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Abstract. We propose a unique representation of both 

AVL and Red-Black trees with the same time and space 
complexity. We describe all the maintenance operations 
and also the insertion and deletion algorithms. We give 
the implementation of the proposed tree and the results. 
We then make a comparison of the three structures. The 
simulation results confirm the performance of the new 
representation relatively to AVL and Red-Black trees. 
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1 Introduction 

Binary search trees are an efficient data structure 
for loads applications in computer science but have 
a poor worst case performance [1]. The good 
remedy for that is the perfect balanced tree with a 
height at most log(n) [2]. But unfortunately keeping 
a perfect balance of a tree is rude and so 
expensive in practice. One of the reason to 
introduce balanced trees is because of the costs 
are guaranteed to be logarithmic while ensuring 
that the tree remains almost balanced. 

Balanced trees assure a random search, 
insertion and deletion operations in time 
proportional to log(n). The first type of these trees 
is the AVL tree [2]; it is simple and deals well in 
lookup operations. After that many alternatives of 
generalization, simplification or complement 
studies of this first balanced tree have been 
proposed [3, 4, 5, 6, 7]. 

A novel kind of generalization of the AVL tree is 
the Red-Black tree. It is one of the most important 
and used self-balancing data structures. It behaves 
well in update-intensive applications, since it 
performs log(n) operations in the insertion process 
and at most two restructurings in the deletion one. 

The Red-Black tree was originally obtained from 
the 2-3 trees as an amelioration of AVL trees [8]. 
The first version was designed in 1972 by Rudolf 
Bayer [6] under the name: "Symmetric Binary B-
trees", where the author compares the structure 
with the class of B-trees. A few years later 
Leonidas J. Guibas and Robert Sedgewick [9] 
proposed a new form of the original structure 
where the tree balance is expressed using Red 
and Black colors.  

Because of the difficulty to implement the Red-
Black tree in practice, especially in the deletion 
process, some works were proposed to simplify the 
corresponding algorithms. AA tree is a powerful 
simplification of Red-Black trees with the same 
performance and much more approach and coding 
simplicity [10]. Moreover, several simple 
implementations of Red-Black trees can be found 
in [11, 12]. Recently, the majority of works in terms 
of AVL and Red-Black trees aim basically to 
simplify rather than get a good performance. In the 
AVL tree case, [13] introduces a new simpler 
insertion and deletion algorithms for AVL trees by 
using virtual nodes. A brief study of AVL trees 
using this concept is presented in [14]. In the same 
spirit, work [15] gives a new algorithm and explains 
how to easily maintain the balance factor after an 
updating operation. When it comes to Red-Black 
trees, a revisited version has been proposed [16] 
where the code is considerably reduced compared 
to the implementation proposed in [17]. 

The design of a balanced tree is still a rich area, 
and not yet fully explored. A recent proposition with 
improvements for binary search trees are 
proposed in 2015 [18].  

The main idea is to assign a non-negative 
integer rank to each node and impose eight rank 
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rules to give the AVL tree, a new kind of balanced 
tree and different kinds of Red-Black trees: the 
standard version [9] equivalent to the symmetric 
binary B-trees [6], the binary B-tree [5], the left 
leaning trees [16]. Their rank-based framework 
generalizes the dichotomies framework of Guibas 
and Sedgewick [9]. It is a very interesting work 
since it provides not only a new framework for 
defining height-based balance but also a new sort 
of balanced binary tree: the weak AVL tree. 
However, in addition to the obligation of satisfying 
loads of inequalities corresponding to the number 
of inserted and deleted cases, the framework gives 
separate rules to define common balanced trees 
rather than a unique hybridization of the most 
important and useful ones. 

Our main purpose in this work is to represent at 
the same time the most used balanced binary 
trees: AVL and Red-Black trees. In other words, we 
propose common algorithms for the two data 
structures. Only one parameter suffices to switch 
between the two structures. The new 
representation is a binary search tree partitioned 
either in one class or in classes of heights 0 and 1. 
Each class holds an AVL tree. When only one 
class exists, it generates predictably an AVL tree. 
Otherwise, the new structure is equivalent to a 
Red-Black tree with totally different and simple 
algorithms. One extra byte of storage allows 
representing both the kind and the height of 
a node. 

The rest of the paper is structured as follows: 
section 2 introduces the tree terminology. Section 
3 describes our contribution. Section 4 presents 
the maintenance operations while section 5 gives 
insertion and deletion algorithms of the proposed 
balanced tree. In the section 6 we give the 
implementation of the structure, the results of 
implementations and the discussion. Section 7 
shows the applications of the new structure. Finally 
section 8 makes a conclusion and looks forward to 
the future research. 

2 Tree Terminology 

We present here after some basic definitions used 
across the paper.  

These definitions are related mainly to the 
binary search tree and the partitioning problem 
on graphs. 

2.1 Binary Search Tree 

It is an organized tree in a binary representation 
where each node contains a key, a data, the left 
child and the right child which can be 
missing nodes.  

Consider x a node in a binary search tree. If y 
is a node in the left sub-tree of x, then y.key ≤ 
x.key. If y is a node in the right sub-tree of x, then 
y.key ≥ x.key. It is called the binary-search-tree 
property which allows us to print out all the keys in 
a binary search tree in sorted order by the simple 
recursive algorithm: the in-order tree walk. [19]. 

In what follows we define some concepts of the 
binary search tree: 

– A leaf or an external node is a node with no 
children, while a unary (respectively a binary) 
node is a node with one child (respectively two 
children). They denote the internal nodes. 

– The height of a node x: h(x) is the max of the 
height of its left and right children plus one in 
the case x is not a missing node, otherwise, 
h(x) equals -1. 

– The size of a node: s(x) is the number of its 
descendants including itself.  

– The search process starts with the root. First 
we compare the searched key with the root’s 
key. Next we go to the left (respectively right) 
sub-tree if the searched key is less 
(respectively greater) than the root’s key. We 
reach the end of the search when we find the 
desired key or we reach a missing node. 

– Update operations concern the insertion and 
deletion. They are both preceded by a search 
process.  For the insertion, when a missing 
node is reached, it is replaced by a new node 
with the key to insert. As for the deletion, the 
process is more complicated since after the 
search, multiple scenarios may arise. If the 
node is a leaf we replace it by a missing node, 
and if it is a unary node we replace it by its 
child. However if this node is an internal node, 
we find its in-order predecessor node or its in-
order successor node and then we switch 
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between the node we found and the item we 
want to delete. 

– The restructuring operations allow us to 
maintain the binary tree balanced. We 
generally use single or double rotations after 
an update operation. See figure 1. 

2.2 The Partitioning Problem 

The tree partitioning problem arises when 
information must be allocated to blocks of memory, 
whose capacity is limited. 

Assume a tree T = (V, E). A partition of T is 
defined as a collection of k clusters of nodes Ci 
witch we name class, while i varies between 1 and 

K, such that: ⋃ 𝐶𝑖𝑘
𝑖=1 = 𝑉Ci ∩ Cj = ∅ 

As a result, the union of the sub-trees gives the 
whole tree and the intersection of two given sub-
trees is null. 

An edge (i, j) of T is said to be cut by a partition 
of T if nodes i and j are in different clusters. 

An optimal partition of T: Pt(𝑜𝑝𝑡) = {C1, C2, 

C3,… Ck} 
Is one in which each cluster Ci satisfies the 

weight constraint: 

∑ 𝑊𝑗 ≤= 𝑊

𝑗∈𝐶𝑗

 

2.3 Basic Operations 

Here after are some basic operations used in the 
representation of our proposed tree: 

– Lc(P): Left child of node P 

– Rc(P): Right child of node P 

– Ass_Rc(P, Q): Make Q a right child of node P 

– Ass_Lc(P, Q): Make Q a left child of node P 

– Kind(P): Kind of node P 

– Ass_Kind (P, A_Kind): Make A_kind the new 
kind of node P 

– Height(P): Height of simple node P inside the 
class it belongs 

– Height2(P): Height of class node P 
– Ass_height (P, H): Make H the new height of 

node P 

– Rotation(P, Dir): makes a left rotation around 
node P if Dir=1 and a right rotation if Dir=0.   It 
returns the node that replaces P 

– KindSwap(P, F): swaps kinds of nodes P and 
F 

– KindFlip(P, F, Dir): is invoked after F= 
Rotation(P, Dir). It transforms new children of 
F into class nodes and attributes to F the initial 
kind of P. 

3 The Partitioned Binary Tree 

3.1 The Basic Idea 

The notion of partitioning a graph in a form of a tree 
is studied earlier by [20]. The application of the 
algorithm can be: in the allocation of computer 
information to physical storage space or in finding 
a suboptimal partition of any connected graph. 

The proposed work is a binary search tree 
partitioned in classes. Each class is in fact a sub 
tree holding an AVL tree of height H or H-1. The 
root node of this sub-tree is a class node; the other 
nodes are simple. Furthermore, the new structure 
is perfectly balanced considering only class nodes.  

Beside the data field, a node contains a byte 
called a code to designate both its kind and its 
height. The height of a node is in fact the depth of 
the sub-tree rooted at this node inside the class it 
belongs. The storage of a byte in a node delivers a 
range of benefits:  

– To minimize the number of the requirements 
for a unique framework 

– To detect easily the type of the balanced 
tree used 

– To trigger the restructuring operations after 
an update 

 

Fig. 1. The right rotation of the node G 
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– To control and detect the type of a node at any 
time in the tree for the operations inside and 
outside a class. 

3.2 The Rules 

In this section we give formally the requirements 
that a binary tree must have in order to be 
considered as a partitioned tree, we emphasis on 
the fact that these requirements must be satisfied 
for AVL and Red-Black tree case on the globalism, 
not a separate rule for each type like the case of 
[18]. In consequence we have the same 
representation of both AVL and Red-Black tree. 

Formally, the new structure should respect 
these four rules: 

– Rule 1: Every node can be either a simple or a 
class node. 

We describe two categories of nodes: simple 
and class nodes. The class node encloses a sub-
tree of simple nodes of height one or infinity 
of nodes. 

– Rule 2: Every class must have a height equals 
to H - 1 or H - 2. 

A variable H is considered as an integer 
initialized at the beginning, and the variation of this 
integer can give different kinds of balanced trees. 
In this work we focus on the main ones. When H = 
2 the tree is considered as a Red-Black tree, and 
when the limit of H tends to the infinity the tree will 
be an AVL. Indeed, there is only one class node 
which is the root of the class. All the others are 
simple nodes. Consequently, in the definition 
above, by replacing simple nodes by red nodes 
and class nodes by black ones, we obtain exactly 
the definition of a Red-Black tree. 

When the height of a class is equal to 0, this 
means the black node has not a red child.  When 
the height of a class is equal to 1, this means that 
the black node has one or two red children. All the 
simple nodes have 0 as height. Classes define 
mathematically a partition on the tree. In other 
words, the intersection of any two classes is empty 
and the union of all the classes gives the 
whole tree. 

In order to simplify the presentation of the trees 
in the figures below, class nodes are represented 
inside blue squares and simple nodes inside 
circles. Furthermore, classes are surrounded. 

Figure 3(a) shows the new structure as a 
structure equivalent to an AVL tree. There is only 
one class containing an AVL tree. Values under the 
nodes designate the height of the nodes. 

– Rule 3: Every simple node must have a height 
equals to 0 or H - 2. 

– Rule 4: Every direct path from any node to a 
leaf must contain the same number of 
class nodes. 

This rule corresponds to having the same black 
node in a Red-Black tree. We can notice that when 
the tree has only class nodes it is a perfect 
balanced tree since any path from the root to a leaf 
has the same number of class nodes. 

Figure 2 shows an example of our 
representation when H = 3, we can see that the 
height of every class is 2 or 1. Moreover every 
direct path from the root to a leaf has exactly 
two classes.  

a) AVL Tree Case 

It is straightforward to observe that for H = ∞ the 
new structure generates an AVL Tree.  

 

Fig. 2. The representation of the new structure H = 3 
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Indeed, there is only one class node which is 
the root of the class. All the others are simple 
nodes.  In practice, there is no limit for the height 
of the unique class and each path from any node 
to a leaf contains the same number of class nodes 
(0 or 1). 

The minimum number of nodes in an AVL tree 
of code C with height k satisfies the recurrence: 

n0 = 1, n2 = 2, n3 = 4, nk = 1+ nk-1 + nk-2  for any k ≥
 2. This requrence corresponds to Fibonachi trees, 
nk  = Fk+3 – 1. We have Fk+2 > Øk where Ø is the 

golden ratio [21]. 

Fk+3 = 1+ Fk-2 + Fk-1  Fk+3 – 1= Fk-2 + Fk-1. 

Fk+2  >  Øk   Fk+3 – 1 > Øk     k < logØ n   
k < 1.4404 log n 

b) Red-Black Case 

It is also pretty straightforward to notice that for H 
= 2 the tree generates a data structure equivalent 
to a Red-Black tree.  

The subtree rooted at any node n has at least 
2bh(n) - 1 internal nodes. 

If N is nil, then its height is 0. For the inductive 
step, we consider an internal node x with two 
children having black-height of bh(n) or bh(n) – 1 
depending on its color. Considering ch(n) the child, 
applying the hypothesis, it has at least 2bh(n) – 1 - 1 
internal nodes. Thus the subtree rooted by n 
contains at least: 2bh(n) - 1 - 1 + 2bh(n) - 1 - 1 + 1 = 2bh(n) 
– 1 internal nodes [19]. 

We know also that at least half the nodes on 
any simple path from the root to a leaf, not 
including the root, must be black. Consequently, 
the black-height of the root must be at least H/2; 
thus, n > 2h/2 – 1  H < 2.log (n + 1) 

Lemma 3.1: The maximum height of the 
partitioned tree is 2 Log n 

Proof: The minimum number of any node in PBT 
tree of height H satisfies the recurrence: n0 = 1, n2 
= 2, n3 = 4, nk = 2* nk-2 + 1 for any k ≥ 2.  

By induction  nk  ≥  2H/2 which gives: h ≤ 2 log nk. 

4 Maintenance Operations 

We can classify maintenance operations into two 
categories: those that are applied inside a class 
and those outside classes. Restructuring, 
AVL_tree_insert and AVL_tree_delete are 
operations of the first category. Operations of the 
second category are: Partitioning, Departitioning, 
Restructuring-Partitioning and Transforming. 

4.1 Operations inside a Class 

We give here after the various basic maintenance 
operations used to perform insertion and deletion 
algorithms on the new structure in terms of 
operations defined above. 

a) Restructuring 

Restructuring consists simply in rebalancing the 
tree after a tree property violation. It uses 
Restructure operation which performs a rotation 
and updates heights of the turned nodes.  

A KindSwap operation can also be performed in 
Restructure operation. Furthermore, Restructure 

 

Fig. 3. The new structure as an AVL tree 
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can be preceded by a Reverse_balance operation 
which consists in reversing the balance of a 
given: node.  

Function Restructuring (PBT P, int Dir): PBT 

Variables  
S: PBT 

Begin 
If(Dir = 0)  

  If(Height(Rc(Rc(P)))–Height( Lc(Rc(P)))=1) 

  Ass_Rc(P,Reverse_Balance(Rc (P),1 )) 

   S  Restructure (P, 0)  

     Else If(Dir = 1)  

  If(Height (Rc(Lc(P)))–Height(Lc(Lc(P)))= 1) 

         Ass_Lc (P,Reverse_Balance (Lc (P), 0 )) 

        S  Restructure(P, 1) 

Return S 

End 
Function Restructure (PBT P, int Dir): PBT 

Variables  
F: PBT 

Max1, Max2: INT 

Begin 
      F  Rotation (P, Dir) 

      Max1 = Max( Height(Lc(P)), Height(Rc(P)) ) 
          Ass_Height(P, Max1 + 1) 

 Max2 = Max( Height(Lc(F), Height(Rc(F)) ) 

      Ass_Height(F, Max2 + 1) 

      If (REDBLACK Or (Kind (P) = Class) )  
 KindSwap(P, F) 

     Return F 

END 

Function Reverse_Balance (PBT P, int Dir): PBT 

Variables  
F: PBT 

Begin 
    F  Rotation (P, Dir) 
    Max1 = Max(Height (Lc(P)),Height(Rc(P)) ) 

    Ass_Height(P,Max1 + 1) 

    Max2 = Max( Height (Lc(F), Height(Rc(F)) ) 

    Ass_Height(F, Max2+ 1) 
    Return F 

End 

 

Fig. 4. The new structure as a Red-Black tree 

  

Fig. 5. The Partitioning operation 
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b) AVL Tree Insert  

AVL tree insert algorithm uses the Restructuring 
operation defined above to rebalance the tree each 
time the tree becomes unbalanced in the sense of 
AVL trees. In our purpose, the algorithm is 
expressed with the height instead of balance in 
each tree node. 

This algorithm is applied when an item is 
inserted into the tree. Stack Branch holds the path 
traversed by search process from the tree root 
toward the parent of the new inserted node. Nodes 
are popped in order to update their height fields. If 
the balance of a node becomes (in absolute value) 
greater than 1, the tree is restructured and the 
process is stopped. The algorithm is the following: 

Function Avl_insert (PBT Root) 

Begin 

 Avl_Insert  Root 

 Continue  True  

 Repeat  

  Pop(Branch, P) 

        Kind_P  Kind (P) 

   Update P’s height 

  If ( |Height (Lc (P)) - Height (Rc (P)) | > 1)  

              If ( Height (Lc (P)) > Height (Rc (P)) )  

             Q  Restructuring (P, 1) 

       Else Q  Restructuring (P, 0) 

       If (Kind_P = Simple) 

      Pop (Branch, Parent) 

     Modify node Parent to point Q 

        Else Avl_Insert  Q  

        Continue  False 

  Else Continue  (Kind_P = Class) 

  Until (Not Continue) 

End 

c) AVL_tree_delete 

AVL_tree_delete algorithm also uses 
Restructuring operation. The algorithm below is 
applied when an item is deleted from a leaf class 
rooted at Root. Stack Branch holds the path 
traversed by the search process from the root of 
the entire tree toward the parent of the deleted 
node. Nodes are popped in order to update their 
height fields. If the balance of a node becomes (in 
absolute value) greater than 1, the tree is 

restructured. The process can continue upward 
the tree. 

Function Avl_Delete (PBT Root) 

Begin 

Avl_Delete  Root 

Continue  True  

Repeat  

  Pop (Branch, P)    

  Kind_P  Kind_ (P) 

  Save_height  Height (P) 

  Update P’s height 

  If ( |Height (Lc(P)) - Height (Rc) |  > 1 ) 

     If ( Height (Lc (P)) > Height (Rc (P)) ) 

      Q  Restructuring (P, 1) 

     Else Q  Restructuring (P, 0) 

     If (Kind_P = Simple) 

      Parent  Top (Branch) 

      Modify node Parent to point now Q 

    Else Avl_Delete  Q 

    P  Q      

Until (Not Save_height – Height(P) = 0) Or   
(Kind_P = Class))  

End 

4.2 Operations Outside a Class 

Naturally, operations between classes concern 
only the structure equivalent to a Red-Black tree. 

During the process of insertion, an item is 
always inserted into a leaf class. The class can 
overflow, i.e. its height reaches 2.  A Restructuring 
is performed if the class has only one child. 
Otherwise, a Partitioning operation is performed. 

During the process of deletion, an item is 
always removed from a leaf class. The leaf class 
can underflow, i.e. its height reaches -1. Several 
cases occur: 

– The underflow class has not a direct sister 
class (or its sibling node is a simple node). A 
Transforming operation is performed. 

– The underflow class has a direct sister class 
(or its sibling node is a class node) with no 
child. A Departitioning operation is performed. 
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Fig. 6. The Departitioning operation 

 

 

 

Fig. 7. The Restructuring-Partitioning operation 
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– The underflow class has a direct sister class 
(or its sibling node is a class node) with one or 
two children. A Restructuring-Partitioning 
operation is performed. 

We describe henceforth, all the operations 
mentioned. 

a) Partitioning  

It consists in transforming one class into two 
classes. In Figure 5(a1), after an insertion 
operation in class Z, this is partitioned since its 
height reaches 2. Dashed lines correspond to the 
four possible cases. Node Z becomes a simple 
node and its two children X and Y become class 
nodes (Figure 5(a2)). Node Z becomes thus a new 
leaf in the mother class.  

This operation corresponds simply to the 
modification of three nodes’ kinds. Partitioning 
does not require rotations and is done in O(1). 

b) Departitioning 

In Figures 6(a1) and 6(b1), after a delete operation, 
the height of class Y becomes -1 while its direct 
sister class has a height equal to 0. A 
Departitioning operation holds. Node Z is deleted 
from the mother class as depicted in Figures 6(a2) 
and 6(b2). Figure 6(b2) shows a situation where 
the conflict is not yet resolved. This means that the 
process continues since the mother class has no 
child. Two nodes’ kinds will be modified: the parent 
node and its child. The parent node becomes a 
class node while its child becomes a simple node. 

As Partitioning, Departitioning does not require 
rotations and works in O(1) time. 

c) Restructuring-Partitioning 

Restructuring-Partitioning is undertaken when a 
class underflows, its direct sister class exists and 
has one or two children.  Such situations are 
depicted in figures 7(a1), 7(b1) and 7(c1) where 
the underflow class is to the right of node P. As 
node P can be a simple or class node, it is 
represented inside a triangle. The conflict is first 
solved by possibly applying a Reverse_Balance 
operation on the sister class (a simple rotation). 
Second, a Restructure_Partition operation is 
performed. It performs a rotation, a KindFlip 
operation and updates heights of the concerned 
nodes. Figures 7(a2) and 7(b2) are new situations 
of Figures 7(a1) and 7(b1). Nodes C and P become 
class nodes and the kind of node X after the 
rotation is the one of P before the rotation. As node 
X had already a left child, a Reverse_Balance 
operation is not necessary. For Figure 7(c1), a 
reversing of balance of class X is first performed.  
As a consequence, the result is depicted in 
Figure 7(c2). 

d) Transforming 

Recall that Transforming occurs when a class 
underflows while it does not have a direct sister 
class (the sibling node is simple). 

It is the case of Figure 8(a1) where the 
underflow class is Y and its direct sister class is A. 
P is their parent node. 

 

Fig. 8. The Transforming operation 
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If node A is a left child, then the right child of 
node A must be a class node with a height 0 or 1. 
A first single right rotation of node P is performed 
in order to find a direct sister class of the underflow 
class. Figure 8 (a2) is the result of the 
Transforming process. Now, the underflow class 
has a direct sister class and the process continues 
either with a Departitioning or a 
Restructuring- Partitioning. 

5 Insertion and Deletion Algorithms 

Once the maintenance operations are presented, 
we can now give the algorithms of insertion and 
deletion of the new structure. 

5.1 Inserting a New Element 

In the insertion process an element is always 
added into a leaf class. In AVL tree case 
(Parameter REDBLACK = False), the process 
terminates.  In Red-Black tree case (Parameter 
REDBLACK = True), if the height of this class 
becomes 2, the algorithm described below is 
applied. It uses a stack containing all the nodes 
traversed from the root (Tree) of the entire tree until 
the parent of the newly inserted node. The 
algorithm goes upward the tree from the inserted 
node towards the root of the tree by making either 
Restructuring or Partitioning. When Restructuring 

is performed, the process terminates. On the other 
hand, Partitioning can be in cascade. 

The insertion algorithm begins with the root of 
the overflow class (Root) and its parent node 
(Parent). The parent is used to update links when 
a restructuring is performed. Top operation gives 
the root of the mother class and its parent node 
without popping elements from stack Branch. 
Recall that function AVL_INSERT(Root) adjusts 
the balance of the class rooted at Root and returns 
the new root of the class. 

Repeat  

Save_Root  Root 

Root’  AVL_INSERT (Root) 

If (Root’ <> Save_Root)  

If (Parent <> Null)  

     Modify node Parent to point now Root’ 

Else Tree  Root’  

Continue  False 

ElseIf (Height2 (Root’) = 2 and REDBLACK) 

PARTITIONING (Root’) 

Top (Branch, Root, Parent) 

Until (Empty (Branch)) or (Not continue)  

Comment and Analysis 

The element is first inserted inside a class using 
the AVL_INSERT method. 

  

Fig. 9. A step by step insertion algorithm 
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a) AVL Tree Case: If the root of the class is 
modified by the AVL_INSERT function, a 
restructuring is done (in AVL_INSERT) and 
then test (Root’ <> Save_Root) holds.  Flag 
Continue is set to False. As a consequence, 
only one iteration of the Repeat loop is 
performed. If the root of the class is not 
modified, test "Height2(Root’) = 2 and 
REDBLACK" fails since REDBLACK is false. 
Furthermore, the stack is empty as there is no 
Restructuring in AVL_INSERT. 

b) Red-Black Tree Case: Function AVL_INSERT 
is called at each new iteration. It inserts the root 
of the partitioned class.  Recall that 
AVL_INSERT performs at most one 
Restructuring. On the other hand, several 
Partitioning operations can be done. Indeed, 
each time a Partitioning is made, the root of the 
partitioned class migrates to mother class 
which can be again partitioned if its height 
reaches 2. 

Scenario Example: Figure 7 shows step by step 
the construction mechanism through an example 
when parameter REDBLACK is true, i.e. H = 2. 

1. Insert (70): a class is created with one element. 

2. Insert (20): 20 is inserted into class 70. 

3. Insert (16): 16 is inserted into class 70 and 
causes a restructuring (right rotation of node 
70). 20 becomes the root of the class. Indeed, 
class 70 overflows while it has one child. 

4. Insert (30): 30 is inserted into class 20 and 
causes a Partitioning since class 20 overflows 
while it has two children. 

5. Insert (27): 27 is inserted to the left of node 30 
and this causes a restructuring (right rotation of 
node 70). 

6. Insert (35): 35 augments the height of class 30 
and this is balanced in the sense of an AVL tree. 
As this class overflows, it is partitioned to 
generate two other classes: 27 and 70. 30 is 
transformed into a simple node and belongs 
now to the mother class 20. 

7. Insert (85): 85 is inserted into class 70 as a right 
child. 

8. Insert (75): This case is represented by two 
trees (75a and 75b). a) 75 is inserted into class 
70 and augments its height. Class 70 is 
balanced in the sense of an AVL tree but it 

overflows. It is then partitioned to generate two 
other classes: 35 and 85. b) Node 70 becomes 
a new leaf of class 20 and then overflows (class 
surrounded in red lines). As class 20 has one 
child, it is structured (left rotation of node 20). 
30 becomes the new root. 

9. Insert (24, 13): 24 is inserted in class 27 and 13 
in class 16. 

5.2 Deleting an Existing Element 

An element is always removed from a leaf class. 
For the AVL tree case (Parameter RED_BLACK is 
False), the process terminates. However, for the 
Red-Black tree case (Parameter RED_BLACK is 
True), if the height of this class became equal to -
1, i.e. it underflows, the algorithm described below 
is applied. This consists in going upward the tree 
from the removed node towards the root of the tree 
(Tree), by making one or several operations 
among the following: 

– Departitioning  

– Transforming 

– Restructuring-Partitioning 

When a Restructuring-Partitioning is 
performed, the process stops. On the other hand, 
Departitioning can be in cascade. Transforming is 
performed only one time but the 
process continues. 

The algorithm uses a stack containing all the 
nodes traversed from the root until the parent of the 
newly removed node. 

It has as input the root of the underflow class 
(Root), its parent node (Parent) and its 
grandparent node (Grandparent). Parent is used to 
update links when a restructuring is performed. 
Grandparent is used when a maintenance 
operation is performed. Top operation gives the 
root of the mother class, its parent node and its 
grandparent node without popping elements from 
stack Branch. 

Recall that function AVL_DELETE(Root) 
adjusts the balance of the class rooted at Root and 
returns the new root of this class. 

Repeat  

Save_Root  Root 

Root’  AVL_DELETE(Root) 
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If (Root’ <> Save_Root) And (Root’ <> Null) 

      If (Parent <> Null) 

 Modify node Parent to point now Root’ 

     Else Tree   Root’   

     Continue    false 

     Else If ((Height2(Root’)= -1) And REDBLACK) 

   If (Lc(Parent)= Root’) 

 SisterRc(Parent) 

 Dir  0;  

  Else 

 Sister  Lc (Parent) 

 Dir  1 

  If (Kind (Sister) = Simple)  

      Parent2  Sister  

      If (Dir = 1) New_Sister   Rc (Sister)  

      Else  New_Sister   Lc( Sister )  

  Q  TRANSFORMING (Parent, Dir)  

      If (Grandparent <> Null) 

 

 

Fig. 10. A step by step deletion algorithm 
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          Modify node Grandparent to point Q 

     Else Tree  Q; 

     Pop(Branch, X);     Push(Branch, Q);  

     Push(Branch, X;   Grandparent Parent2 

   If ( |(Height2(Root’) – Height2 (New_Sister )|  
> 1) 

Q  RESTRUCTURING_ 
PARTITIONING (Parent, Dir)  

 If (Parent == Tree) Tree  Q 

 Else If (Grandparent <> Null)  

         Modify node Grandparent to point Q 

 Else Tree   Q 

 Continue = False 

   Else 
 Kind_Parent Kind (Parent) 

  DEPARTITIONING (Parent, Dir) 

     Top( Branch, Root, Parent, Grandparent)  

     If (Kind_Parent = Simple) Pop (Branch) 

  Else Continue   False 

Until (Not Continue) 

Comment and Analysis 

The element is first removed from a class using the 
AVL_DELETE function. 

a) AVL Tree Case 

If the root of the class is modified by the 
AVL_DELETE function, one or two restructurings 
are done and then test "(Root’ <> Save_Root) And 
(Root’ <> Null)" holds.  Flag Continue is set to 
False. As a consequence, only one iteration of the 
Repeat loop is performed. If the root of the class is 
not modified, test "Height2 (Root’) = -1 and 
REDBLACK" fails since RED_BLACK is false. 
Furthermore, the stack is empty as there is no 
restructuring in AVL_DELETE. 

b) Red-Black tree case 

Function AVL_DELETE is called at each new 
iteration. It always deletes a leaf inside a class. 
This leaf becomes the root of departitioned 
classes. Recall that AVL_DELETE performs at 
most two restructurings. 

On the other hand, several Departitioning 
operations can be done. Indeed, each time a 
Departitioning is made, the root of the 

departitioned classes is removed from the mother 
class which can be again departitioned if its height 
reaches -1. 

It is straightforward to observe that the deletion 
algorithm works as follows: 

If the underflow class has not a direct sister 
class (test "Kind(Sister) = Simple"), a Transforming 
is first done to find its direct sister class. If the 
difference in heights between the underflow class 
and its direct sister class exceeds one in absolute 
value, a Restructuring-Partitioning is performed. 
Otherwise a Departitioning is performed. 

Scenario Example: Figure 8 shows step by step 
the deletion mechanism through an example when 
parameter REDBLACK is true.  

1. Delete (70): 70 is replaced by 75 (its in-order 
successor) and then this latter is removed 
from class 84. 

2. Delete (20): Again, 20 is replaced by 24(its in-
order successor) which is removed from 
class 25.  

3. Delete (16): 16 is removed from class 15. 

4. Delete (30): 30 is replaced by 40(its in-order 
successor). Class 40 underflows and has a 
direct sister class 84 with no children. They 
are then departitioned into the new class 75. 

5. Delete (25): 25 is removed and causes an 
underflow of class 25. Class 25 has a direct 
sister class with one child. A Restructuring-
Partitioning is performed (Right rotation of 
node 24 followed by a KindFlip)  

6. Delete (40): 40 is replaced by 75(its in-order 
successor).  75 is removed from class 80. 80 
becomes the new root. 

7. Delete (80): 80 is removed and causes an 
underflow of class 80. Class 80 does not have 
a direct sister class. A Transforming is 
completed by a right rotation of node 75. Now, 
node 75 has at its left class 24 and at its right 
class 80. A Departitioning of node 75 is 
then performed. 

8. Delete (75): 75 is removed from class 75. 24 
becomes the new root. 

9. Delete (24):  class 24 underflows. Classes 24 
and 1 are then departitioned in order to 
generate the new class 15.  

10. Delete (15): 15 is removed from class 15. 1 
becomes the new root. 
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6 Implementation 

6.1 Description 

The new balanced tree has one Boolean 
parameter: RED_BLACK. If this parameter is true, 
we are in the case of a Red-Black tree structure. 
Else, it is about an AVL tree. This parameter is 
used in both insertion and deletion algorithms, as 
well as in maintenance operations.  

The new structure uses one additional byte in 
every node. Bit 1 is set to 1 if the node is a class 
node. Otherwise this bit is set to 0. Bits 2 to 8 hold 
node height. In this way, Height(Code) is simply 
Code Mod 128. Moreover, if Code ≥ 128 then it is 
a class node. Otherwise, it is a simple node. 

6.2 Data Structure for the Proposed Tree 

We give hence the pseudo code of the 
proposed tree. 

Type TypeNode = (Simple, Class) 
Type Ptr_node = * T_node 
T_node  record 

Begin 
     Data: Anykind 
     Code: Byte 
     Lc, Rc: Ptr_node 

End 

Function Kind (A: Ptr_node): Typenode  

Begin 
     If (A.Code >= 128)  
 Kind  Class 
     Else Kind  Simple 

End 

Procedure Ass_kind(A:Ptr_node, A_kind: 
Typenode) 

Begin 
     If (A_kind = Simple) 
 A.Code A.Code Mod 128  
     Else A.Code = 128 + A.Code Mod 128; 

End 

Function Height2 (A: Ptr_node): integer;  

Begin 
   If (A = nil) Height2   -1 
   Else Height2  A.Code Mod 128 

End 

Function Height (A: Ptr_node): integer;  
Begin 
     If (A=nil) Height  -1 
     Else If (A.Code >= 128) // Class node 
        Height   -1 
     Else Height   A.Code Mod 128 
End 

Procedure Ass_Height (P: Ptr_node; H: integer); 
Begin   
     If (P.Code < 128) P.Code  H 
     Else P.Code  128 + H 

End 

6.3 Experimental Tests 

We considered the following experiment: 
1. Build a Red-Black tree (RB), an AVL tree (AVL)  
and the two new binary search trees generated by 
the new structure (Z_AVL and Z_RB) with a same 
sequence (S1) of N random integer values. 
2. Build a random sequence (S2) of about N 
insertion and removal operations.  
3. (A) - Run sequence S2 separately on each data 
structure. 
(B) - Compute: 

– The total number of rotations. 
– The execution time made by both the insertion 

and removal algorithms in each kind of trees. 

4. Repeat 1 – 3 three times for N = 100 000 to 500 
000 by step of 100 000 nodes. 

6.4 Results 

We have not shown the numbers of rotations 
performed by each data structure. These have 
been computed only to verify correctness. As 
expected, we obtained the same number of 
rotations in AVL and Z_AVL as well as in RB and 
Z_RB. We focused then our attention only on the 
execution time. 

Table 1 shows in columns "AVL","RB", "Z_AVL" 
and "Z_RB" the execution times in milliseconds 
taken by each data structure. Column N denotes 
the size of trees initially generated as well as the 
number of inserted/ deleted operations. Values 
denote the average values of three tests. 
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First, simulation results confirm the superiority of 
Red-Black trees (Column RB) compared to AVL 
trees (Column AVL) in applications where 
insertions and deletions are very common. As an 
example to insert / delete 100 000 elements in a 
tree containing previously 500 000, AVL consumed 
920 ms, while RB consumed 702 ms. 

It is clear from the table above that the 
performance of the Red-Black tree generated by 
the new structure (Z_RB) gives the same results 
as the standard Red-Black tree (Column RB). 

It is surprising that the performance of the AVL 
tree generated by the new structure (Column 
Z_AVL) is better than that of AVL trees (AVL). This 
could be explained by the fact that the new 
structure uses the height in nodes while the 
standard AVL uses the balance (0, +1 or -1).  

Let us notice that the performance of the Red-
Black tree generated by the new structure (Z_RB) 
is comparable to the performance of the AVL tree 
generated by the new structure (Z_AVL) because 
we used the same code. 

7 Applications 

This new structure can be applied in all 
applications where AVL and Red-Black trees are 
used since it is equivalent to both structures and 
gives very good execution times. However it can 
be a very efficient structure for real time systems. 
In this context [22] demonstrates the usefulness of 
using both AVL and Red-Black tree in the priority 
queue in Dynamic Data-Driven Application 
Systems: when the system anticipates intensive 
search operations, the system will convert the tree 
to AVL, while when the system anticipates 
intensive updates operations, it convert the tree to 
Red-Black. This transformation can be done easily 
since we have the same code. 

8 Conclusion and Future Work 

In the current work we have described the 
possibility to connect the two most useful and 
intriguing balanced search trees, AVL and Red- 
Black trees in a simple way. This is accomplished 
through a binary search tree partitioned into 
classes that are in fact AVL sub-trees. The 

implementation of the algorithms gives satisfying 
results comparing to the previous propositions. 
Several applications of these combining algorithms 
are suggested like the real time systems, 
especially trees in the priority queue for Dynamic 
Data-Driven Application Systems: when the 
system anticipates intensive search operations the 
system will convert the tree to AVL. On the other 
side, when the system anticipates intensive update 
operations it convert the tree to Red-Black. 

Our work gives simple insertion and deletion 
algorithms but its implementation requires a 
storage of 8 bits in order to take in consideration 
both the height and the type of the node in one 
way, and do not guarantee switching from one 
structure to another in real time systems. A 
possible amelioration of this proposition is to define 
a method in order to allow the structure switching 
from one structure to another in a dynamic 
environment. 
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