 11, No. 4. DOI:
10.1145/2689412.

19. Cormen, T.H. (2009). Introduction to algorithms.
MIT Press, pp. 1292.

20. Lukes, J.A. (1974). Efficient Algorithm for
Partitioning of Trees. IBM J. Res. Develop.

21. Knuth, D.E. (1973). The Art of Computer
Programming, Sorting and Searching. Addison-
Wesley, Vol. 3.

22. Kumar, N.C., Vyas, S., Shidal, J.A., Cytron, R.,
Gill, D.C., Zambreno, J., & Jonesa, P.H. (2012).

Improving system predictability and performance
via hardware accelerated data structures. Proc.
Computer Science, Vol. 9, pp. 1197–1205. DOI:
10.1016/j.procs.2012.04.129.

Article received on 04/12/2017; accepted on 07/09/2018.
Corresponding author is Lynda Bounif.

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 435–450
doi: 10.13053/CyS-23-2-2840

Lynda Bounif, Djamel Eddine Zegour450

ISSN 2007-9737

